iii-v fet channel designs for high current densities and thin inversion layers [email protected]...

34
III-V FET Channel Designs for High Current Densities and Thin Inversion Layers [email protected] 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara Coauthors: W. Frensley: University of Texas, Dallas S. Steiger, S. Lee, Y. Tan, G. Hegde, G. Klimek Network for Computational Nanotechnology, Purdue University E. Chagarov, L. Wang, P. Asbeck, A. Kummel, University of California, San Diego T. Boykin University of Alabama, Huntsville J. N. Schulman The Aerospace Corporation, El Segundo, CA. 2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana Acknowledgements: Herb Kroemer (UCSB), Bobby Brar (Teledyne) Art Gossard (UCSB), John Albrecht (DARPA)

Upload: kerry-adams

Post on 03-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

III-V FET Channel Designs for High Current Densities and Thin Inversion Layers

[email protected] 805-893-3244, 805-893-5705 fax

Mark Rodwell University of California, Santa Barbara

Coauthors:

W. Frensley: University of Texas, Dallas

S. Steiger, S. Lee, Y. Tan, G. Hegde, G. KlimekNetwork for Computational Nanotechnology, Purdue University

E. Chagarov, L. Wang, P. Asbeck, A. Kummel, University of California, San Diego

T. BoykinUniversity of Alabama, Huntsville

J. N. SchulmanThe Aerospace Corporation, El Segundo, CA.

2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana

Acknowledgements: Herb Kroemer (UCSB), Bobby Brar (Teledyne) Art Gossard (UCSB), John Albrecht (DARPA)

Thin, high current density III-V FET channels

InGaAs, InAs FETs THz & VLSI need high current

low m*→ high velocities

Density of states bottleneck (Solomon & Laux IEDM 2001)

→ For < 0.6 nm EOT, silicon beats III-Vs

FET scaling for speed requires increased charge density low m* →low charge density

Open the bottle !

low transport mass → high vcarrier

multiple valleys or anistropic valleys → high DOSUse the L valleys.

Simple FET ScalingGoal: double transistor bandwidth when used in any circuit → reduce 2:1 all capacitances and all transport delays

→ keep constant all resistances, voltages, currents

)/(~/ gggsgm WLCvWg

ggggsggs LLWCWC )/(/

~/, gfgs WC

~/ ggd WC

. ),/( ),/( , )/( doublemust wespeed, double To D sgggsggm nWLCWIWg

must increase gate capacitance/area

must reduce gate length

gate-source, gate-drain fringing capacitances: 0.15-0.25 fF/m

laws in constant-voltage limit:

FET Scaling Laws

GW widthgate

GL

FET parameter change

gate length decrease 2:1

current density (mA/m), gm (mS/m) increase 2:1

channel 2DEG electron density increase 2:1

electron mass in transport direction constant

gate-channel capacitance density increase 2:1

dielectric equivalent thickness decrease 2:1

channel thickness decrease 2:1

channel density of states increase 2:1

source & drain contact resistivities decrease 4:1

Current densities should doubleCharge densities must double

Changes required to double device / circuit bandwidth.

Semiconductor Capacitances Must Also Scale

inversiondepth /Tc

oxc

)( thgs VV

2*2 2/ gmqcdos

)2/()()(charge channel 2* gmEEqVVcqn wellfwellfdoss

motion) onalunidirecti(

scale. both alsomust states ofdensity & thicknessInversion

qEE wellf /)(

Calculating Current: Ballistic Limit

fvv )3/4( velocity electron mean

2/3

2/3,

2/1

V 1)/*()/(1

)/*(

m

mA 84

thgs

ooxodos

oVV

mmgcc

mmgJ

minima band of # theis where, )/*(2/* ,22 gmmgcgmqc oodosdos

thgsdosequiv

equivdoscfdos VV

cc

ccVVc

s :charge Channel

2/* through velocity Fermidetermines

toapplied voltage voltage FermiChannel2ffff

dos

vmqVEv

c

Do we get highest current with high or low mass ?

Natori

InGaAs MOSFETs: superior Id to Si at large EOT.InGaAs MOSFETs: inferior Id to Si at small EOT.

2/3*

,

2/1*

1

2/3

1)/()/(1

where, V 1m

mA84

oequivodos

othgs

mmgcc

mmgK

VVKJ

Drive current versus mass, # valleys, and EOT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

no

rma

lized

driv

e c

urr

en

t K

1

m*/mo

g=2

EOT=1.0 nmEOT includes the wavefunction depth term (mean wavefunction depth*

SiO2 /

semiconductor )

0.6 nm

0.4 nm

g=1

InGaAs <--> InP Si

0.3 nm

/EOTε

)/c/c(c oxequiv

2SiO

1depth

11

Solomon / Laux Density-of-States-Bottleneck → III-V loses to Si.

2/1*

,

2/1

0

*

2

2/1

72 1 whereVolt 1

cm/s 1052.2

oeq

odos

thgs

g

D

chch m

mg

c

c

m

mK

VV

LK

I

Q

Transit delay versus mass, # valleys, and EOT

0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Nor

mal

ize

d tr

ansi

t del

ay

K2

m*/mo

EOT=1.0 nm

EOT includes wavefunction depth term (mean wavefunction depth*

SiO2 /

semiconductor )

0.6 nm0.4 nm

g=1, isotropic bands

g=2, isotropic bands

1 nm

0.4 nm

0.6 nm

/EOTε

)/c/c(c oxequiv

2SiO

1semi

11

Low m* gives lowest transit time, lowest Cgs at any EOT.

Low effective mass also impairs vertical scaling

Shallow electron distribution needed for high Id, high gm / Gds ratio, low drain-induced barrier lowering.

./ 2*2wellTmL

Only one vertical state in well. Minimum ~ 3 nm well thickness.→ Hard to scale below 10-16 nm Lg.

For thin wells, only 1st state can be populated.For very thin wells, 1st state approaches L-valley.

Energy of Lth well state

substrate material

III-V Band Properties, normal {100} Wafer

X L

valleys tocomparable are masses nsversevalley tra-L

eV 0.28 0.075 1.90

eV 0.57 0.050 0.65

eV 0.47 0.062 1.23

/ /

valley L

EEmmmm Lotol

Si Si

GaAs GaAs

InP InAs

InP AsGaIn

substrate material

0.50.5

---

0.067

0.026

0.045

/

valley *

omm

(negative) 0.19 0.92

eV 0.47 0.22 1.30

eV 0.87 0.16 1.13

eV 0.83 0.19 1.29

/ /

valley

EEmmmm

X

xotol

substrate material

Consider instead: valleys in {111} Wafer

X L

---

0.067

0.026

0.045

/

valley *

omm

(negative) 0.19 0.92

eV 0.47 0.22 1.30

eV 0.87 0.16 1.13

eV 0.83 0.19 1.29

/ /

valley

EEmmmm

X

xotol

eV 0.28 0.075 1.90

eV 0.57 0.050 0.65

eV 0.47 0.062 1.23

/ /

valley L

EEmmmm Lotol

Si Si

GaAs GaAs

InP InAs

InP AsGaIn

substrate material

0.50.5

mass verticalmoderate have valleys L three& valleysX

mass verticalhigh has valley Lone :nOrientatio

substrate material

Valley in {111} wafer: with quantization in thin wells

X L

mass erselow transv valley; L[111]Selects

---

0.067

0.026

0.045

/

valley *

omm

(negative) 0.19 0.92

eV 0.47 0.22 1.30

eV 0.87 0.16 1.13

eV 0.83 0.19 1.29

/ /

valley

EEmmmm

X

xotol

eV 0.28 0.075 1.90

eV 0.57 0.050 0.65

eV 0.47 0.062 1.23

/ /

valley L

EEmmmm Lotol

Si Si

GaAs GaAs

InP InAs

InP AsGaIn

substrate material

0.50.5

eV 0.07 0.10 1.30

eV 0.28 0.075 1.90

eV 0.47 0.062 1.23

/ /

valleyL

EEmmmm Lotol

GaSb

GaAs

AsGaIn

material

0.50.5

---

nm 4

nm 2

(?) nm 1

alignment L

for thickness Well

material

{111} -L FET: Candidate Channel Materials

Ge

GaSb

GaAs

AsGaIn

material

0.50.5

0.039

0.067

0.045

/

valley *

omm

(negative) 0.08 1.58

eV 0.07 0.10 1.30

eV 0.28 0.075 1.90

eV 0.47 0.062 1.23

/ /

valleyL

EEmmmm Lotol

Standard III-V FET: valley in [100] orientation

3 nm GaAs wellAlSb barriers

=0 eV

L=177 meVX[100]= 264 meVX[010] = 337 meV

-1-0.5

00.5

11.5

2

LE

ne

rgy,

eV

X[010]X[100]L

Wav

efu

nctio

ns

-1

1st Approach: Use both and L valleys in [111]

-1

XL[111]L[111] L[111]

L[111]-1

2.3 nm GaAs wellAlSb barriers[111] orientation

= 41 meVL[111] (1)= 0 meVL[111] (2)= 84 meV

L[111] , etc. =175 meVX=288 meV

2/3*

,

2/1*

1

2/3

1)/()/(1

where, V 1m

mA84

oequivodos

othgs

mmgcc

mmgK

VVKJ

Combined -L wells in {111} orientation vs. Si

2 nm GaAs /L well→ g =2, m*/m0=0.074 nm GaSb /L well→ m*/m0=0.039, mL,t*/m0=0.1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

Nor

ma

lize

d c

urr

ent

de

nsity

K1

m*/mo

g=2

EOT=1.0 nmEOT includes the wavefunction depth term (mean wavefunction depth*

SiO2 /

semiconductor )

0.6 nm

0.4 nm

GaAs Si

0.3 nm

GaSb

combined ( -L) transport

/EOTε

)/c/c(c oxequiv

2SiO

1semi

11

2nd Approach: Use L valleys in Stacked Wells

Three 0.66 nm GaAs wells0.66 nm AlSb barriers [111] orientation

L[111](1) = 0 meVL[111](2)= 61 meVL[111](3)= 99 meV

=338 meVL[111], etc =232 meVX=284 meV

-1

XL[111]L[111]

All L[111]

-1

Increase in Cdos with 2 and 3 wells

1

1.5

2

2.5

3

0.01 0.1 1

1 nm well pitch2 nm well pitch3 nm well pitch

Cd

os,

N-w

ell/C

do

s,1

-we

ll

m*/mo

2 wells

3 wells

3 High Current Density (111) GaAs/AlSb Designs

(111) orientation

-1-0.5

00.5

11.5

2

L

En

erg

y, e

V

X[010]X[100]L

-1

XL[111]L[111] L[111]

-1

XL[111]L[111]L[111]

-1

XL[111]L[111]

Wav

efu

nctio

ns

-1

L[111]-1

both L[111]

-1

All L[111]

-1

0 1 2 3 4 5 6 7

0 1002 10194 10196 10198 10191 1020

Cha

rge

de

nsity

, 1/

cm3

position, nm0 1 2 3 4 5 6 7

position, nm0 1 2 3 4 5 6 7

-1

position, nm0 1 2 3 4 5 6 7

-1

position, nm

0

2 1012

4 1012

6 1012

8 1012

-0.2 -0.1 0 0.1 0.2 0.3

Ns (

1/cm

2 )

(Vgs

-Vth

), V

L valleys filling

-0.2 -0.1 0 0.1 0.2 0.3

0

(Vgs

-Vth

), V-0.2 -0.1 0 0.1 0.2 0.3

0

(Vgs

-Vth

), V-0.2 -0.1 0 0.1 0.2 0.3

0

(Vgs

-Vth

), V

3 nm GaAs wellAlSb barriers

2.3 nm GaAs wellAlSb barriers

Two 0.66 nm GaAs wells0.66 nm AlSb barriers

Three 0.66 nm GaAs wells0.66 nm AlSb barriers

(100) orientation

Concerns

Nonparabolic bands reduce bound state energies

1-2 monolayer fluctuations in growth→ scattering→ collapse in mobility

Failure of effective mass approximation:1-2 nm wells

Purdue Confirmation

Purdue Confirmation Steiger, Klimeck, BoykinRyu, Lee, Hegde, Tan

1-D FET array = 2-D FET with high transverse mass

Weak coupling → narrow transverse-mode energy distribution→ high density of states

2-D FET 1-D Array FET

3rd Approach: High Current Density L-Valley MQW FINFETs

0

1

2

3

4

5

6

7

8

0.01 0.1 1

Dra

in c

urre

nt, m

A/

m

m*/mo

Vgs

-Vth=0.3 V

0.3 nm EOT0.6 nm EOT

EOT includes wavefunction depth term (mean wavefunction depth*

SiO2 /

semiconductor )

5 nm well pitch

2.5 nm well pitch

22*

22

min,min, 2 energiesvalley i

WmqVE ii

iif VV

gqI min,

2

current

i

min,*2 :charge ifch VVqm

glQ

oxchfgs CQVV / : voltagegate

4th Approach: {110} Orientation→ Anisotropic Bands

locitycarrier vehigh transport toparallel mass plane-in Low

states ofdensity high transportlar toperpendicu mass plane-inHigh

populate valleysmass verticalmoderate: ]1L[11 [111], L

locitycarrier ve low transport toparallel mass plane-inHigh

depopulate mass verticallow :11]1[ 1],1[1 L

valleys.undesired and desiredbetween separationenergy moderateonly :Challenge

transport

Asbeck P.

2/32/1||

2/1,

2/12/1

1

2/3

1)/()/(1

)/( where,

V 1m

mA84

oequivodos

othgs

mmmgcc

mmgK

VVKJ

Anisotropic bands, e.g. {110}

0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.1 1

no

rma

lized

driv

e c

urre

nt

K1

m*/mo

EOT=1.0 nm

EOT includes wavefunction depth term (mean wavefunction depth*

SiO2 /

semiconductor )

0.6 nm

0.4 nm

g=2, mperpendicular

/m0=0.70.3 nm

g=2, m perpendicular

/m0=0.6

g=2, m perpendicular

/m0=0.5

Transport in {110} oriented L valleys

1.58/ ,081.0/ ,2 :Ge 1.9/ ,075.0/ ,2 :GaAs

nsport valley tra-L with MOSFETs {110} Ge and GaAs

olotolot mmmmnmmmmn

/EOTε

)/c/c(c oxequiv

2SiO

1semi

11

THz FET scaling: with & without increased DOS

Gate length nm 50 35 25 18 13 9 Gate barrier EOT nm 1.2 0.83 0.58 0.41 0.29 0.21 well thickness nm 8.0 5.7 4.0 2.8 2.0 1.4 S/D resistance m 210 150 100 74 53 37 effective mass *m0 0.05 0.05 0.05 0.08 0.08 0.08

# band minima canonical fixed DOS stepped #

111

1.411

211

2.812

413

5.713

Scaled FET performance: fixed vs. increasing DOS

0

500

1000

1500

2000

2500

3000 canonical scalingstepped # of bands transport only

f , GH

z

0

500

1000

1500

2000

2500

3000

3500

4000

f ma

x, G

Hz

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

dra

in c

urre

nt d

ensi

ty, m

A/

m

gate length, nm

200 mV gate overdrive

0

200

400

600

800

1000

0 10 20 30 40 50 60

SC

FL

sta

tic d

ivid

er c

lock

ra

te,

GH

z

gate length, nm

f fmax

mA/m→ VLSI metric SCFL divider speed

Increased density of states needed for high drive current, fast logic @ 16, 11, 8 nm nodes

10 nm / 3 THz III-V FETs: Challenges & Solutions

gate dielectric:decrease EOT 2:1

S/D access regions:decrease resistivity 2:1

channel: keep same velocity, butthin channel 2:1increase density of states 2:1

S/D regrowthWistey et alSingisetti et al

L

To double the bandwidth:

(end)

Purdue Confirmation

MOSFET Scaling Laws

gate

source drain

LgLS/D LS/D TwellTox

circuitarbitrary an in bandwidth increased 1:for required Changes

:laws scalingvelocity -constant / voltage-Constant

parameter law parameter law gate length gL , source-drain contact lengths

DSL / (nm)

1 gate-channel capacitance chgC

1]/1/1/1[ DOSsemiox CCC (fF)

1

gate width gW (nm) 1 transconductance ginjectionchgm LvCg /~ (mS) 0

equivalent oxide thickness oxideSiOoxeq TT /2

(nm)

1 gate-source, gate-drain fringing capacitances

gfgs WC , , ggd WC (fF)

1

dielectric capacitance eqggSiOox TWLC /2

(fF) 1 S/D access resistances sR , dR ( ) 0

S/D contact resistivity gs WR / , gd WR / ( m ) 1

inversion thickness 2/~ wellinv TT (nm) 1 S/D contact resistivity c ( 2m ) 2

semiconductor capacitance

invggsemisemi TWLC / (fF)

1 drain current )(~ thgsmd VVgI (mA) 0

DOS capacitance 2*2 2/ ggDOS WLnmqC (fF) 1 drain current density ( mmA/ ) 1

electron density sn ( -2cm ) 1 temperature rise (one device, K) 1~ gW

2.0 nm GaAs well, AlAs barriers, on {111} GaAs

0

0.2

0.4

0.6

0.8

1

1.2

10-10 10-9 10-8

Bo

und

sta

te e

nerg

y, e

V

well thickness, meters

L(l) valley

valley

. nm 7-5 ~at ticselectrosta good wellnm 2

doubles minima band two

locitycarrier ve high*low

075.0/ : l) L(067.0/* :

populated. bothminima L(l)and : wellnm 2*lateral

g

dos

oo

L

c

m

mmmm

GaSb well, AlSb barriers, on {110} GaSb

0

0.1

0.2

0.3

0.4

0.5

0.6

10-10 10-9 10-8

GaSb well, AlSb barriers, on (110) GaSb

Bo

und

sta

te e

nerg

y, e

V

well thickness, meters

L [111], L[11-1]

L [1-11], L[-111]

X [001]

X [100], X[010]