il & fs

192
IL & FS TRANSPORTATION NETWORKS LTD. 402, Shivalik II, Nr. Shivranjani Cross Road, Satellite, Ahmedabad 380015 Tel: +91 79 29297388 Fax: +91 79 30420175 OFFICE OF ORIGIN DNDA - Ahmedabad OWNER IL & FS Transportation Networks LTD. CLIENT NATIONAL HIGHWAY AUTHORITY OF INDIA PROJECT TITLE Design of Superstructure of Minor Bridge At Chainage: 134.203 & 132.610 DATE Rev. No. MODIFICATIONS/ PURPOSE OF ISSUE Name Signature Name Signature Name Signature 21.01.2014 R0 For Approval NT BVR SCM 21.01.2014 DN- 08-2801 R0 Construction of 4-Laned Highways from Khed to Sinnar Section of NH-50 (KM 42.000 to 177.000) in the state of Maharashtra PREPARED CHECKED APPROVED DATE This note is property of IL & FS TRANSPORTATION NETWORKS LTD. it should not be used, copied or reproduced without their written permission. Rev.No. NOTE NO.

Upload: abhilash-kumar

Post on 23-Dec-2015

249 views

Category:

Documents


15 download

DESCRIPTION

limit state design.

TRANSCRIPT

Page 1: IL & FS

IL & FS TRANSPORTATION NETWORKS LTD. 402, Shivalik II, Nr. Shivranjani Cross Road, Satellite, Ahmedabad 380015 Tel: +91 79 29297388 Fax: +91 79 30420175

OFFICE OF ORIGIN

DNDA - Ahmedabad

OWNER

IL & FS Transportation Networks LTD.

CLIENT

NATIONAL HIGHWAY AUTHORITY OF INDIA

PROJECT

TITLE

Design of Superstructure of Minor BridgeAt Chainage: 134.203 & 132.610

DATE Rev. No. MODIFICATIONS/PURPOSE OF ISSUE Name Signature Name Signature Name Signature

21.01.2014 R0 For Approval NT BVR SCM

21.01.2014 DN- 08-2801 R0

Construction of 4-Laned Highways from Khed to Sinnar Section of NH-50 (KM 42.000 to 177.000) in the state of Maharashtra

PREPARED CHECKED APPROVED

DATE This note is property of IL & FS TRANSPORTATION NETWORKS LTD. it should not be used, copied or reproduced without their written permission.

Rev.No. NOTE NO.

Page 2: IL & FS

S.No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

17

Deflection Check

Interface Shear Check

Design of Diaphragms

Design of Deck Slab

Stress Check

Crack Width Check

Table of Contents

Serviceability Limit State

Title

Introduction

Design Basic Data

Properties of Longitudinal and Cross-girders

Design Methodology

Loads

Analysis Results

Design

Forces due to Differential Shrinkage

Temperature Stresses

Page 3: IL & FS

1.0 INTRODUCTION

GENERAL ARRANGEMENT OF SUPERSTRUCTURE

This design note deals with the design of simply supported RCC precast T Girder at design chainage

134.203 The overall span is 18.70 m between C/C distances of expansion joints. RCC T Girder

is proposed under the pavement of 2 lanes of carriageway with footpath. The RCC T-Girder

is supported over RCC abutment.

The camber/superelevation is adjusted in pedestals supporting superstructure. The minimum height of

pedestal is considered as 0.25m. The pot PTFE bearings are provided over the pedestals below the

superstructure.

Expansion joint of 40mm has been provided between the spans. The clear cover for reinforcement is

considered as

NOTE : This design of super structure is also adopted for Minor bridge at Ch: 132.610

CODES

The superstructure shall be designed as per the following codes:

IRC: 6-2010 Standard specifications & Code of practice for road bridges, Section II

IRC: 112-2011 Code of practice for Concrete road bridges

MATERIALS

The materials used for the project are as under

Characteristic strength of concrete "fck" :

RCC Girder, Cross girder & Slab = M 40 N/mm2

Crash Barrier = M 40 N/mm2

Characteristic strength of steel "fyk" = Fe 500

Type of bearing = Elastomeric

0.04 m

Type of bearing = Elastomeric

Type of Expansion Joints = Strip seal exp joints

Environmental exposure = Moderate

Density of concrete = t/m3

Density of green concrete = t/m3

Density of wearing coat = t/m3

2.0 DESIGN BASIC DATA

Seismic Zone =

Overall span = m

C/C of Bearing & Expansion joint on LHS = m

C/C of Bearing & Expansion joint on RHS = m

C/C of bearing = m

O/O width of superstructure = m

Width of carriageway = m

Dimensions of footpath (b x h) = x m

Dimensions of crash barrier (b x h) = x m

Dimensions of railing (b x h) = x m

Dimensions of Kerb (b x h) = x m

Depth of slab = m

Depth of precast girder = m

Thickness of wearing coat = m

Clear cover = m

C/C dist between girders = m

Cantilever dist of slab from the centre of outer girder = m

No. of Longitudinal girders = Nos.

No. of Cross girders = Nos.

III

0.000

0.500 0.900

0.200 0.700

1.500

0.300

4

2

2.5

2.2

0.065

18.700

17.200

1.600

0.225

0.040

2.7

12.000

9.000

1.500

0.750

0.750

3.000

0.500

Page 4: IL & FS

Web tapering details:

Width of web in end portion of girder, bwe = m

Width of web at end of tapering, bw = m

Length of end portion of girder, le = m

Length of tapered portion, lt = m

Girder Details:

Width of top flange of girder = m

Depth of top flange of girder = m

Width of bottom flange of girder = m

Depth of bottom flange of girder = m

Top flange haunch depth at end portion of girder = m

Top flange haunch depth at mid portion of girder = m

Bottom flange haunch depth at end portion of girder = m

Bottom flange haunch depth at mid portion of girder = m

Cross-girder details:

Depth of end cross girder+slab = m

Width of top flange of end cross girder = m

Depth of top flange of end cross girder = m

Width of web of end cross girder = m

Width of top flange haunch of end cross girder = m

Depth of top flange haunch of end cross girder = m

0.450

0.250

0.064

0.100

0.000

0.000

0.000

0.100

0.400

0.000

0.400

0.450

0.250

0.900

0.900

1.575

0.800

0.150

Depth of intermediate cross girder = m

Width of top flange of intermediate cross girder = m

Depth of top flange of intermediate cross girder = m

Width of web of intermediate cross girder = m

Width of top flange haunch of intermediate cross girder = m

Depth of top flange haunch of intermediate cross girder = m

Span of cross girder in service condition = m

Mid-Span of cross girder in jacking condition = m

Total length of cross girder = m

c/c dist between cross girders in longitudinal direction = m

DESIGN CONSTANT

Partial mat. safety factor for conc "γm" = Basic (pg-49, IRC:112-2011)

Partial mat. safety factor for steel "γs" = Basic (pg-33, IRC:112-2011)

Ultimate Comp strain in conc "εcu2" = (tb:6.5, IRC:112-2011)

Modulus of elaticity of steel "E" = N/mm2

Modulus of elasticity of conc "Ecm" = N/mm2

(tb:6.5, IRC:112-2011)

Design compressive strength of conc "fcd" (0.67*fck/γm) = N/mm2

Design tensile strength of steel "fyd" (fyk/γs) = N/mm2

Design yield strength of shear rein. "fywd" (0.8*fyk/γs) = N/mm2

(pg-86, IRC:112-2011)

0.000

0.000

3.000

434.78

0.0035

200000

0.000

1.500

9.000

0.000

347.83

17.200

0.000

0.000

1.5

1.15

33000

17.867

Page 5: IL & FS

DIAGRAM

beff1 beff2

b1 bw b2

b

As per clause 7.6.1.2 of IRC: 112-2011, the effective width of flange of a girder is as under:

Effective width of Longitudinal girder:

beff = beff1 + beff2 + bw

beff1 = 0.2*b1 + 0.1*lo ≤ 0.2*lo

beff2 = 0.2*b2 + 0.1*lo ≤ 0.2*lo

3.000

(CROSS SECTION OF SUPERSTRUCTURE)

b1 b2

beff

1.5

For inner girder:

lo = m

b1 = m

b2 = m

beff1 = < and

beff2 = < and

beff = m

For outer girder:

lo = m

b1 = m

b2 = m

beff1 = < and

beff2 = < and

beff = m

1.375

1.375

17.200

0.2lo = b1 =

0.2lo = b2 =

0.2lo =

0.2lo =

b1 =

b2 =

1.995 3.44

1.995 3.44

17.200

3

(LONGITUDINAL SECTION OF GIRDER)

0.900.900

1.375

1.375

1.375

0.900 15.100 0.90

1.995

3.44

3.44

3

1.375

1.375

1.375

1.995

Page 6: IL & FS

Effective width of End Cross girder:

beff = beff1 + beff2 + bw

beff1 = 0.2*b1 + 0.1*lo ≤ 0.2*lo

beff2 = 0.2*b2 + 0.1*lo ≤ 0.2*lo

lo = m

b1 = m

b2 = m

beff1 = < and

beff2 = < and

beff = m

0.750

8.4

0.45 0.2lo =

0.750

0.400

1.450

0.6 b1 = 0.75

1.98 0.2lo = 0.6 b2 = 8.4

3.000

0.550

beff = m1.450

Page 7: IL & FS

PROPERTIES OF LONGITUDINAL & CROSS GIRDERS

PROPERTIES OF OUTER GIRDER AT SECTION : = m

(A) GIRDER ALONE PROPERTY:

3.0

0.000 L

0.80

0.15

0.064

0.175

1.600

0.45

0

0

0.25

0

1

2

3

4

5

6

7

Extreme Fiber from bottom = 0.672 / 0.784

= m

M.I. (composite) = 0.0558 + 0.1273

= m4

0.858

0.1831

T O T A L 0.784 0.672 0.1273 0.055798

0.45 x 0.064 0.029 1.418 0.041 0.0090 0.000010

0.45 x 0 0.000 0.250 0.000 0.0000 0.000000

0.8 x 0.15 0.120 1.525 0.183 0.0535 0.000225

0.175 x 0.064 0.011 1.429 0.016 0.0037 0.000003

1.136 x 0.45 0.511 0.818 0.418 0.0008 0.054975

0 x 0 0.000 0.250 0.000 0.0000 0.000000

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.0604 0.000586

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb A.yb2

0.45

Page 8: IL & FS

Section modulus (bottom) Zb = 0.183 / 0.858

= m3

Section modulus (top) Zt = 0.183 / 0.742

= m3

(B) PROPERTY OF COMPOSITE SECTION:

0.8 0.15

0.064

0.175

0.214

0.247

3

0.225

1

2

3

4

5

6

7

8

T O T A L 1.459 1.828 0.3924 0.058646

3 x 0.225 0.675 1.713 1.156 0.1424 0.002848

0.45 x 0.064 0.029 1.418 0.041 0.0008 0.000010

0.45 x 0 0.000 0.250 0.000 0.0000 0.000000

0.8 x 0.15 0.120 1.525 0.183 0.0089 0.000225

0.175 x 0.064 0.011 1.429 0.016 0.0003 0.000003

1.136 x 0.45 0.511 0.818 0.418 0.0968 0.054975

0 x 0 0.000 0.250 0.000 0.0000 0.000000

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.1432 0.000586

0

0

0.25

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

1.600

0.45

Page 9: IL & FS

Extreme Fiber from bottom = 1.828 / 1.459

= m

M.I. (composite) = 0.0586 + 0.3924

= m4

Section modulus (bottom of girder) Zgb = 0.451 / 1.253

= m3

Section modulus (top of slab) Zst = 0.451 / 0.572

= m3

Section modulus (bottom of slab) Zsb = 0.451 / 0.347

1.253

0.4510

0.36

0.789

= m3

First moment of Area of girder above N.A. = ( 0.12 x 0.272 ) + ( 0.011 x 0.175 ) + ( 0.029 x 0.165)

( 0.06 x 0.066 )

= m3

First Moment of Area of composite secton above N.A.

= ( 0.12 x 0.272 ) + ( 0.011 x 0.175 ) + ( 0.029 x 0.165)

( 0.06 x 0.066 ) ( 0.675 x 0.459 )

= m3

0.353

1.3

0.043

Page 10: IL & FS

PROPERTIES OF OUTER GIRDER AT SECTION : = m

(A) GIRDER ALONE PROPERTY:

0.25

0.174 L

0.80

0.15

0.1

0.275

1.600

0.25

0.1

0.1

2.99

1

2

3

4

5

6

7

Extreme Fiber from bottom = 0.494 / 0.57

= m

M.I. (composite) = 0.0217 + 0.1408

= m4

0.866

0.1625

T O T A L 0.570 0.494 0.1408 0.021707

0.25 x 0.1 0.025 1.400 0.035 0.0071 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0080 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0520 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0083 0.000015

1 x 0.25 0.250 0.850 0.213 0.0001 0.020833

0.003 0.0034 0.000006

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.0618 0.000586

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

0.1 x 0.1 0.010 0.283

Page 11: IL & FS

Section modulus (bottom) Zb = 0.163 / 0.866

= m3

Section modulus (top) Zt = 0.163 / 0.734

= m3

(B) PROPERTY OF COMPOSITE SECTION:

0.8 0.15

0.1

0.275

0.188

0.222

3

0.225

1

2

3

4

5

6

7

8

T O T A L 1.245 1.650 0.3620 0.024554

3 x 0.225 0.675 1.713 1.156 0.1013 0.002848

0.25 x 0.1 0.025 1.400 0.035 0.0001 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0263 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0048 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0002 0.000015

1 x 0.25 0.250 0.850 0.213 0.0564 0.020833

0.1 x 0.1 0.010 0.283 0.003 0.0109 0.000006

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.1620 0.000586

0.1

0.1

0.25

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

1.600

0.25

Page 12: IL & FS

Extreme Fiber from bottom = 1.65 / 1.245

= m

M.I. (composite) = 0.0246 + 0.362

= m4

Section modulus (bottom of girder) Zgb = 0.387 / 1.325

= m3

Section modulus (top of slab) Zst = 0.387 / 0.5

= m3

Section modulus (bottom of slab) Zsb = 0.387 / 0.275

1.325

0.3866

0.292

0.773

= m3

First moment of Area of girder above N.A. = ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 )

= m3

First Moment of Area of composite secton above N.A.

= ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 ) ( 0.675 x 0.387 )

= m3

0.29

1.407

0.028

Page 13: IL & FS

PROPERTIES OF OUTER GIRDER AT SECTION : = m

(A) GIRDER ALONE PROPERTY:

0.25

0.283 L

0.80

0.15

0.1

0.275

1.600

0.25

0.1

0.1

4.86

1

2

3

4

5

6

7

Extreme Fiber from bottom = 0.494 / 0.57

= m

M.I. (composite) = 0.0217 + 0.1408

= m4

0.866

0.1625

T O T A L 0.570 0.494 0.1408 0.021707

0.25 x 0.1 0.025 1.400 0.035 0.0071 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0080 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0520 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0083 0.000015

1 x 0.25 0.250 0.850 0.213 0.0001 0.020833

0.003 0.0034 0.000006

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.0618 0.000586

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

0.1 x 0.1 0.010 0.283

Page 14: IL & FS

Section modulus (bottom) Zb = 0.163 / 0.866

= m3

Section modulus (top) Zt = 0.163 / 0.734

= m3

(B) PROPERTY OF COMPOSITE SECTION:

0.8 0.15

0.1

0.275

0.188

0.222

3

0.225

1

2

3

4

5

6

7

8

T O T A L 1.245 1.650 0.3620 0.024554

3 x 0.225 0.675 1.713 1.156 0.1013 0.002848

0.25 x 0.1 0.025 1.400 0.035 0.0001 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0263 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0048 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0002 0.000015

1 x 0.25 0.250 0.850 0.213 0.0564 0.020833

0.1 x 0.1 0.010 0.283 0.003 0.0109 0.000006

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.1620 0.000586

0.1

0.1

0.25

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

1.600

0.25

Page 15: IL & FS

Extreme Fiber from bottom = 1.65 / 1.245

= m

M.I. (composite) = 0.0246 + 0.362

= m4

Section modulus (bottom of girder) Zgb = 0.387 / 1.325

= m3

Section modulus (top of slab) Zst = 0.387 / 0.5

= m3

Section modulus (bottom of slab) Zsb = 0.387 / 0.275

1.325

0.3866

0.292

0.773

= m3

First moment of Area of girder above N.A. = ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 )

= m3

First Moment of Area of composite secton above N.A.

= ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 ) ( 0.675 x 0.387 )

= m3

0.29

1.407

0.028

Page 16: IL & FS

PROPERTIES OF OUTER GIRDER AT SECTION : = m

(A) GIRDER ALONE PROPERTY:

0.25

0.391 L

0.80

0.15

0.1

0.275

1.600

0.25

0.1

0.1

6.73

1

2

3

4

5

6

7

Extreme Fiber from bottom = 0.494 / 0.57

= m

M.I. (composite) = 0.0217 + 0.1408

= m4

0.866

0.1625

T O T A L 0.570 0.494 0.1408 0.021707

0.25 x 0.1 0.025 1.400 0.035 0.0071 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0080 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0520 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0083 0.000015

1 x 0.25 0.250 0.850 0.213 0.0001 0.020833

0.003 0.0034 0.000006

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.0618 0.000586

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

0.1 x 0.1 0.010 0.283

Page 17: IL & FS

Section modulus (bottom) Zb = 0.163 / 0.866

= m3

Section modulus (top) Zt = 0.163 / 0.734

= m3

(B) PROPERTY OF COMPOSITE SECTION:

0.8 0.15

0.1

0.275

0.188

0.222

3

0.225

1

2

3

4

5

6

7

8

T O T A L 1.245 1.650 0.3620 0.024554

3 x 0.225 0.675 1.713 1.156 0.1013 0.002848

0.25 x 0.1 0.025 1.400 0.035 0.0001 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0263 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0048 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0002 0.000015

1 x 0.25 0.250 0.850 0.213 0.0564 0.020833

0.1 x 0.1 0.010 0.283 0.003 0.0109 0.000006

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.1620 0.000586

0.1

0.1

0.25

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

1.600

0.25

Page 18: IL & FS

Extreme Fiber from bottom = 1.65 / 1.245

= m

M.I. (composite) = 0.0246 + 0.362

= m4

Section modulus (bottom of girder) Zgb = 0.387 / 1.325

= m3

Section modulus (top of slab) Zst = 0.387 / 0.5

= m3

Section modulus (bottom of slab) Zsb = 0.387 / 0.275

1.325

0.3866

0.292

0.773

= m3

First moment of Area of girder above N.A. = ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 )

= m3

First Moment of Area of composite secton above N.A.

= ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 ) ( 0.675 x 0.387 )

= m3

0.29

1.407

0.028

Page 19: IL & FS

PROPERTIES OF OUTER GIRDER AT SECTION : = m

(A) GIRDER ALONE PROPERTY:

0.500 L

0.80

0.15

0.1

0.275

1.600

0.25

0.1

0.1

0.25

8.6

1

2

3

4

5

6

7

Extreme Fiber from bottom = 0.494 / 0.57

= m

M.I. (composite) = 0.0217 + 0.1408

= m4

0.866

0.1625

T O T A L 0.570 0.494 0.1408 0.021707

0.25 x 0.1 0.025 1.400 0.035 0.0071 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0080 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0520 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0083 0.000015

1 x 0.25 0.250 0.850 0.213 0.0001 0.020833

0.1 x 0.1 0.010 0.283 0.003 0.0034 0.000006

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.0618 0.000586

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb A.yb2

0.45

Page 20: IL & FS

Section modulus (bottom) Zb = 0.163 / 0.866

= m3

Section modulus (top) Zt = 0.163 / 0.734

= m3

(B) PROPERTY OF COMPOSITE SECTION:

0.8 0.15

0.1

0.275

0.188

0.222

3

0.225

1

2

3

4

5

6

7

8

T O T A L 1.245 1.650 0.3620 0.024554

3 x 0.225 0.675 1.713 1.156 0.1013 0.002848

0.25 x 0.1 0.025 1.400 0.035 0.0001 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0263 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0048 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0002 0.000015

1 x 0.25 0.250 0.850 0.213 0.0564 0.020833

0.1 x 0.1 0.010 0.283 0.003 0.0109 0.000006

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.1620 0.000586

0.1

0.1

0.25

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

1.600

0.25

Page 21: IL & FS

Extreme Fiber from bottom = 1.65 / 1.245

= m

M.I. (composite) = 0.0246 + 0.362

= m4

Section modulus (bottom of girder) Zgb = 0.387 / 1.325

= m3

Section modulus (top of slab) Zst = 0.387 / 0.5

= m3

Section modulus (bottom of slab) Zsb = 0.387 / 0.275

1.325

0.3866

0.292

0.773

= m3

First moment of Area of girder above N.A. = ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 )

= m3

First Moment of Area of composite secton above N.A.

= ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 ) ( 0.675 x 0.387 )

= m3

0.29

1.407

0.028

Page 22: IL & FS

PROPERTIES OF INNER GIRDER AT SECTION : = m

(A) GIRDER ALONE PROPERTY:

00.000 L

0.80

0.15

0.064

0.175

0

0.45

1.600

0

0.25

1

2

3

4

5

6

7

Extreme Fiber from bottom = 0.672 / 0.784

= m

M.I. (composite) = 0.0558 + 0.1273

= m4

0.45 x 0.25 0.113 0.125 0.014 0.0604 0.000586

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45

0.418 0.0008 0.054975

0 x 0 0.000 0.250 0.000 0.0000 0.000000

0.016 0.0037 0.000003

0.000 0.250 0.000 0.0000 0.000000

0.8 x 0.15 0.120 1.525 0.183 0.0535 0.000225

0.1273 0.055798

0.0090

T O T A L 0.784

0.858

0.1831

0.45 x 0.064 0.029 1.418

0.175 x 0.064 0.011 1.429

1.136 x 0.45 0.511 0.818

0.000010

0.45 x 0

0.672

0.041

Page 23: IL & FS

Section modulus (bottom) Zb = 0.183 / 0.858

= m3

Section modulus (top) Zt = 0.183 / 0.742

= m3

(B) PROPERTY OF COMPOSITE SECTION:

0.225

3

0.214

0.247

0.8 0.15

0.064

0.175

1

2

3

4

5

6

7

8

1.600

0

0

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb A.yb2

0.45

0.0968 0.054975

0 x 0 0.000

0.000000

0.8 x 0.15 0.120 1.525 0.183 0.0089 0.000225

0.175 x 0.064 0.011 1.429 0.016 0.0003 0.000003

0.45 x 0 0.000 0.250 0.000 0.0000

0.058646

3 x 0.225 0.675 1.713 1.156 0.1424 0.002848

0.45 x 0.064 0.029 1.418 0.041 0.0008 0.000010

0.3924T O T A L 1.459 1.828

1.136 x 0.45 0.511 0.818 0.418

0.25

0.45

0.250 0.000 0.0000 0.000000

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.1432 0.000586

Page 24: IL & FS

Extreme Fiber from bottom = 1.828 / 1.459

= m

M.I. (composite) = 0.0586 + 0.3924

= m4

Section modulus (bottom of girder) Zgb = 0.451 / 1.253

= m3

Section modulus (top of slab) Zst = 0.451 / 0.572

= m3

Section modulus (bottom of slab) Zsb = 0.451 / 0.347

1.253

0.4510

0.36

0.789

= m3

First moment of Area of girder above N.A. = ( 0.12 x 0.272 ) + ( 0.011 x 0.175 ) + ( 0.029 x 0.165)

( 0.06 x 0.066 )

= m3

First Moment of Area of composite secton above N.A.

= ( 0.12 x 0.272 ) + ( 0.011 x 0.175 ) + ( 0.029 x 0.165)

( 0.06 x 0.066 ) ( 0.675 x 0.459 )

= m3

0.353

1.3

0.043

Page 25: IL & FS

PROPERTIES OF INNER GIRDER AT SECTION : = m

(A) GIRDER ALONE PROPERTY:

0.125 L

0.80

0.15

0.1

0.275

1.600

0.25

0.1

0.1

2.99

0.25

1

2

3

4

5

6

7

Extreme Fiber from bottom = 0.494 / 0.57

= m

M.I. (composite) = 0.0217 + 0.1408

= m4

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb

0.1 x 0.1 0.010 0.283 0.003 0.0034 0.000006

A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.0618 0.000586

0.275 x 0.1 0.028 1.417 0.039 0.0083 0.000015

1 x 0.25 0.250 0.850 0.213 0.0001 0.020833

0.25 x 0.1 0.025 0.300 0.008 0.0080 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0520 0.000225

T O T A L 0.570 0.494 0.1408 0.021707

0.25 x 0.1 0.025 1.400 0.035 0.0071 0.000021

0.866

0.1625

Page 26: IL & FS

Section modulus (bottom) Zb = 0.163 / 0.866

= m3

Section modulus (top) Zt = 0.163 / 0.734

= m3

(B) PROPERTY OF COMPOSITE SECTION:

0.225

0.15

0.1

0.275

0.188

0.222

3

0.8

1

2

3

4

5

6

7

8

1.600

0.25

0.1

0.1

0.25

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.1620 0.000586

1 x 0.25 0.250 0.850 0.213 0.0564 0.020833

0.1 x 0.1 0.010 0.283 0.003 0.0109 0.000006

0.8 x 0.15 0.120 1.525 0.183 0.0048 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0002 0.000015

0.25 x 0.1 0.025 1.400 0.035 0.0001 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0263 0.000021

T O T A L 1.245 1.650 0.3620 0.024554

3 x 0.225 0.675 1.713 1.156 0.1013 0.002848

Page 27: IL & FS

Extreme Fiber from bottom = 1.65 / 1.245

= m

M.I. (composite) = 0.0246 + 0.362

= m4

Section modulus (bottom of girder) Zgb = 0.387 / 1.325

= m3

Section modulus (top of slab) Zst = 0.387 / 0.5

= m3

Section modulus (bottom of slab) Zsb = 0.387 / 0.275

1.325

0.3866

0.292

0.773

= m3

First moment of Area of girder above N.A. = ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 )

= m3

First Moment of Area of composite secton above N.A.

= ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 ) ( 0.675 x 0.387 )

= m3

0.29

1.407

0.028

Page 28: IL & FS

PROPERTIES OF INNER GIRDER AT SECTION : = m

(A) GIRDER ALONE PROPERTY:

0.174 L

0.80

0.15

0.1

0.275

1.600

0.25

0.1

0.1

4.86

0.25

1

2

3

4

5

6

7

Extreme Fiber from bottom = 0.494 / 0.57

= m

M.I. (composite) = 0.0217 + 0.1408

= m4

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb

0.1 x 0.1 0.010 0.283 0.003 0.0034 0.000006

A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.0618 0.000586

0.275 x 0.1 0.028 1.417 0.039 0.0083 0.000015

1 x 0.25 0.250 0.850 0.213 0.0001 0.020833

0.25 x 0.1 0.025 0.300 0.008 0.0080 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0520 0.000225

T O T A L 0.570 0.494 0.1408 0.021707

0.25 x 0.1 0.025 1.400 0.035 0.0071 0.000021

0.866

0.1625

Page 29: IL & FS

Section modulus (bottom) Zb = 0.163 / 0.866

= m3

Section modulus (top) Zt = 0.163 / 0.734

= m3

(B) PROPERTY OF COMPOSITE SECTION:

0.225

0.15

0.1

0.275

0.188

0.222

3

0.8

1

2

3

4

5

6

7

8

1.600

0.25

0.1

0.1

0.25

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.1620 0.000586

1 x 0.25 0.250 0.850 0.213 0.0564 0.020833

0.1 x 0.1 0.010 0.283 0.003 0.0109 0.000006

0.8 x 0.15 0.120 1.525 0.183 0.0048 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0002 0.000015

0.25 x 0.1 0.025 1.400 0.035 0.0001 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0263 0.000021

T O T A L 1.245 1.650 0.3620 0.024554

3 x 0.225 0.675 1.713 1.156 0.1013 0.002848

Page 30: IL & FS

Extreme Fiber from bottom = 1.65 / 1.245

= m

M.I. (composite) = 0.0246 + 0.362

= m4

Section modulus (bottom of girder) Zgb = 0.387 / 1.325

= m3

Section modulus (top of slab) Zst = 0.387 / 0.5

= m3

Section modulus (bottom of slab) Zsb = 0.387 / 0.275

1.325

0.3866

0.292

0.773

= m3

First moment of Area of girder above N.A. = ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 )

= m3

First Moment of Area of composite secton above N.A.

= ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 ) ( 0.675 x 0.387 )

= m3

0.29

1.407

0.028

Page 31: IL & FS

PROPERTIES OF INNER GIRDER AT SECTION : = m

(A) GIRDER ALONE PROPERTY:

0.391 L

0.80

0.15

0.1

0.275

1.600

0.25

0.1

0.1

6.73

0.25

1

2

3

4

5

6

7

Extreme Fiber from bottom = 0.494 / 0.57

= m

M.I. (composite) = 0.0217 + 0.1408

= m4

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb

0.1 x 0.1 0.010 0.283 0.003 0.0034 0.000006

A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.0618 0.000586

0.275 x 0.1 0.028 1.417 0.039 0.0083 0.000015

1 x 0.25 0.250 0.850 0.213 0.0001 0.020833

0.25 x 0.1 0.025 0.300 0.008 0.0080 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0520 0.000225

T O T A L 0.570 0.494 0.1408 0.021707

0.25 x 0.1 0.025 1.400 0.035 0.0071 0.000021

0.866

0.1625

Page 32: IL & FS

Section modulus (bottom) Zb = 0.163 / 0.866

= m3

Section modulus (top) Zt = 0.163 / 0.734

= m3

(B) PROPERTY OF COMPOSITE SECTION:

0.225

0.15

0.1

0.275

0.188

0.222

3

0.8

1

2

3

4

5

6

7

8

1.600

0.25

0.1

0.1

0.25

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.1620 0.000586

1 x 0.25 0.250 0.850 0.213 0.0564 0.020833

0.1 x 0.1 0.010 0.283 0.003 0.0109 0.000006

0.8 x 0.15 0.120 1.525 0.183 0.0048 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0002 0.000015

0.25 x 0.1 0.025 1.400 0.035 0.0001 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0263 0.000021

T O T A L 1.245 1.650 0.3620 0.024554

3 x 0.225 0.675 1.713 1.156 0.1013 0.002848

Page 33: IL & FS

Extreme Fiber from bottom = 1.65 / 1.245

= m

M.I. (composite) = 0.0246 + 0.362

= m4

Section modulus (bottom of girder) Zgb = 0.387 / 1.325

= m3

Section modulus (top of slab) Zst = 0.387 / 0.5

= m3

Section modulus (bottom of slab) Zsb = 0.387 / 0.275

1.325

0.3866

0.292

0.773

= m3

First moment of Area of girder above N.A. = ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 )

= m3

First Moment of Area of composite secton above N.A.

= ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 ) ( 0.675 x 0.387 )

= m3

0.29

1.407

0.028

Page 34: IL & FS

PROPERTIES OF INNER GIRDER AT SECTION : = m

(A) GIRDER ALONE PROPERTY:

0.500 L

0.80

0.15

0.1

0.275

1.600

0.25

0.1

8.6

0.1

0.25

1

2

3

4

5

6

7

Extreme Fiber from bottom = 0.494 / 0.57

= m

M.I. (composite) = 0.0217 + 0.1408

= m4

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb

0.1 x 0.1 0.010 0.283 0.003 0.0034 0.000006

A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.0618 0.000586

0.275 x 0.1 0.028 1.417 0.039 0.0083 0.000015

1 x 0.25 0.250 0.850 0.213 0.0001 0.020833

0.25 x 0.1 0.025 0.300 0.008 0.0080 0.000021

0.8 x 0.15 0.120 1.525 0.183 0.0520 0.000225

T O T A L 0.570 0.494 0.1408 0.021707

0.25 x 0.1 0.025 1.400 0.035 0.0071 0.000021

0.866

0.1625

Page 35: IL & FS

Section modulus (bottom) Zb = 0.163 / 0.866

= m3

Section modulus (top) Zt = 0.163 / 0.734

= m3

(B) PROPERTY OF COMPOSITE SECTION:

0.225

0.15

0.1

0.275

0.188

0.222

3

0.8

1

2

3

4

5

6

7

8

1.600

0.25

0.1

0.1

0.25

0.45

No. Dimension of

Element

Area Distance of C.G.

from bottom (m)

A.yb A.yb2

M.I. (self) m4

A (m2)

0.45 x 0.25 0.113 0.125 0.014 0.1620 0.000586

1 x 0.25 0.250 0.850 0.213 0.0564 0.020833

0.1 x 0.1 0.010 0.283 0.003 0.0109 0.000006

0.8 x 0.15 0.120 1.525 0.183 0.0048 0.000225

0.275 x 0.1 0.028 1.417 0.039 0.0002 0.000015

0.25 x 0.1 0.025 1.400 0.035 0.0001 0.000021

0.25 x 0.1 0.025 0.300 0.008 0.0263 0.000021

T O T A L 1.245 1.650 0.3620 0.024554

3 x 0.225 0.675 1.713 1.156 0.1013 0.002848

Page 36: IL & FS

Extreme Fiber from bottom = 1.65 / 1.245

= m

M.I. (composite) = 0.0246 + 0.362

= m4

Section modulus (bottom of girder) Zgb = 0.387 / 1.325

= m3

Section modulus (top of slab) Zst = 0.387 / 0.5

= m3

Section modulus (bottom of slab) Zsb = 0.387 / 0.275

1.325

0.3866

0.292

0.773

= m3

First moment of Area of girder above N.A. = ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 )

= m3

First Moment of Area of composite secton above N.A.

= ( 0.12 x 0.2 ) + ( 0.028 x 0.092 ) + ( 0.025 x 0.075)

( 0.006 x 0.012 ) ( 0.675 x 0.387 )

= m3

0.29

1.407

0.028

Page 37: IL & FS

PROPERTIES OF END CROSS-GIRDER

1450

400

1 225

2 0

0

0

1350.0 1350 1575

3

400

Area

Mrk A =Area

Y from

Bott AY MI h Ah2

Izz=Ixx +

Ah2

J=Ixx=T

orsional

moment

of Inertia

1 326250.00 1462.5 477140625 1376367188 490.909 7.862E+10 8E+10 2.8E+09

1 0.00 1350 0 0 378.409 0 0 0

2 0.00 1350 0 0 378.409 0 0

3 540000.00 675 364500000 8.2013E+10 296.591 4.75E+10 1.295E+11 2.9E+103 540000.00 675 364500000 8.2013E+10 296.591 4.75E+10 1.295E+11 2.9E+10

866250 mm2

841640625 Izz 2.095E+11 3.2E+10 mm4

Area of Girder 866250 mm2

= 0.8663 m2

CG from Bottom 971.590909 mm = 0.9716 m

CG from Top 603.409091 mm = 0.6034 m

Zbg = 215640296 mm3

= 0.2156 m3

Zts = 347217426 mm3

= 0.3472 m3

Ztg = 553671030 mm3

= 0.5537 m3

Izz = 2.0951E+11 mm4

= 0.2095 m4

J=Ixx=Torsional moment of Inertia 3.1553E+10 mm4

= 0.0316 m4

Iyy = 6.4362E+10 mm4

= 0.0644 m4

Weight of girder without deck (UDL) = 1.35 t/m

Weight of girder with deck (UDL) = 2.16575 t/m

Page 38: IL & FS

DESIGN METHODOLOGY

The following salient features are considered in this design note.

The RCC girder bridge is checked for the following two conditions

• Ultimate strength check

• Serviceability check

o Ultimate compressive strain in the concrete (єcu3) has been considered as 0.0035

o Design yield strength of reinforcement for bending fyd = fyk/γs

4.0

o The bending moment for various loads were obtained from the floor analysis. And the same is

multiplied with the partial safety factor for obtaining the factored bending moment.

o Partial safety factor of 1.5 has been adopted for concrete and 1.15 has been adopted for steel as

per Cl: 6.4.2.8 & 6.3.5 of IRC: 112 respectively.

o For Ultimate strength check, Table 3.2 of IRC: 6 has been considered for the partial safety factor for

various loads.

o For Serviceability check, Table 3.3 of IRC: 6 has been considered for the partial safety factor for

various loads.

o Design yield strength of reinforcement for shear fywd = fyk/γs

DESIGN METHODOLOGY FOR SERVICEABILITY LIMIT STATE:

The following check are done as per IRC: 112 prescribed

o For stress Check

o For Crack width Check

o For Deflection check:

Based on the design methodology, The Ultimate limit state design of bridge has been done and

presented below.

Due to long term creep and shrinkage effect, the effective concrete modulus is reduced for sustained

load.

Maximum stress at outermost compression fibre and outermost tension fibre were limited to

permissible stresses mentioned in IRC:112.

The crack width in concrete has been checked in accordance with Cl:12.3.4 of IRC:112. Maximum

crack width is limited to 0.3mm as per table 12.1 of IRC:112.

For calculation of deflection due to sustain loads, the cracked moment of inertia has been considered

as 70% of the uncracked moment of inertia as per Cl:12.4.2 (1) of IRC:112.

Due to long term creep and shrinkage effect, the effective concrete modulus is reduced for sustained

load as per Cl:12.4.2 (2) of IRC :112.

o Area of tension reinforcement is calculated and made ensured that the strain in the reinforcement

is sufficient to cause yeilding.

Page 39: IL & FS

LOADS:

The following loads and Load Combinations are considered in this design note.

• Dead Loads:

• Super imposed Dead Loads (SIDL)

o Wearing Coat:

o RCC Crash barrier:

• Live Loads:

The following loads specified in IRC were considered in the design:

o 70R - Wheeled Vehicle

o Class A Vehicle

• Live load Combination:

Self weight of the RCC girder & slab is calculated based on the unit weight of 25 KN/m3 in accordance

with Cl: 203 of IRC: 6-2010.

Thickness of Wearing coat on top of the deck slab for design is assumed as 65mm thick for future

overlay and the self weight is calculated based on the unit weight of 22 KN/m3.

For calculation of self weight of crash barrier, the cross sectional area of the crash barrier is taken as

0.4 m2.

All the possible load combination for 2-Lanes carriage way structure as per table-2 of IRC: 6 have been

done.

Page 40: IL & FS

5.0 LOADS

The following loads and load combinations are considered in this design note

Dead load:

The dead load is applied as a UDL or floor load. The intensity of loads is as under:

SIDL except surfacing

Crash Barrier

Railing (assuming 50% perforation)

Kerb

Footpath

SIDL- surfacing

Wearing Coat (min 0.2 t/m2)

Outer girder

End section

Tapered section

Mid section

Density

(m2) (t/m

3) (t/m)

Type of

Load

UDL

UDL

UDL

Floor

Floor

Load

(t/m2)

0

2.5 1.00

2.5 0.175

2.5 0.375

0.4

0.07

0.15

Area

0.2

b

(m)

h

(m)

0.2 0.7

0.5 0.3

0

0.065

0

2.2

1.96

UDL 0.677 2.5 1.6925

UDL 0.784 2.5

1.425UDL 0.57 2.5

Outer girder-composite

End section

Tapered section

Mid section

Inner girder

End section

Tapered section

Mid section

Inner girder-composite

End section

Tapered section

Mid section

Live loads:

The live loads are applied as moving vehicular loads, as defined by IRC:6-2010.

UDL 1.4587 2.5 3.6468

3.3796

UDL 1.245 2.5 3.1125

UDL 1.3519 2.5

1.96

UDL 0.677 2.5 1.6925

UDL 0.784 2.5

1.425

UDL 1.4587 2.5 3.6468

UDL 0.57 2.5

3.3796

UDL 1.245 2.5 3.1125

UDL 1.3519 2.5

Page 41: IL & FS

Footpath Live loads:

The footpath live loads are applied as per Clause:206.2 of IRC:6-2010.

Effective span(L) = m & Width of footway(W) = m

Therefore, The live load in kg/m2

= kg/m2

= t/m2

Distributing the above load on girders:

Footpath Live Loads

For outer girder

For inner girder

For outer girder

Weight of shuttering:

The intensity of weight of shuttering is assumed as 100 kg/m2.

Weight of shuttering

For outer girder

For inner girder

Note: Negative sign indicates load acting in positive y direction.

UDL

UDL

Load

(m) (m) (m2) (t/m

3) (t/m) (t/m

2)

UDL

17.2 1.5

456.89 0.457

Type of

Load

b h Area Density

UDL 1.2

UDL 1.2

bType of

Load

h Area Density Load

(m) (m2) (t/m

3)(m) (t/m) (t/m

2)

Page 42: IL & FS

6.0 ANALYSIS RESULTS

G-1 G-2 G-3 O-design I-design G-1 G-2 G-3 O-design I-design

0 0.55 0.55 0.55 0.548 0.548 0 13.01 13.01 13.01 13.007 13.006

0 0 Deff 9.81 9.82 9.81 9.814 9.822

2.99 30.36 30.34 30.36 30.36 30.337 EOT 9.72 9.73 9.72 9.724 9.725

4.86 42.85 42.84 42.85 42.85 42.835 4.86 5.35 5.35 5.35 5.354 5.35

6.73 50.34 50.33 50.34 50.339 50.332 6.73 2.68 2.68 2.68 2.68 2.676

8.60 52.83 52.83 52.83 52.828 52.829 8.60 0.00 0.00 0.00 0 0

G-1 G-2 G-3 O-design I-design G-1 G-2 G-3 O-design I-design

0 0.20 0.09 0.20 0.203 0.091 0 2.58 2.28 2.54 2.579 2.283

0 0 Deff 2.21 1.91 2.21 2.21 1.906

2.99 6.59 6.16 6.59 6.589 6.164 EOT 2.13 1.90 2.13 2.125 1.898

4.86 9.33 8.67 9.33 9.332 8.667 4.86 1.37 1.20 1.37 1.365 1.197

6.73 10.97 10.16 10.97 10.973 10.161 6.73 0.85 0.67 0.85 0.852 0.671

8.6 11.52 10.65 11.52 11.518 10.648 8.6 0.26 0.15 0.26 0.262 0.145

G-1 G-2 G-3 O-design I-design G-1 G-2 G-3 O-design I-design

0 0.85 0.65 0.85 0.848 0.651 0 17.17 15.86 17.17 17.174 15.862

0 0 Deff 13.36 12.38 13.36 13.359 12.375

2.99 43.16 41.17 43.16 43.162 41.17 EOT 13.36 12.38 13.36 13.359 12.375

4.86 60.81 57.78 60.81 60.805 57.777 4.86 9.56 8.89 9.56 9.557 8.891

6.73 71.37 67.71 71.37 71.37 67.707 6.73 5.77 5.38 5.77 5.765 5.384

Girder Self-weight-Moment Girder Self-weight-Shear

Weight of shuttering-Moment

Green wt of deck slab-ShearGreen wt of deck slab-Moment

Weight of shuttering-Shear

6.73 71.37 67.71 71.37 71.37 67.707 6.73 5.77 5.38 5.77 5.765 5.384

8.6 74.88 70.96 74.88 74.884 70.963 8.6 1.98 1.86 1.98 1.98 1.856

G-1 G-2 G-3 O-design I-design G-1 G-2 G-3 O-design I-design

0 0.57 0.62 0.57 0.566 0.616 0 15.88 14.55 15.88 15.884 14.554

0 0 Deff 12.36 11.36 12.36 12.361 11.355

2.99 40.18 37.41 40.18 40.175 37.405 EOT 12.36 11.36 12.36 12.361 11.355

4.86 56.57 52.59 56.57 56.565 52.586 4.86 8.72 8.15 8.72 8.719 8.147

6.73 66.38 61.68 66.38 66.381 61.677 6.73 5.33 4.93 5.33 5.332 4.926

8.6 69.65 64.68 69.65 69.652 64.679 8.6 1.82 1.69 1.82 1.824 1.694

G-1 G-2 G-3 O-design I-design G-1 G-2 G-3 O-design I-design

0 0.19 3.90 3.26 3.262 3.9 0 11.67 2.97 10.60 11.672 2.967

0 0 Deff 9.52 2.02 9.52 9.522 2.018

2.99 27.65 2.81 24.57 27.645 2.813 EOT 9.52 2.02 8.39 9.522 2.018

4.86 39.81 6.37 35.71 39.81 6.374 4.86 6.83 1.08 5.74 6.834 1.077

6.73 47.07 6.63 42.36 47.072 6.633 6.73 4.16 0.36 3.22 4.163 0.355

8.6 49.48 6.48 44.66 49.481 6.475 8.6 1.50 0.23 1.63 1.628 0.233

G-1 G-2 G-3 O-design I-design G-1 G-2 G-3 O-design I-design

0 0.25 0.19 0.31 0.31 0.187 0 5.19 4.53 5.11 5.188 4.526

0 0 Deff 4.22 3.78 4.22 4.223 3.782

2.99 13.37 12.11 13.32 13.373 12.105 EOT 4.22 3.77 4.22 4.219 3.769

4.86 18.92 17.06 18.87 18.915 17.06 4.86 2.90 2.38 2.70 2.903 2.375

6.73 22.24 20.03 22.20 22.236 20.025 6.73 1.71 1.33 1.50 1.714 1.331

8.60 23.34 21.00 23.31 23.341 21 8.6 0.53 0.28 0.37 0.525 0.282

SIDL(surfacing) MOMENT

SIDL(except surfacing) SHEARSIDL(except surfacing) MOMENT

Deck Slab weight-ShearDeck slab weight-Moment

SIDL(surfacing) SHEAR

Page 43: IL & FS

Footpath Live Load

G-1 G-2 G-3 O-design I-design G-1 G-2 G-3 O-design I-design

0 1.257 1.079 0.002 1.257 1.079 0 5.745 0.297 0.029 5.745 0.297

0 0 0 0 0 Deff 5.45 0.1 0.66 5.45 0.1

2.99 13.672 1.991 0.12 13.672 1.991 EOT 4.664 0.269 0.026 4.664 0.269

4.86 19.553 2.425 0.16 19.553 2.425 4.86 3.332 0.213 0.021 3.332 0.213

6.73 23.026 2.666 0.182 23.026 2.666 6.73 2.027 0.134 0.007 2.027 0.134

8.6 24.145 2.66 -0.189 24.145 2.66 8.6 0.736 0.046 0.007 0.736 0.046

Live Load

Case1: Governing LL

G-1 G-2 G-3 O-design I-design G-1 G-2 G-3 O-design I-design

0 8.282 30.103 21.652 21.652 30.103 0 8.89 49.326 39.9 39.9 49.326

0 0 0 0 0 Deff 0.88 24.6 40.15 40.15 24.6

2.99 27.009 107.16 91.67 91.67 107.16 EOT 7.761 41.998 36.7 36.7 41.998

4.86 37.445 145.02 125.24 125.24 145.02 4.86 6.12 30.153 28.1 28.1 30.153

6.73 43.224 168.49 145.34 145.34 168.49 6.73 4.241 23.707 20.4 20.4 23.707

8.6 44.505 176.42 153.23 153.23 176.42 8.6 3.237 18.034 11.211 11.211 18.034

Footpath LL MOMENT Footpath LL SHEAR

LL SHEARLL MOMENT

Page 44: IL & FS

Number of lanes = 2

Reduction due to longitudinal effect = 0 %

Impact factor for class A Loading = 4.5/(6+L) = 0.194

Impact factor for class 70R Loading = 0.175

Moment summary:

For outer girder:

Case-1 Case-2 Case-3 Case-1 Case-2 Case-3 Case-1 Case-2 Case-3

0 21.652 0 0 21.65 0 0 25.44 0 0 25.44 1.257

2.99 91.67 0 0 91.67 0 0 107.71 0 0 107.71 13.672

4.86 125.24 0 0 125.24 0 0 147.16 0 0 147.16 19.553

6.73 145.34 0 0 145.34 0 0 170.77 0 0 170.77 23.026

8.6 153.23 0 0 153.23 0 0 180.05 0 0 180.05 24.145

For inner girder:

Case-1 Case-2 Case-3 Case-1 Case-2 Case-3 Case-1 Case-2 Case-3

0 30.103 0 0 30.1 0 0 35.37 0 0 35.37 1.079

2.99 107.16 0 0 107.16 0 0 125.91 0 0 125.91 1.991

4.86 145.02 0 0 145.02 0 0 170.4 0 0 170.4 2.425

6.73 168.49 0 0 168.49 0 0 197.98 0 0 197.98 2.666

Design

momentMax

moment

Max

moment

Footpath

LL mom

Footpath

LL mom

36.449

127.901

Moment

Moment

With reduction

With reduction With impact

With impact

26.697

172.825

200.646

121.382

166.713

193.796

204.195

Design

moment

6.73 168.49 0 0 168.49 0 0 197.98 0 0 197.98 2.666

8.6 176.42 0 0 176.42 0 0 207.29 0 0 207.29 2.66

Shear summary:

For outer girder:

Case-1 Case-2 Case-3 Case-1 Case-2 Case-3 Case-1 Case-2 Case-3

0 39.9 0 0 39.9 0 0 46.88 0 0 46.88 5.745

Deff 40.15 0 0 40.15 0 0 47.18 0 0 47.18 5.45

EOT 36.7 0 0 36.7 0 0 43.12 0 0 43.12 4.664

4.86 28.1 0 0 28.1 0 0 33.02 0 0 33.02 3.332

6.73 20.4 0 0 20.4 0 0 23.97 0 0 23.97 2.027

8.6 11.211 0 0 11.21 0 0 13.17 0 0 13.17 0.736

For inner girder:

Case-1 Case-2 Case-3 Case-1 Case-2 Case-3 Case-1 Case-2 Case-3

0 49.326 0 0 49.33 0 0 57.96 0 0 57.96 0.297

Deff 24.6 0 0 24.6 0 0 28.91 0 0 28.91 0.1

EOT 41.998 0 0 42 0 0 49.35 0 0 49.35 0.269

4.86 30.153 0 0 30.15 0 0 35.43 0 0 35.43 0.213

6.73 23.707 0 0 23.71 0 0 27.86 0 0 27.86 0.134

8.60 18.034 0 0 18.03 0 0 21.19 0 0 21.19 0.046

Max

Shear

Max

Shear

Footpath

LL shear

Footpath

LL shear

36.352

25.997

13.906

Design shear

29.01

49.619

35.643

27.994

21.236

209.95

Design shear

52.625

52.63

47.784

With impactWith reduction

With reduction

Shear

Shear With impact

200.646

58.257

Page 45: IL & FS

7.0 DESIGN

Fy = MpaFck = MpaWidth of Beam = mDepth of Beam = mm Ru = (depends on grade of steel used)fctm =

Design of Outer Girder under ULS(Ultimate Limit State)

Dia Nos Dia Nos Dia Nos Dia Nos Dia Nos32 5 32 5 32 5 32 5 32 532 4 32 4 32 4 32 4 32 532 0 32 0 32 0 32 4 32 4

32 0

50040

3

450 250Width of web (mm)

157.572

250 250 250Effective width of

girder(mm) 3000 3000 3000 3000 3000

Layer 7Layer 8

1.35

1.50

1.351.35

47.072DL (t.m) 1.114 70.535 99.415 116.720

Load factorsDL

SIDL-except surfacing

LL

1.35

Layer 1Layer 2Layer 3

0.451825

cg frm bottomLayers of steel

0.133

SIDL-except surfacing (t.m)

7238.229Ast (mm2)

196 196 196Layer 4Layer 5Layer 6

196

Section0 2.99 4.86 6.73 8.6

cg frm bottom

cg frm bottom

cg frm bottom

cg frm bottom

132 132 13268

132

165.34866.799

306.293

TOTAL M (t.m) 46.50 338.02 471.12 550.73 579.29

DL (t.m) 1.504 95.22237.321

182.073

53.744

250.070

63.547

1.75

Unfactored moment122.480

166.713

39.810

CG frm bottom (mm)

1.351.35

SIDL-except surfacing (t.m)

LL (t.m)

4.404

40.046 290.694

134.210

121.382

27.645

204.195

49.481

10455.220

Factored moment

1.35

1.50

1.35

1.50

1.35

193.796LL (t.m)

3.262

26.697

1.35

1.501.50

SIDL- surfacing (t.m) 0.310 13.373 18.915 22.236 23.341

SIDL- surfacing 1.75 1.75 1.75 1.75

SIDL- surfacing (t.m) 0.543 23.403 33.101 38.913 40.847

68 68 68 68

127.07711259.468

127.4297238.229

96.444

196260

96.444

132

7238.22996.444

Page 46: IL & FS

CHECK FOR EFFECTIVE DEPTH

* The area of steel, Ast is calculated according to the depth of Neutral Axis from top.If the depth of neutral axis is less than the thickness of slab,i.e. xu <= Df

If the depth of neutral axis is greater than the thickness of slab,i.e. xu > Df

**

Depth of NA(mm)Max depth of NA(mm)

Status795.138 781.043 780.882

Ok Ok Ok Ok Ok

113.377

Effective depth provided (mm)

Ok

Effective depth required (mm)

Status

105.278<= Df

OKStatus OK OK OK

Ok4768.72

1213.449 4547.499

619.649Ast (mm2)*

Ast provided (mm2) 7238.229

Ast (min) (mm2)**Ast (max) (mm2)**

4547.499 6366.361 7601.997

Ok

7238.229 10455.220

Total Moment (t.m)

1697.92

587.43

Ok Ok

46.50

72.885 72.885 72.885 105.278795.138 795.138

Check for NA depth

113.377<= Df <= Df

225.000 225.000 225.000 225.00072.885

<= Df72.885

Depth of slab (Df) (mm)

<= Df

225.000

Ok

Ok

602.46

Ok1728.56

Check for depth required

Moment of resistance,Mu=Rufckbd2 (t.m)

Status

1697.57

Depth of NA (mm)

For the minimum and maximum area of steel (Ast min and Ast max) respectively please refer clause 16.5.1.1 of IRC:112-2011

OK7238.229

Check for Moment

Ast, req (mm2) 6366.361 7601.99711259.468

4599.26

8005.995

1728.56 1728.56

Ok

1213.449 674.138 674.138 662.189 662.05236467.500 31125.000 31125.000 31125.000 31125.000

471.12 550.73

Ok4768.72 4768.72 4601.16

338.02

8005.995

170.69 460.21 543.31

579.29

72.885

Page 47: IL & FS

Design of Outer Girder under ULS(Ultimate Limit State)

Dia Nos Dia Nos Dia Nos Dia Nos Dia Nos Dia Nos

32 5 32 5 32 5 32 5 32 5 32 5

32 4 32 4 32 4 32 4 32 4 32 5

32 0 32 0 32 0 32 0 32 0 32 4

0 0 0 0 0 0 0 0 0 0 32 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 260

Layer 1 68 68 68 68 68

Section

0 EOT 4.86 6.73 8.6Deff

132 132 132

68

Layer 4 0

Layers of steel

cg frm

bottom

cg frm

bottom

cg frm

bottom

cg frm

bottom

cg frm

bottom

cg frm

bottom

132

196

0

Layer 3 196 196 196 196 196

Layer 2 132 132

Layer 6 0 0 0 0 00

Layer 5 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Layer 6 0 0 0 0 00

Layer 8 0 0 0 0 00

Layer 7 0 0 0 0 00

127.42996.444

22.175

1.35

1.824

Ast (mm2) 7238.229 7238.229 7238.229 7238.229 11259.4687238.229

1.35 1.35 1.351.35

13.906

1.628

CG frm bottom (mm) 96.444 96.444 96.444 96.444

9.522

47.784 36.352 25.997

SIDL-except surfacing (t) 11.672 9.522 6.834 4.163

SIDL-except surfacing 1.35 1.35 1.35 1.35

SIDL-surfacing (t) 5.188 4.223 4.219 2.903 1.714

LL 1.50 1.50 1.50 1.50 1.501.50

Check for Shear

Unfactored Shear

DL (t) 28.891 22.085 14.073 8.012

29.93625 2.4624

Factored Shear

DL (t) 39.00285 29.81475 18.99855 10.8162

0.525

SIDL-surfacing 1.75 1.75 1.75 1.75 1.75 1.75

1.35

Load factors

DL 1.35

1.35

52.63LL (t) 52.625

26.44

20.859

Width of web (mm) 450

9.2259 5.62005

K**

σcp

ρ1*+

Effective depth of

girder(mm)1728.56 1728.56 1728.56 1728.56 1697.571728.56

265.78

7238.23

1.34 1.34 1.34 1.34 1.341.34

0 0 0 0 0

0.0093 0.0167 0.0167 0.0167 0.020.0158

0

26.44

25.829 25.829 25.829 26.92126.962

129.13

Vrdc (t)*

38.325

250

Asl (mm2) 7238.23 7238.23 7238.23 7238.23 11259.47

29.93625

12.8547

78.945

129.13

2.4624

SIDL-except surfacing (t) 15.7572 12.8547

Total Shear (t)

DL (t) 39.00285 29.81475 18.99855 10.8162

Total Shear (t) 142.78 121.73 87.83 58.43

LL (t) 78.9375 71.676 54.528 38.9955

250 250 250

142.78 121.73 87.83 58.43

SIDL-surfacing (t) 9.079 7.39025 7.38325 5.08025 2.9995 0.91875

2.1978

1005.31 1005.31 1005.31 1005.31

Check for shear

reinforcement spacingOK OK OK OK OK OK

ρmin****

0.0009 0.0009 0.0009 0.0009 0.0009 0.0009

26.44129.13Total Shear (t) 142.78 121.73 87.83 58.43

Z+++

1555.70 1555.70 1555.70 1555.70 1527.81

Check for Shear

reinforcement

Shear Reinf

Required

Shear Reinf

Required

Shear Reinf

Required

Shear Reinf

Required

No Shear Reinf

required

1555.70

Shear Reinf

Required

αcw 1 1 1 1 1

ν1 0.6 0.6 0.6 0.6 0.60.6

1

0.3805 21.80 deg 0.3805 21.80 deg 0.380521.80 deg

cot θ ; tan θ 2.50 0.40 2.50 0.40

θ (degrees) 21.80 deg 0.3805 21.80 deg 0.380521.80 deg 0.3805

2.50 0.40

150

2.50 0.40 2.50 0.40 2.50 0.40

2 Leg 12 dia 2 Leg 12 dia 2 Leg

Asw (mm2)

++*226.195 226.195 226.195 226.195 226.195226.195

Max spacing for steel

provided++++ 558.51 945.62

spacing (mm) 100 100 120 150

Shear reinforcement 12 dia 2 Leg 12 dia 2 Leg 12 dia12 dia 2 Leg

100

Areqd (mm2)

++** 40.500 23.920 22.500 27.000 33.750 33.750

Check for min shear

reinforcementOK OK OK OK OK OK

reinforcement spacing

Vrd,max***

305.993

258.783 143.768 143.768 143.768 141.191152.843

Vrd,s (t)++

305.993 305.993 254.994 203.995 200.338

CHK FOR SHEAR OK OK OK OK OK

Vrd (t) 258.783 143.768 143.768 143.768 141.191152.843

OK

Total Shear (t) 142.780 121.730 87.830 58.430 26.440129.130

Page 48: IL & FS

The design Shear resistance of the member without Shear reinforcement VRD.c is given by,

*(Eq. 10.1, cl: 10.3.2, IRC: 112-2011)

subject to minimum of

**(Eq. 10.2, cl: 10.3.2, IRC: 112-2011)

(Eq. 10.3, cl: 10.3.2, IRC: 112-2011)

*+

For members with vertical shear reinforcement, the shear resistance Vrd is smaller of,

++

***

****(Eq. 10.20, cl: 10.3.2, IRC: 112-2011)

++**

++++

αρ sinmin wreqd sbA =

swAs =

++++

++* Asw = Cross sectional area of shear reinforcement at a section pg-90

++** Areqd = Min area of reinforcement required

s = Spacing of shear reinforcement pg-91+++

z = lever arm to be taken as 0.9 for RC sect & calculated for PSC section pg-91

fywd = Design strength of web reinforcement used to resist shear (0.8fyk/γm) pg-86

1 = Strength reduction factor for concrete cracked in shear

= 0.6 for fck<=80Mpa

= 0.9-fck/250 > 0.5 for fck>80Mpa

αρ sinmin

max

w

sw

b

As =

Page 49: IL & FS

Design of Inner Girder under ULS(Ultimate Limit State)

Dia Nos Dia Nos Dia Nos Dia Nos Dia Nos

32 5 32 5 32 5 32 5 32 5

32 4 32 4 32 4 32 4 32 5

32 4

LL (t.m) 36.449 127.901 172.825 200.646 209.950

SIDL- surfacing (t.m) 0.187 12.105 17.060 20.025 21.000

SIDL-except surfacing (t.m) 3.900 2.813 6.374 6.633 6.475

Unfactored moment

DL (t.m) 1.164 67.742 95.421 112.009 117.508

CG frm bottom (mm) 96.444 96.444 96.444 96.444 125.714

Ast (mm2) 7238.229 7238.229 7238.229 7238.229 11259.468

Layer 8

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3 190

Layer 2 132 132 132 132 132

Layer 1 68 68 68 68 68

Layers of steel

cg frm

bottom

cg frm

bottom

cg frm

bottom

cg frm

bottom

cg frm

bottom

Section

0 2.99 4.86 6.73 8.6

<= Df <= Df <= Df <= Df <= Df

Depth of NA (mm) 72.885 72.885 72.885 72.885 113.377

Depth of slab (Df) (mm) 225.000 225.000 225.000 225.000 225.000

Effective width of

girder(mm) 3000 3000 3000 3000 3000

Width of web (mm) 450 250 250 250 250

TOTAL M (t.m) 61.84 308.28 426.52 496.18 519.05

LL (t.m) 54.674 191.852 259.238 300.969 314.925

SIDL- surfacing (t.m) 0.327 21.184 29.855 35.044 36.750

SIDL-except surfacing (t.m) 5.265 3.798 8.605 8.955 8.741

Factored moment

DL (t.m) 1.571 91.452 128.818 151.212 158.636

LL 1.50 1.50 1.50 1.50 1.50

SIDL- surfacing 1.75 1.75 1.75 1.75 1.75

1.35

SIDL-except surfacing 1.35 1.35 1.35 1.35 1.35

Load factors

DL 1.35 1.35 1.35 1.35

LL (t.m) 36.449 127.901 172.825 200.646 209.950

Page 50: IL & FS

Ast, req (mm2) 1213.449 4143.315 5755.058 6710.659 7150.754

Ast (max) (mm2)** 36467.500 31125.000 31125.000 31125.000 31125.000

Ast (min) (mm2)** 1213.449 674.138 674.138 674.138 662.723

Ast (mm2)* 824.474 4143.315 5755.058 6710.659 7150.754

Status Ok Ok Ok Ok Ok

Moment of

resistance,Mu=Rufckbd2

(t.m) 4768.72 4768.72 4768.72 4768.72 4608.59

Check for Moment

Total Moment (t.m) 61.84 308.28 426.52 496.18 519.05

Status Ok Ok Ok Ok Ok

Max depth of NA(mm) 795.138 795.138 795.138 795.138 781.673

Check for NA depth

Depth of NA(mm) 72.885 72.885 72.885 72.885 113.377

Status Ok Ok Ok Ok Ok

Effective depth provided

(mm) 1728.56 1728.56 1728.56 1728.56 1699.29

Check for depth requiredEffective depth required

(mm) 196.84 439.5 516.96 557.57 570.28

CHECK FOR EFFECTIVE DEPTH

* The area of steel, Ast is calculated according to the depth of Neutral Axis from top.

If the depth of neutral axis is less than the thickness of slab,i.e. xu <= Df

If the depth of neutral axis is greater than the thickness of slab,i.e. xu > Df

** For the minimum and maximum area of steel (Ast min and Ast max) respectively please refer clause 16.5.1.1

of IRC:112-2011

Status OK OK OK OK OK

Ast provided (mm2) 7238.229 7238.229 7238.229 7238.229 11259.468

Ast, req (mm ) 1213.449 4143.315 5755.058 6710.659 7150.754

Page 51: IL & FS

Design of Inner Girder under ULS(Ultimate Limit State)

Dia Nos Dia Nos Dia Nos Dia Nos Dia Nos Dia Nos

32 5 32 5 32 5 32 5 32 5 32 5

32 4 32 4 32 4 32 4 32 4 32 5

0 0 0 0 0 0 0 0 0 0 32 4

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

21.236

Load factors

DL 1.35 1.35 1.35 1.35 1.35 1.35

LL (t) 58.257 29.01 49.619 35.643 27.994

0.233

SIDL-surfacing (t) 4.526 3.782 3.769 2.375 1.331 0.282

SIDL-except surfacing (t) 2.967 2.018 2.018 1.077 0.355

125.714

Check for Shear

Unfactored Shear

DL (t) 27.56 21.177 21.08 13.497 7.602 1.694

CG frm bottom (mm) 96.444 96.444 96.444 96.444 96.444

0

Ast (mm2) 7238.229 7238.229 7238.229 7238.229 7238.229 11259.468

Layer 8 0 0 0 0 0

0

Layer 7 0 0 0 0 0 0

Layer 6 0 0 0 0 0

0

Layer 5 0 0 0 0 0 0

Layer 4 0 0 0 0 0

132

Layer 3 0 0 0 0 0 190

Layer 2 132 132 132 132 132

cg frm

bottom

Layer 1 68 68 68 68 68 68

Layers of steel

cg frm

bottom

cg frm

bottom

cg frm

bottom

cg frm

bottom

cg frm

bottom

Section

0 Deff EOT 4.86 6.73 8.6

cot θ ; tan θ 2.50 0.40 2.50 0.40 2.50 0.400.40 2.50 0.40 2.50 0.40 2.50

1

θ (degrees) 21.80 deg 0.3805 21.80 deg 0.3805 21.80 deg 0.3805 21.80 deg 0.3805

αcw 1 1 1 1 1

21.80 deg 0.3805 21.80 deg 0.3805

1529.36

ν1 0.6 0.6 0.6 0.6 0.6 0.6

Z+++

1555.70 1555.70 1555.70 1555.70 1555.70

Shear Reinf

Required

ρmin****

0.0009 0.0009 0.0009 0.0009 0.0009 0.0009

Check for Shear

reinforcement

Shear Reinf

Required

Shear Reinf

Required

Shear Reinf

Required

Shear Reinf

Required

Shear Reinf

Required

26.948

Total Shear (t) 136.52 81.45 112.21 77.3 55.06 34.95

Vrdc (t)*

38.325 26.962 25.829 25.829 25.829

0.02

σcp 0 0 0 0 0 0

ρ1*+

0.0093 0.0158 0.0167 0.0167 0.0167

250

K**

1.34 1.34 1.34 1.34 1.34 1.34

Width of web (mm) 450 265.78 250 250 250

1699.29

Asl (mm2) 7238.23 7238.23 7238.23 7238.23 7238.23 11259.47

Effective depth of

girder(mm) 1728.56 1728.56 1728.56 1728.56 1728.56

31.854

Total Shear (t) 136.52 81.45 112.21 77.3 55.06 34.95

LL (t) 87.3855 43.515 74.4285 53.4645 41.991

0.31455

SIDL-surfacing (t) 7.9205 6.6185 6.59575 4.15625 2.32925 0.4935

SIDL-except surfacing (t) 4.00545 2.7243 2.7243 1.45395 0.47925

1.50

Factored Shear

DL (t) 37.206 28.58895 28.458 18.22095 10.2627 2.2869

LL 1.50 1.50 1.50 1.50 1.50

1.35

SIDL-surfacing 1.75 1.75 1.75 1.75 1.75 1.75

SIDL-except surfacing 1.35 1.35 1.35 1.35 1.35

DL 1.35 1.35 1.35 1.35 1.35 1.35

Page 52: IL & FS

The design Shear resistance of the member without Shear reinforcement VRD.c is given by,

*(Eq. 10.1, cl: 10.3.2, IRC: 112-2011)

subject to minimum of

**(Eq. 10.2, cl: 10.3.2, IRC: 112-2011)

(Eq. 10.3, cl: 10.3.2, IRC: 112-2011)

OKCHK FOR SHEAR OK OK OK OK OK

141.334

Total Shear (t) 136.520 81.450 112.210 77.300 55.060 34.950

Vrd (t) 258.783 152.843 143.768 143.768 143.768

200.541

Vrd,max***

258.783 152.843 143.768 143.768 143.768 141.334

Vrd,s (t)++

305.993 305.993 305.993 254.994 203.995

1005.31

Check for shear

reinforcement spacingOK OK OK OK OK OK

Max spacing for steel

provided++++ 558.51 945.62 1005.31 1005.31 1005.31

226.195

Check for min shear

reinforcementOK OK OK OK OK OK

Asw (mm2)

++*226.195 226.195 226.195 226.195 226.195

150

Areqd (mm2)

++** 40.500 23.920 22.500 27.000 33.750 33.750

12 dia 2 Leg 12 dia 2 Leg

spacing (mm) 100 100 100 120 150

Shear reinforcement 12 dia 2 Leg 12 dia 2 Leg 12 dia 2 Leg 12 dia 2 Leg

(Eq. 10.3, cl: 10.3.2, IRC: 112-2011)

*+

For members with vertical shear reinforcement, the shear resistance Vrd is smaller of,

++

***

****(Eq. 10.20, cl: 10.3.2, IRC: 112-2011)

++**

++++

++*Asw = Cross sectional area of shear reinforcement at a section pg-90

++**Areqd = Min area of reinforcement required

s = Spacing of shear reinforcement pg-91+++

z = lever arm to be taken as 0.9 for RC sect & calculated for PSC section pg-91

fywd = Design strength of web reinforcement used to resist shear (0.8fyk/γm) pg-86

1 = Strength reduction factor for concrete cracked in shear

= 0.6 for fck<=80Mpa

= 0.9-fck/250 > 0.5 for fck>80Mpa

αρ sinmin wreqd sbA =

αρ sinmin

max

w

sw

b

As =

Page 53: IL & FS

8.0 STRESSES DUE TO DIFFERENTIAL SHRINKAGE FOR OUTER GIRDER

i) At 0.5 L

0.388

1.713

1.325

As per cl. 606.2, IRC:22-1986, composite action shall be considered to be effective only after the in-situ

concrete has attained atleast 75% of its cube strength.

cast-in slab

girder

Strain at 10 days in slab = 0.0003

Strain at 28 days in girder = 0.00019

Differential shrinkage strain ( e DS ) = -0.00011

C.G. of Composite Section (from bottom ) = 1.325 m

C.G. of in-situ section (from bottom ) = 1.713 m

Lever arm for differential shrinkage moment (e DS ) = 0.388 m

Area of composite section (A) = 1.245 m2

Area of concrete in slab (A slab ) = 0.675 m2

Perimeter of slab in contact with atmosphere (u is ) = 5.2 m

Notional size = 2A /u is = 478.85 mm

Atmospheric conditions depending on relative humidity =

Final creep co-efficient ( F ) = 4.6

Creep reduction factor ( a ) = 0.215

Modulus of elasticity of concrete (E c ) = 3366000 t/m2

Dry Conditions-50%

Page 54: IL & FS

Restraining force , F DS = e DS .E c .A slab . a = -53.73 t

Moment M DS = F DS .e DS = -20.85 tm

Internal stresses:

Restraining Stresses = e DS .E c . a = -79.61 t/m2

Axial Release:

Axial Stress = Restraining Force/Area = 43.16 t/m2

Section moduli:

Section modulus of top of slab, Z tslab = 0.7734 m3

Section modulus of bottom of slab, Z bslab = 1.4065 m3

Section modulus of bottom of beam, Zbbeam = 0.2917 m3

Moment Release:

At top of slab M DS /Z tslab = 26.96 t/m2

At bottom of slab M DS /Z bslab = 14.82 t/m2

At bottom of beam M DS /Z bbeam = -71.48 t/m2

Page 55: IL & FS

Top of slab 0 -79.61 43.16 26.96 -9.49

Bottom of slab 0.225 -79.61 43.16 14.82 -21.63

Bottom of beam 1.825 0 43.16 -71.48 -28.32

+ +

LocationShrinkage

StressesDepth

Restrained

stresses

Axial

Release

Moment

Release

-79.6

1

-79.6

1

0

Restrained Stress

43.1

6 43.1

6

43.1

6

Axial Release

26.96

14.82

-

71.48

0

Moment Release

=

0 671.48

0-9.49

-21.6357.98

-28.320

Shrinkage Stress

Page 56: IL & FS

ii) At 0.391 L

0.388

1.713

1.325

Strain at 10 days in slab = 0.0003

Strain at 28 days in girder = 0.00019

As per cl. 606.2, IRC:22-1986, composite action shall be considered to be effective only after the in-situ

concrete has attained atleast 75% of its cube strength.

cast-in slab

girder

Differential shrinkage strain ( e DS ) = -0.00011

C.G. of Composite Section (from bottom ) = 1.325 m

C.G. of in-situ section (from bottom ) = 1.713 m

Lever arm for differential shrinkage moment (e DS ) = 0.388 m

Area of composite section (A) = 1.245 m2

Area of concrete in slab (A slab ) = 0.675 m2

Perimeter of slab in contact with atmosphere (u is ) = 5.2 m

Notional size = 2A slab /u is = 259.62 mm

Atmospheric conditions depending on relative humidity =

Final creep co-efficient ( F ) = 4.6

Creep reduction factor ( a ) = 0.215

Modulus of elasticity of concrete (E c ) = 3366000 t/m2

Dry Conditions

Page 57: IL & FS

Restraining force , F DS = e DS .E c .A slab . a = -53.73 t

Moment M DS = F DS .e DS = -20.85 tm

Internal stresses:

Restraining Stresses = e DS .E c . a = -79.61 t/m2

Axial Release:

Axial Stress = Restraining Force/Area = 43.16 t/m2

Section moduli:

Section modulus of top of slab, Z tslab = 0.7734 m3

Section modulus of bottom of slab, Z bslab = 1.4065 m3

Section modulus of bottom of beam, Zbbeam = 0.2917 m3

Moment Release:

At top of slab M DS /Z tslab = 26.96 t/m2

At bottom of slab M DS /Z bslab = 14.82 t/m2

At bottom of beam M DS /Z bbeam = -71.48 t/m2

Page 58: IL & FS

Top of slab 0 -79.61 43.16 26.96 -9.49

Bottom of slab 0.225 -79.61 43.16 14.82 -21.63

Bottom of beam 1.825 0 43.16 -71.48 -28.32

+ +

Location DepthRestrained

stresses

Axial

Release

Moment

Release

Shrinkage

Stresses

-

79.6

1

-79.6

1

0

Restrained Stress

43.1

6 43.1

6

43.1

6

Axial Release

26.96

14.82

-71.4

8

0

Moment Release

=

0 68

0-9.49

-21.6357.98

-28.320

Shrinkage Stress

Page 59: IL & FS

iii) At 0.283 L

0.388

1.713

1.325

Strain at 10 days in slab = 0.0003

Strain at 28 days in girder = 0.00019

As per cl. 606.2, IRC:22-1986, composite action shall be considered to be effective only after the in-situ

concrete has attained atleast 75% of its cube strength.

cast-in slab

girder

Differential shrinkage strain ( e DS ) = -0.00011

C.G. of Composite Section (from bottom ) = 1.325 m

C.G. of in-situ section (from bottom ) = 1.713 m

Lever arm for differential shrinkage moment (e DS ) = 0.388 m

Area of composite section (A) = 1.245 m2

Area of concrete in slab (A slab ) = 0.675 m2

Perimeter of slab in contact with atmosphere (u is ) = 5.2 m

Notional size = 2A slab /u is = 259.62 mm

Atmospheric conditions depending on relative humidity =

Final creep co-efficient ( F ) = 4.6

Creep reduction factor ( a ) = 0.215

Modulus of elasticity of concrete (E c ) = 3366000 t/m2

Dry Conditions

Page 60: IL & FS

Restraining force , F DS = e DS .E c .A slab . a = -53.73 t

Moment M DS = F DS .e DS = -20.85 tm

Internal stresses:

Restraining Stresses = e DS .E c . a = -79.61 t/m2

Axial Release:

Axial Stress = Restraining Force/Area = 43.16 t/m2

Section moduli:

Section modulus of top of slab, Z tslab = 0.7734 m3

Section modulus of bottom of slab, Z bslab = 1.4065 m3

Section modulus of bottom of beam, Zbbeam = 0.2917 m3

Moment Release:

At top of slab M DS /Z tslab = 26.96 t/m2

At bottom of slab M DS /Z bslab = 14.82 t/m2

At bottom of beam M DS /Z bbeam = -71.48 t/m2

Page 61: IL & FS

Top of slab 0 -79.61 43.16 26.96 -9.49

Bottom of slab 0.225 -79.61 43.16 14.82 -21.63

Bottom of beam 1.825 0 43.16 -71.48 -28.32

+ +

Location DepthRestrained

stresses

Axial

Release

Moment

Release

Shrinkage

Stresses

-

79.6

1

-79.6

1

0

Restrained Stress

43.1

6 43.1

6

43.1

6

Axial Release

26.96

14.82

-

71.48

0

Moment Release

=

0 671.48

0-9.49

-21.6357.98

-28.320

Shrinkage Stress

Page 62: IL & FS

iv) At 0.174 L

0.388

1.713

1.325

Strain at 10 days in slab = 0.0003

Strain at 28 days in girder = 0.00019

As per cl. 606.2, IRC:22-1986, composite action shall be considered to be effective only after the in-situ

concrete has attained atleast 75% of its cube strength.

cast-in slab

girder

Differential shrinkage strain ( e DS ) = -0.00011

C.G. of Composite Section (from bottom ) = 1.325 m

C.G. of in-situ section (from bottom ) = 1.713 m

Lever arm for differential shrinkage moment (e DS ) = 0.388 m

Area of composite section (A) = 1.245 m2

Area of concrete in slab (A slab ) = 0.675 m2

Perimeter of slab in contact with atmosphere (u is ) = 5.2 m

Notional size = 2A slab /u is = 259.62 mm

Atmospheric conditions depending on relative humidity =

Final creep co-efficient ( F ) = 4.6

Creep reduction factor ( a ) = 0.215

Modulus of elasticity of concrete (E c ) = 3366000 t/m2

Dry Conditions

Page 63: IL & FS

Restraining force , F DS = e DS .E c .A slab . a = -53.73 t

Moment M DS = F DS .e DS = -20.85 tm

Internal stresses:

Restraining Stresses = e DS .E c . a = -79.61 t/m2

Axial Release:

Axial Stress = Restraining Force/Area = 43.16 t/m2

Section moduli:

Section modulus of top of slab, Z tslab = 0.7734 m3

Section modulus of bottom of slab, Z bslab = 1.4065 m3

Section modulus of bottom of beam, Zbbeam = 0.2917 m3

Moment Release:

At top of slab M DS /Z tslab = 26.96 t/m2

At bottom of slab M DS /Z bslab = 14.82 t/m2

At bottom of beam M DS /Z bbeam = -71.48 t/m2

Page 64: IL & FS

Top of slab 0 -79.61 43.16 26.96 -9.49

Bottom of slab 0.225 -79.61 43.16 14.82 -21.63

Bottom of beam 1.825 0 43.16 -71.48 -28.32

+ +

Location DepthRestrained

stresses

Axial

Release

Moment

Release

Shrinkage

Stresses

-

79.6

1

-79.6

1

0

Restrained Stress

43.1

6 43.1

6

43.1

6

Axial Release

26.96

14.82

-

71.48

0

Moment Release

=

0 671.48

0-9.49

-21.6357.98

-28.320

Shrinkage Stress

Page 65: IL & FS

v) At 0 L

0.46

1.713

1.253

Strain at 10 days in slab = 0.0003

Strain at 28 days in girder = 0.00019

As per cl. 606.2, IRC:22-1986, composite action shall be considered to be effective only after the in-situ

concrete has attained atleast 75% of its cube strength.

cast-in slab

girder

Differential shrinkage strain ( e DS ) = -0.00011

C.G. of Composite Section (from bottom ) = 1.253 m

C.G. of in-situ section (from bottom ) = 1.713 m

Lever arm for differential shrinkage moment (e DS ) = 0.46 m

Area of composite section (A) = 1.4587 m2

Area of concrete in slab (A slab ) = 0.675 m2

Perimeter of slab in contact with atmosphere (u is ) = 5.2 m

Notional size = 2A slab /u is = 259.62 mm

Atmospheric conditions depending on relative humidity =

Final creep co-efficient ( F ) = 4.6

Creep reduction factor ( a ) = 0.215

Modulus of elasticity of concrete (E c ) = 3366000 t/m2

Dry Conditions

Page 66: IL & FS

Restraining force , F DS = e DS .E c .A slab . a = -53.73 t

Moment M DS = F DS .e DS = -24.72 tm

Internal stresses:

Restraining Stresses = e DS .E c . a = -79.61 t/m2

Axial Release:

Axial Stress = Restraining Force/Area = 36.83 t/m2

Section moduli:

Section modulus of top of slab, Z tslab = 0.7888 m3

Section modulus of bottom of slab, Z bslab = 1.3005 m3

Section modulus of bottom of beam, Zbbeam = 0.3599 m3

Moment Release:

At top of slab M DS /Z tslab = 31.34 t/m2

At bottom of slab M DS /Z bslab = 19.01 t/m2

At bottom of beam M DS /Z bbeam = -68.69 t/m2

Page 67: IL & FS

Top of slab 0 -79.61 36.83 31.34 -11.44

Bottom of slab 0.225 -79.61 36.83 19.01 -23.77

Bottom of beam 1.825 0 36.83 -68.69 -31.86

+ +

Location DepthRestrained

stresses

Axial

Release

Moment

Release

Shrinkage

Stresses

-

79.6

1

-79.6

1

0

Restrained Stress

43.1

6 43.1

6

43.1

6

Axial Release

26.96

14.82

-

71.48

0

Moment Release

=

0 671.48

0-9.49

-21.6357.98

-28.320

Shrinkage Stress

Page 68: IL & FS

Summary:

0.0L

0.174L

0.283L

0.391L

0.5L

-21.63

-21.63

-21.63

-21.63

Section

-31.86

-28.32

-28.32

-28.32

-11.44

-9.49

-9.49

-9.49

-9.49

Stress at top of slabStress at top of

girder

Stress at bottom of

girder

-28.32

-23.77

Page 69: IL & FS

STRESSES DUE TO DIFFERENTIAL SHRINKAGE FOR INNER GIRDER

i) At 0.5 L

0.388

1.713

1.325

As per cl. 606.2, IRC:22-1986, composite action shall be considered to be effective only after the in-situ

concrete has attained atleast 75% of its cube strength.

cast-in slab

girder

Strain at 10 days in slab = 0.0003

Strain at 28 days in girder = 0.00019

Differential shrinkage strain ( e DS ) = -0.00011

C.G. of Composite Section (from bottom ) = 1.325 m

C.G. of in-situ section (from bottom ) = 1.713 m

Lever arm for differential shrinkage moment (e DS ) = 0.388 m

Area of composite section (A) = 1.245 m2

Area of concrete in slab (A slab ) = 0.675 m2

Perimeter of slab in contact with atmosphere (u is ) = 5.2 m

Notional size = 2A /u is = 478.85 mm

Atmospheric conditions depending on relative humidity =

Final creep co-efficient ( F ) = 4.6

Creep reduction factor ( a ) = 0.215

Modulus of elasticity of concrete (E c ) = 3366000 t/m2

Dry Conditions-50%

Page 70: IL & FS

Restraining force , F DS = e DS .E c .A slab . a = -53.73 t

Moment M DS = F DS .e DS = -20.85 tm

Internal stresses:

Restraining Stresses = e DS .E c . a = -79.61 t/m2

Axial Release:

Axial Stress = Restraining Force/Area = 43.16 t/m2

Section moduli:

Section modulus of top of slab, Z tslab = 0.7734 m3

Section modulus of bottom of slab, Z bslab = 1.4065 m3

Section modulus of bottom of beam, Zbbeam = 0.2917 m3

Moment Release:

At top of slab M DS /Z tslab = 26.96 t/m2

At bottom of slab M DS /Z bslab = 14.82 t/m2

At bottom of beam M DS /Z bbeam = -71.48 t/m2

Page 71: IL & FS

Top of slab 0 -79.61 43.16 26.96 -9.49

Bottom of slab 0.225 -79.61 43.16 14.82 -21.63

Bottom of beam 1.825 0 43.16 -71.48 -28.32

+ +

Shrinkage

StressesLocation Depth

Restrained

stresses

Axial

Release

Moment

Release

-79.6

1

-79.6

1

0

Restrained Stress

43.1

6 43.1

6

43.1

6

Axial Release

26.96

14.82

-

71.48

0

Moment Release

=

0 671.48

0-9.49

-21.6357.98

-28.320

Shrinkage Stress

Page 72: IL & FS

ii) At 0.391 L

0.388

1.713

1.325

Strain at 10 days in slab = 0.0003

Strain at 28 days in girder = 0.00019

As per cl. 606.2, IRC:22-1986, composite action shall be considered to be effective only after the in-situ

concrete has attained atleast 75% of its cube strength.

cast-in slab

girder

Differential shrinkage strain ( e DS ) = -0.00011

C.G. of Composite Section (from bottom ) = 1.325 m

C.G. of in-situ section (from bottom ) = 1.713 m

Lever arm for differential shrinkage moment (e DS ) = 0.388 m

Area of composite section (A) = 1.245 m2

Area of concrete in slab (A slab ) = 0.675 m2

Perimeter of slab in contact with atmosphere (u is ) = 5.2 m

Notional size = 2A slab /u is = 259.62 mm

Atmospheric conditions depending on relative humidity =

Final creep co-efficient ( F ) = 4.6

Creep reduction factor ( a ) = 0.215

Modulus of elasticity of concrete (E c ) = 3366000 t/m2

Dry Conditions

Page 73: IL & FS

Restraining force , F DS = e DS .E c .A slab . a = -53.73 t

Moment M DS = F DS .e DS = -20.85 tm

Internal stresses:

Restraining Stresses = e DS .E c . a = -79.61 t/m2

Axial Release:

Axial Stress = Restraining Force/Area = 43.16 t/m2

Section moduli:

Section modulus of top of slab, Z tslab = 0.7734 m3

Section modulus of bottom of slab, Z bslab = 1.4065 m3

Section modulus of bottom of beam, Zbbeam = 0.2917 m3

Moment Release:

At top of slab M DS /Z tslab = 26.96 t/m2

At bottom of slab M DS /Z bslab = 14.82 t/m2

At bottom of beam M DS /Z bbeam = -71.48 t/m2

Page 74: IL & FS

Top of slab 0 -79.61 43.16 26.96 -9.49

Bottom of slab 0.225 -79.61 43.16 14.82 -21.63

Bottom of beam 1.825 0 43.16 -71.48 -28.32

+ +

Shrinkage

StressesLocation Depth

Restrained

stresses

Axial

Release

Moment

Release

-

79.6

1

-79.6

1

0

Restrained Stress

43.1

6 43.1

6

43.1

6

Axial Release

26.96

14.82

-

71.48

0

Moment Release

=

0 671.48

0-9.49

-21.6357.98

-28.320

Shrinkage Stress

Page 75: IL & FS

iii) At 0.283 L

0.388

1.713

1.325

Strain at 10 days in slab = 0.0003

Strain at 28 days in girder = 0.00019

As per cl. 606.2, IRC:22-1986, composite action shall be considered to be effective only after the in-situ

concrete has attained atleast 75% of its cube strength.

cast-in slab

girder

Differential shrinkage strain ( e DS ) = -0.00011

C.G. of Composite Section (from bottom ) = 1.325 m

C.G. of in-situ section (from bottom ) = 1.713 m

Lever arm for differential shrinkage moment (e DS ) = 0.388 m

Area of composite section (A) = 1.245 m2

Area of concrete in slab (A slab ) = 0.675 m2

Perimeter of slab in contact with atmosphere (u is ) = 5.2 m

Notional size = 2A slab /u is = 259.62 mm

Atmospheric conditions depending on relative humidity =

Final creep co-efficient ( F ) = 4.6

Creep reduction factor ( a ) = 0.215

Modulus of elasticity of concrete (E c ) = 3366000 t/m2

Dry Conditions

Page 76: IL & FS

Restraining force , F DS = e DS .E c .A slab . a = -53.73 t

Moment M DS = F DS .e DS = -20.85 tm

Internal stresses:

Restraining Stresses = e DS .E c . a = -79.61 t/m2

Axial Release:

Axial Stress = Restraining Force/Area = 43.16 t/m2

Section moduli:

Section modulus of top of slab, Z tslab = 0.7734 m3

Section modulus of bottom of slab, Z bslab = 1.4065 m3

Section modulus of bottom of beam, Zbbeam = 0.2917 m3

Moment Release:

At top of slab M DS /Z tslab = 26.96 t/m2

At bottom of slab M DS /Z bslab = 14.82 t/m2

At bottom of beam M DS /Z bbeam = -71.48 t/m2

Page 77: IL & FS

Top of slab 0 -79.61 43.16 26.96 -9.49

Bottom of slab 0.225 -79.61 43.16 14.82 -21.63

Bottom of beam 1.825 0 43.16 -71.48 -28.32

+ +

Shrinkage

StressesLocation Depth

Restrained

stresses

Axial

Release

Moment

Release

-

79.6

1

-79.6

1

0

Restrained Stress

43.1

6 43.1

6

43.1

6

Axial Release

26.96

14.82

-

71.48

0

Moment Release

=

0 671.48

0-9.49

-21.6357.98

-28.320

Shrinkage Stress

Page 78: IL & FS

iv) At 0.174 L

0.388

1.713

1.325

Strain at 10 days in slab = 0.0003

Strain at 28 days in girder = 0.00019

As per cl. 606.2, IRC:22-1986, composite action shall be considered to be effective only after the in-situ

concrete has attained atleast 75% of its cube strength.

cast-in slab

girder

Differential shrinkage strain ( e DS ) = -0.00011

C.G. of Composite Section (from bottom ) = 1.325 m

C.G. of in-situ section (from bottom ) = 1.713 m

Lever arm for differential shrinkage moment (e DS ) = 0.388 m

Area of composite section (A) = 1.245 m2

Area of concrete in slab (A slab ) = 0.675 m2

Perimeter of slab in contact with atmosphere (u is ) = 5.2 m

Notional size = 2A slab /u is = 259.62 mm

Atmospheric conditions depending on relative humidity =

Final creep co-efficient ( F ) = 4.6

Creep reduction factor ( a ) = 0.215

Modulus of elasticity of concrete (E c ) = 3366000 t/m2

Dry Conditions

Page 79: IL & FS

Restraining force , F DS = e DS .E c .A slab . a = -53.73 t

Moment M DS = F DS .e DS = -20.85 tm

Internal stresses:

Restraining Stresses = e DS .E c . a = -79.61 t/m2

Axial Release:

Axial Stress = Restraining Force/Area = 43.16 t/m2

Section moduli:

Section modulus of top of slab, Z tslab = 0.7734 m3

Section modulus of bottom of slab, Z bslab = 1.4065 m3

Section modulus of bottom of beam, Zbbeam = 0.2917 m3

Moment Release:

At top of slab M DS /Z tslab = 26.96 t/m2

At bottom of slab M DS /Z bslab = 14.82 t/m2

At bottom of beam M DS /Z bbeam = -71.48 t/m2

Page 80: IL & FS

Top of slab 0 -79.61 43.16 26.96 -9.49

Bottom of slab 0.225 -79.61 43.16 14.82 -21.63

Bottom of beam 1.825 0 43.16 -71.48 -28.32

+ +

Shrinkage

StressesLocation Depth

Restrained

stresses

Axial

Release

Moment

Release

-

79.6

1

-79.6

1

0

Restrained Stress

43.1

6 43.1

6

43.1

6

Axial Release

26.96

14.82

-

71.48

0

Moment Release

=

0 671.48

0-9.49

-21.6357.98

-28.320

Shrinkage Stress

Page 81: IL & FS

v) At 0 L

0.46

1.713

1.253

Strain at 10 days in slab = 0.0003

Strain at 28 days in girder = 0.00019

As per cl. 606.2, IRC:22-1986, composite action shall be considered to be effective only after the in-situ

concrete has attained atleast 75% of its cube strength.

cast-in slab

girder

Differential shrinkage strain ( e DS ) = -0.00011

C.G. of Composite Section (from bottom ) = 1.253 m

C.G. of in-situ section (from bottom ) = 1.713 m

Lever arm for differential shrinkage moment (e DS ) = 0.46 m

Area of composite section (A) = 1.4587 m2

Area of concrete in slab (A slab ) = 0.675 m2

Perimeter of slab in contact with atmosphere (u is ) = 5.2 m

Notional size = 2A slab /u is = 259.62 mm

Atmospheric conditions depending on relative humidity =

Final creep co-efficient ( F ) = 4.6

Creep reduction factor ( a ) = 0.215

Modulus of elasticity of concrete (E c ) = 3366000 t/m2

Dry Conditions

Page 82: IL & FS

Restraining force , F DS = e DS .E c .A slab . a = -53.73 t

Moment M DS = F DS .e DS = -24.72 tm

Internal stresses:

Restraining Stresses = e DS .E c . a = -79.61 t/m2

Axial Release:

Axial Stress = Restraining Force/Area = 36.83 t/m2

Section moduli:

Section modulus of top of slab, Z tslab = 0.7888 m3

Section modulus of bottom of slab, Z bslab = 1.3005 m3

Section modulus of bottom of beam, Zbbeam = 0.3599 m3

Moment Release:

At top of slab M DS /Z tslab = 31.34 t/m2

At bottom of slab M DS /Z bslab = 19.01 t/m2

At bottom of beam M DS /Z bbeam = -68.69 t/m2

Page 83: IL & FS

Top of slab 0 -79.61 36.83 31.34 -11.44

Bottom of slab 0.225 -79.61 36.83 19.01 -23.77

Bottom of beam 1.825 0 36.83 -68.69 -31.86

+ +

Shrinkage

StressesLocation Depth

Restrained

stresses

Axial

Release

Moment

Release

-

79.6

1

-79.6

1

0

Restrained Stress

43.1

6 43.1

6

43.1

6

Axial Release

26.96

14.82

-

71.48

0

Moment Release

=

0 671.48

0-9.49

-21.6357.98

-28.320

Shrinkage Stress

Page 84: IL & FS

Summary:

0.0L

0.174L

0.283L

0.391L

0.5L

Section Stress at top of slabStress at top of

girder

Stress at bottom of

girder

-11.44 -23.77 -31.86

-9.49 -21.63 -28.32

-9.49 -21.63 -28.32

-9.49 -21.63 -28.32

-9.49 -21.63 -28.32

Page 85: IL & FS

Temperature Stresses

A) Sample Calculation for thermal stresses (temperature rise) at section 0.5L for outer girder

Temperature stress at fibre due to rise in temperature is,

- Σ F - Σ M * y + α t E

Where,

Σ F = Σ ( α tn E An ) = α E Σ ( An tn )

Σ M = Σ ( α tn E An yn ) = α E Σ ( An tn yn )

n = No. of zones

= Area of nth zone

= Mean temperature of nth zone

= C.G. of nth zone from N.A.

= Area of Cross-section

= Distance of considered section to N.A.

= Moment of Inertia about C.G. of the Section

= Temperature at considered section

Co-efficient of thermal expansion, α = peroC

For M GRADE, fck = N/mm2

Elastic Modulus, E = 5000 * SQRT(fck) = t/m2

oC

a

4oC

b

9.0

A I

Cl.218.4. IRC:6-2000

40 40

An

tn

yn

A

y

I

3 17.8

0.225 0.15

0.80.15

t

0.0000117

3366000

c

N A

X X

d

e

oC

1.825

1.275

0.1

0.1

0.25 0.15

2.1

0.45Positive

Temperature

Differenece

0.1 0.25

0.275

0.25

Fig.10. IRC:6-2000

Page 86: IL & FS

Moment of Inertia @ X-X :

Description

Y = Σ AY = m Ycg from top = m

Σ A Ycg from bott = m

= Σ Icg + Σ AY2

- Σ Ah2

= m4

Considering following zones: Zone a - Deck Slab

Zone b - Top flange

Zone c -web above centroid

Zone d - web below centroid

Zone e - Bottom flange

No. b d A y from top Ay Ay x y Icg

Deck Slab 1 3.000 0.225 0.675 0.113 0.076 0.009 0.002848

0.000225

1 0.250 0.100 0.025 0.425 0.011

Top Flange 1 0.800 0.150 0.120 0.300

0.005 0.000021

Bottom Flange 1 0.250 0.100 0.025 1.525 0.038 0.058

0.036 0.011

0.000015

Web 1 0.250 1.000 0.250 0.975 0.244 0.238 0.020833

2 0.275 0.100 0.028 0.408 0.011 0.005

0.000021

2 0.100 0.100 0.010 1.542 0.015 0.024 0.000006

1 0.450 0.250 0.113 1.700 0.191 0.325 0.000586

0.673 0.024554

0.50 0.50

1.33

Ixx 0.386604

Total 1.245 0.622

At Aty

(oC) (m

2)

zone Bot.of zone

from top (m)

c.g of zone

from top (m)

t (for zone) Ac.g.of zone

from N.A.

y (m)

4.776 1.850

b 0.475 0.335 0.905 0.173 0.164 0.156 0.026

a 0.225 0.113 7.075 0.675 0.387

0.000 0.000

d 1.475 1.475 0.000 0.244 -0.975 0.000 0.000

c 0.500 0.487 0.000 0.006 0.012

0.000 0.000

total 1.245 4.932 1.876

e 1.825 1.660 0.000 0.148 -1.160

Σ F = α E Σ ( An tn ) = * * = t/m2

Σ M = α E Σ ( An tn yn ) = * * = tm

Σ F / A Σ M y / I

Temperature Stress and its Distribution (t/m2)

Stress @

section from

top (m)

Dist. From

N.A. y

(m)

t α t E Temp. Stress

1.17E-05 3366000 4.932 156.000

A 1.245

= (- Σ F / A - ΣMy/I + α t E)

t/m2

t/m2

(oC) t/m

2 (t/m

2)

1.17E-05 3366000 1.876 73.865

449.499 (Comp.)

0.225 156.000 0.275 52.516 2.450 96.486 -112.029 (Tensile)

0.000 156.000 0.500 95.504 17.800 701.003

-160.751 (Tensile)

0.500 156.000 0.000 0.000 0.000 0.000 -156.000 (Tensile)

0.475 156.000 0.025 4.751 0.000 0.000

449.499

-112.029

-160.751

-156.000

30.309

179.883

30.309 (Comp.)

1.825 156.000 -1.325 -253.180 2.100 82.703 179.883 (Comp.)

1.475 156.000 -0.975 -186.309 0.000 0.000

Page 87: IL & FS

B) Sample Calculation for thermal stresses (temperature fall) at section 0.5L for outer girder

Temperature stress at fibre due to rise in temperature is,

- Σ F - Σ M * y + α t E

Where,

Σ F = Σ ( α tn E An ) = α E Σ ( An tn )

Σ M = Σ ( α tn E An yn ) = α E Σ ( An tn yn )

n = No. of zones

= Area of nth zone

= Mean temperature of nth zone

= C.G. of nth zone from N.A.

= Area of Cross-section

= Distance of considered section to N.A.

= Moment of Inertia about C.G. of the Section

= Temperature at considered section

Co-efficient of thermal expansion, α = peroC

For M 40 GRADE

fck = N/mm2

Elastic Modulus, E = 5000 * SQRT(fck) = t/m2

Considering following zones: Zone a - Deck Slab

A I

Cl.218.4. IRC:6-2000

40

3366000 Cl.10.2. IRC:18-2000

An

tn

yn

A

y

I

t

1.17E-05

Zone b - Top flange

Zone c -web above centroid

Zone d - web below centroid

Zone e - Bottom flange

oC

a

oC

b

c

d

eoC

oC

-0.7

0.1 0.25

0.275

0.25

1.825

3 -10.6

0.225 0.25

0.80.15

0.825

0.1

0.1 0.25

-0.8

0.25 0.25

-6.6

0.45Reverse

Temperature

Differenece

Fig.10. IRC:6-2000

Page 88: IL & FS

Moment of Inertia @ X-X :

Description

Y = S AY = m Ycg from top = m

S A Ycg from bott = m

= S Icg + S AY2

- S Ah2

= m4

Centroid of zone a :

y from top = Σ = = m

Σ

Centroid of zone b :

y from top = Σ = = m

Σ

No. b d A y from top Ay Ay x y Icg

0.076 0.009 0.002848Deck Slab-a 1 3.000 0.225 0.675 0.113

0.011 0.000225

1 0.250 0.100 0.025 0.425 0.011 0.005 0.000021

Top Fl.-b 1 0.800 0.150 0.120 0.300 0.036

2 0.275 0.100 0.028 0.408 0.011 0.005 0.000015

0.244 0.238 0.020833

Bottom Fl.-e 1 0.250 0.100 0.025 1.525 0.038

web-c&d 1 0.250 1.000 0.250 0.975

0.058 0.000021

2 0.100 0.100 0.010 1.542 0.015 0.024 0.000006

Ixx 0.386604

0.325 0.000586

Total 1.245 0.622 0.673 0.024554

1 0.450 0.250 0.113 1.700 0.191

A 0.675

AY 0.058 0.335

A 0.173

0.4999 0.4999

1.3251

AY 0.076 0.113

Centroid of zone c :

for zone c:

y from top = Σ = = m

Σ

Centroid of zone d :

for zone d:

y from top = Σ = = m

Σ

Centroid of zone e :

y from top = Σ = = m

Σ

Σ F = α E Σ ( An tn ) = * * = t/m2

(m2)

1 0.250 0.025 0.006 0.487 0.003

No. b d A y from top Ay

(m) (m) (m2) (m)

AY 0.003 0.487

Total 0.006 0.003 A 0.006

Total 0.244 0.241 A

(m) (m2)

1 0.250 0.975 0.244 0.987 0.241

No. b d A y from top Ay

(m) (m) (m2)

0.244

AY 0.245 1.660

A 0.148

AY 0.241 0.987

At Aty

(oC) (m

2)

zone Bot.of zone

from top (m)

c.g of zone

from top (m)

t (for zone) Ac.g.of zone

from N.A.

y (m)

-4.148 -1.607

b 0.475 0.335 -0.239 0.173 0.164 -0.041 -0.007

a 0.225 0.113 -6.145 0.675 0.387

-0.004 0.000

d 1.475 0.987 0.000 0.244 -0.488 0.000 0.000

c 0.500 0.487 -0.665 0.006 0.012

-0.408 0.473

total 1.245 -4.601 -1.141

e 1.825 1.660 -2.763 0.148 -1.160

1.17E-05 3366000 -4.601 -145.533

A 1.245

Page 89: IL & FS

Σ M = α E Σ ( An tn yn ) = * * = tm

Σ F / A Σ M y / IStress @

section from

top (m)

Dist. From

N.A. y

(m)

t α t E Temp. Stress

= (- Σ F / A - ΣMy/I + α t E)

t/m2

t/m2

(oC) t/m

2 (t/m

2)

1.17E-05 3366000 -1.141 -44.934

-213.821 (Tensile)

0.475 -145.533 0.025 -2.890 -0.630 -24.811 123.612 (Comp.)

0.000 -145.533 0.500 -58.098 -10.600 -417.451

0.225 -145.533 110.924-66.556-1.690-31.9470.275 (Comp.)

117.980 (Comp.)

1.475 -145.533 -0.975 113.337 -0.320 -12.602 19.594 (Comp.)

0.500 -145.533 0.000 0.000 -0.700 -27.553

-213.821

123.612

117.980

19.594

-268.406 (Tensile)1.825 -145.533 -1.325 154.016 -6.600 -259.923

Temperature Stress and its Distribution (t/m2)

-268.406

0.000

Page 90: IL & FS

C) Sample Calculation for thermal stresses (temperature rise) at section 0.5L for inner girder

Temperature stress at fibre due to rise in temperature is,

- Σ F - Σ M * y + α t E

Where,

Σ F = Σ ( α tn E An ) = α E Σ ( An tn )

Σ M = Σ ( α tn E An yn ) = α E Σ ( An tn yn )

n = No. of zones

= Area of nth zone

= Mean temperature of nth zone

= C.G. of nth zone from N.A.

= Area of Cross-section

= Distance of considered section to N.A.

= Moment of Inertia about C.G. of the Section

= Temperature at considered section

Co-efficient of thermal expansion, α = peroC

For M GRADE, fck = N/mm2

Elastic Modulus, E = 5000 * SQRT(fck) = t/m2

oC

a

4oC

0.225 0.15

0.8

A I

Cl.218.4. IRC:6-2000

40 40

3 17.8

t

0.0000117

3366000

An

tn

yn

A

y

I

4 C

b

c

N A

X X

d

e

oC

0.80.15

0.1

0.1

0.25 0.15

2.1

0.45Positive

Temperature

Differenece

0.1 0.25

0.275

0.25

1.275

1.825

Fig.10. IRC:6-2000

Page 91: IL & FS

Moment of Inertia @ X-X :

Description

Y = Σ AY = m Ycg from top = m

Σ A Ycg from bott = m

= Σ Icg + Σ AY2

- Σ Ah2

= m4

Considering following zones: Zone a - Deck Slab

Zone b - Top flange

Zone c -web above centroid

Zone d - web below centroid

Zone e - Bottom flange

No. b d A y from top Ay Ay x y Icg

Deck Slab 1 3.000 0.225 0.675 0.113 0.076 0.009 0.002848

0.000225

1 0.250 0.100 0.025 0.425 0.011

Top Flange 1 0.800 0.150 0.120 0.300

0.005 0.000021

Bottom Flange 1 0.250 0.100 0.025 1.525 0.038 0.058

0.036 0.011

0.000015

Web 1 0.250 1.000 0.250 0.975 0.244 0.238 0.020833

2 0.275 0.100 0.028 0.408 0.011 0.005

0.000021

2 0.100 0.100 0.010 1.542 0.015 0.024 0.000006

1 0.450 0.250 0.113 1.700 0.191 0.325 0.000586

0.673 0.024554

0.50 0.50

1.33

Ixx 0.386604

Total 1.245 0.622

At Aty

(oC) (m

2)

zone Bot.of zone

from top (m)

c.g of zone

from top (m)

t (for zone) Ac.g.of zone

from N.A.

y (m)

4.776 1.850

b 0.475 0.335 0.905 0.173 0.164 0.156 0.026

a 0.225 0.113 7.075 0.675 0.387

0.000 0.000c 0.500 0.487 0.000 0.006 0.012

Σ F = α E Σ ( An tn ) = * * = t/m2

Σ M = α E Σ ( An tn yn ) = * * = tm

Σ F / A Σ M y / I

Temperature Stress and its Distribution (t/m2)

d 1.475 1.475 0.000 0.244 -0.975 0.000 0.000

0.000 0.000

total 1.245 4.932 1.876

e 1.825 1.660 0.000 0.148 -1.160

Stress @

section from

top (m)

Dist. From N.A.

y (m)t α t E Temp. Stress

1.17E-05 3366000 4.932 156.000

A 1.245

= (- Σ F / A - ΣMy/I + α t E)

t/m2

t/m2

(oC) t/m

2 (t/m

2)

1.17E-05 3366000 1.876 73.865

449.499 (Comp.)

0.225 156.000 0.275 52.516 2.450 96.486 -112.029 (Tensile)

0.000 156.000 0.500 95.504 17.800 701.003

-160.751 (Tensile)

0.500 156.000 0.000 0.000 0.000 0.000 -156.000 (Tensile)

0.475 156.000 0.025 4.751 0.000 0.000

449.499

-112.029

-160.751

-156.000

30.309

179.883

30.309 (Comp.)

1.825 156.000 -1.325 -253.180 2.100 82.703 179.883 (Comp.)

1.475 156.000 -0.975 -186.309 0.000 0.000

Page 92: IL & FS

D) Sample Calculation for thermal stresses (temperature fall) at section 0.5L for inner girder

Temperature stress at fibre due to rise in temperature is,

- Σ F - Σ M * y + α t E

Where,

Σ F = Σ ( α tn E An ) = α E Σ ( An tn )

Σ M = Σ ( α tn E An yn ) = α E Σ ( An tn yn )

n = No. of zones

= Area of nth zone

= Mean temperature of nth zone

= C.G. of nth zone from N.A.

= Area of Cross-section

= Distance of considered section to N.A.

= Moment of Inertia about C.G. of the Section

= Temperature at considered section

Co-efficient of thermal expansion, α = peroC

For M 40 GRADE

fck = N/mm2

Elastic Modulus, E = 5000 * SQRT(fck) = N/mm2

= t/m2

A I

An

tn

yn

A

y

I

t

40

31622.78

1.17E-05 Cl.218.4. IRC:6-2000

3366000 Cl.10.2. IRC:18-2000

Considering following zones: Zone a - Deck Slab

Zone b - Top flange

Zone c -web above centroid

Zone d - web below centroid

Zone e - Bottom flange

oC

a

oC

b

c

d

eoC

oC

0.225 0.25

0.80.15

-0.7

0.1 0.25

-0.8

Fig.10. IRC:6-2000

3 -10.6

0.25 0.25

-6.6

0.45Reverse

Temperature

Differenece

0.275

0.25

1.825

0.825

0.1

0.1 0.25

Page 93: IL & FS

Moment of Inertia @ X-X :

Description

Y = S AY = m Ycg from top = m

S A Ycg from bott = m

= S Icg + S AY2

- S Ah2

= m4

Centroid of zone a :

y from top = Σ = = m

Σ

Centroid of zone b :

y from top = Σ = = m

0.036 0.011 0.000225

0.005 0.000021

0.000015

0.020833

0.000021

0.673 0.024554

No. b d A y from top Ay Ay x y Icg

Deck Slab-a 1 3.000 0.225 0.675 0.113 0.076 0.009 0.002848

1 0.250 0.100 0.025 0.425 0.011

Top Fl.-b 1 0.800 0.150 0.120 0.300

2 0.275 0.100 0.028 0.408 0.011 0.005

Bottom Fl.-e 1 0.250 0.100 0.025 1.525

web-c&d 1 0.250 1.000 0.250 0.975 0.244 0.238

0.038 0.058

2 0.100 0.100 0.010 1.542 0.015 0.024 0.000006

1 0.450 0.250 0.113 1.700 0.191 0.325 0.000586

0.4999 0.4999

1.3251

Ixx 0.386604

Total 1.245 0.622

AY 0.076 0.113

A 0.675

AY 0.058 0.335

Σ

Centroid of zone c :

for zone c:

y from top = Σ = = m

Σ

Centroid of zone d :

for zone d:

y from top = Σ = = m

Σ

Centroid of zone e :

y from top = Σ = = m

Σ

Ay

(m2)

No. b d A y from top

(m) (m) (m2) (m)

A 0.173

AY 0.003 0.487

Total 0.006 0.003 A

1 0.250 0.025 0.006 0.487 0.003

0.006

Total 0.244 0.241 A

(m) (m2)

1 0.250 0.975 0.244 0.987 0.241

No. b d A y from top Ay

(m) (m) (m2)

0.244

AY 0.245 1.660

A 0.148

AY 0.241 0.987

At Aty

(oC) (m

2)

zone Bot.of zone

from top (m)

c.g of zone

from top (m)

t (for zone) Ac.g.of zone

from N.A.

y (m)

-4.148 -1.607

b 0.475 0.335 -0.239 0.173 0.164 -0.041 -0.007

a 0.225 0.113 -6.145 0.675 0.387

-0.004 0.000

d 1.475 0.987 0.000 0.244 -0.488 0.000 0.000

c 0.500 0.487 -0.665 0.006 0.012

-0.408 0.473

total 1.245 -4.601 -1.141

e 1.825 1.660 -2.763 0.148 -1.160

Page 94: IL & FS

Σ F = α E Σ ( An tn ) = * * = t/m2

Σ M = α E Σ ( An tn yn ) = * * = tm

Σ F / A Σ M y / I

110.924-66.556-1.690-31.9470.275 (Comp.)

1.825 -145.533 -1.325 154.016 -6.600 -259.923 -268.406

123.612

117.980

-213.821

t/m2

t/m2

(oC) t/m

2 (t/m

2)

0.000 -145.533 0.500 -58.098 -10.600 -417.451 -213.821 (Tensile)

1.17E-05 3366000 -4.601 -145.533

A 1.245

1.17E-05

0.475 -145.533 0.025 -2.890 -0.630 -24.811

3366000 -1.141

123.612

-44.934

Stress @

section from

top (m)

Dist. From

N.A. y

(m)

t α t E Temp. Stress

= (- Σ F / A - ΣMy/I + α t E)

(Comp.)

0.225 -145.533

0.500 -145.533 0.000 0.000 -0.700 -27.553 117.980 (Comp.)

1.475 -145.533 -0.975 113.337 -0.320 -12.602 19.594 (Comp.)

(Tensile)

Temperature Stress and its Distribution (t/m2)

-268.406

0.000

19.594

Page 95: IL & FS

Summary of temperature stresses:

Depth of girder + slab = m

Outer Girder-temperature rise

Outer Girder-temperature fall

1 0.5L 449.5 -112.03 150.82

Stress at top of slab (t/m2)SectionS.No.

2 0.391L 449.5 -112.03 150.82

3 0.283L 449.5 -112.03 150.82

4 0.74L 449.5 -112.03 150.82

5 0.0L 457.19 -104.3 152.35

S.No. Section Stress at top of slab (t/m2) Stress at top of girder (t/m

2)

Stress at level of extreme

reinforcement (t/m2)

1 0.5L -213.82 110.92 -212.45

1.757

Depth of extreme

layer of steel (m)

1.757

Depth of extreme

layer of steel (m)

1.825

1.757

1.757

1.757

1.757

Stress at top of girder (t/m2)

Stress at level of extreme

reinforcement (t/m2)

Inner Girder-temperature rise

Inner Girder-temperature fall

1 0.5L -213.82 110.92 -212.45

2 0.391L -213.82 110.92 -212.45

3 0.283L -213.82 110.92 -212.45

4 0.74L -213.82 110.92 -212.45

5 0.0L -221.21 101.31 -214.51

S.No. Section Stress at top of slab (t/m2) Stress at top of girder (t/m

2)

Stress at level of extreme

reinforcement (t/m2)

1 0.5L 449.5 -112.03 150.82

2 0.391L 449.5 -112.03 150.82

3 0.283L 449.5 -112.03 150.82

4 0.74L 449.5 -112.03 150.82

5 0.0L 457.19 -104.3 152.35

S.No. Section Stress at top of slab (t/m2) Stress at top of girder (t/m

2)

Stress at level of extreme

reinforcement (t/m2)

1 0.5L -213.82 110.92 -212.45

2 0.391L -213.82 110.92 -212.45

3 0.283L -213.82 110.92 -212.45

4 0.74L -213.82 110.92 -212.45

5 0.0L -221.21 101.31 -214.51

1.757

1.757

1.757

1.757

1.757

1.757

Depth of extreme

layer of steel (m)

1.757

1.757

1.757

1.757

1.757

Depth of extreme

layer of steel (m)

1.757

1.757

1.757

1.757

Page 96: IL & FS

Serviceability Limit State

Design Methodology:

The following check are done as per IRC:112-2011

о For stress check:

-

-

о For crack width check:

-

о For deflection check:

-

10.0

Due to long term creep and shrinkage effect, the effective concrete modulus is reduced for sustained

load.

Maximum stress at outermost compression fibre and outermost tension fibre were limited to

permissible stresses mentioned in IRC:112-2011

The crack width in concrete has been checked in accordance with Cl:12.3.4 of IRC:112-2011.

Maximum crack width is limited to 0.3mm as per table 12.1 of IRC:112-2011.

For calculation of deflection due to sustained loads, the cracked moment of inertia has been

considered as 70% of the uncracked moment of inertia as per Cl:12.4.2(1) of IRC:112

-

The load factors for serviceablity limit state for rare combination are:

Dead Load = 1

Super-imposed dead load = 1

Live load = 1

Based on the design methodology, Serviceability Limit State checks have been done and presented below.

considered as 70% of the uncracked moment of inertia as per Cl:12.4.2(1) of IRC:112

Due to long term creep and shrinkage effect, the effective concrete modulus is reduced for sustained

load as per Cl:12.4.2(2) of IRC:112-2011.

Page 97: IL & FS

Stress Check at 0.5L for outer girder

Grade of concrete = M 40

Span of girder (m) =

Width of beam bw =

Depth of girder =

Depth of girder+slab =

Depth of extreme layer of steel =

Modular ratio, m = 6.06 (for live load)

Modular ratio, m = 12.12 (for DL+SIDL)

fc1

in tmt *+

267

11.0

1.473 0.15 12.12 0.25 0.6811 -4373.50 267.49

Stress

in m2

in m in m in m in m in m Fbg**+ Ftg*++

b* d ds**

m

bw n

Fts***

17.200 m

0.250 m

1.600 m

1.825 m

S.No. Description

Mom Ast

1 Gider Self weight 52.828 0.0113

1.757 m

0.80 267

58

379

0

0

-2.3

-58

66

333

166

* For girder alone property, b = width of top flange, and for composite property, b = effective width of slab

** For girder alone property, ds = tck of top flange, and for composite property, ds = tck of slab

-212.45 110.92 -213.82

12 Temp Rise 150.82 -112.03 449.50

11 Differential Shrinkage -28.32 -21.63 -9.49

13 Temp Fall

0.2578 -6124.40 21.17 166.26

0.2578 -12248.84 42.35 332.55

1.698 0.225

6.06 0.259 Live Load 204.195 0.0113 3 1.698 0.225

6.06 0.25

12.12 0.258 SIDL 49.481 0.0113 3 1.698 0.225

12.12 0.25 0.6813 953.60 -45.50 -58.34

0.3756 -3064.30 26.27 65.52

1.473

7 De-shuttering -11.518 0.0113 0.80 1.473 0.15

0.15 12.12 0.25 0.6778 38.09 -2.316

Loss in wt of Deck slab due to

drying -0.46072 0.0113 0.80 1.473

0.8 0.00 0.005 Construction Live load 0 0.0113 0.80 1.473 0.15 12.12 0.25

0.25 0.8 0.00 0.004 Weight of cross-girder 0.15 12.12

12.123 Green weight of deck slab 74.884 0.0113 0.80 1.473 0.15

0.15 12.12 0.25 0.6813 -953.60 58.342 Weight of shuttering 11.518 0.0113 0.80

1.473 0.15 12.12 0.25

1.473

0.6811 -4373.50 267.49

0.25 0.6811 -6199.42 379.15

1 Gider Self weight 52.828 0.0113 0.80

0 0.0113 0.80

10 50% Live Load 102.0975 0.0113 3

Page 98: IL & FS

b

fc1

ds C1

fc2

n c2

d bw

fst T

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm2

Stress at the bottom of the slab= fc2 = fc1 x (n-ds)/n

Stress at the c.g of steel = fst = m x fc1 x (d - n)/n

Total Compression, C = C1 + C2

Where, C1 = fc1 x b x ds x (2n-ds)/2n

C2 =( fc1 x bw x (n-ds)^2)/2n

C = fc1 x ( b x ds x (2n-ds)/2n + bw x (n-ds)^2/2n )

Total tension, T = m x fc1 x Ast(d - n)/n

By equating the internal forces

Moment of resistance = m x fc1 x Ast(d - n)/n x (d-n/3)

*+ fc1 =

m x Ast(d - n)/n x (d-n/3)

Stress at CG of steel = fst = m x fc1 x (d - n)/n

**+ Stress in the extreme layer of steel = Fbg = (fst *(d-n)+cg form bottom)/(d-n)

*++ Stress in Concrete at top of girder = Ftg = fc1 x (n - ds) / n

*** Stress in Concrete at deck top = Fts = (fst / m) x (n / (d - n ))

Moment

Page 99: IL & FS

Summary of Stress check at section

As per clause:12.2.2 of IRC:112-2011:

Permissible stresses

In concrete = 0.48fck = 19.2 Mpa = 1958 t/m2

In steel = 0.8fyk = 400 Mpa = 40800 t/m2

TFtg Fts

Top of

Girder

Ftg

0.00

4 Weight of cross-girder 0.00 -11526.51 0.00 704.98 0.00 0.00

3 Green weight of deck slab -6199.42 -11526.51 379.15 704.98 0.00

2 Weight of shuttering -953.60 -5327.09 58.34 325.83 0.00 0.00

1 Gider Self weight -4373.50 -4373.50 267.49 267.49

TFts

0.00 0.00

Cumulative

Top of Girder

Top of

SlabCumulative Top

of SlabSr No Description

Bottom of

GirderCumulative

Bottom of Girder

Fbg TFbg

-9.49

12 Temp Rise 150.82 -31849.87 -112.03 613.31 449.50

10 50 % Live Load -6124.40 -31972.37 21.17 746.97 166.26

-213.82 732.1813 Temp Fall -212.45 -32062.32 110.92 724.23

946.00

11 Differential Shrinkage -28.32 -32000.69 -21.63 725.34

332.55 339.73

505.99

9 Live Load -12248.84 -25847.97 42.35 725.80

496.50

-58.34

8 SIDL -3064.30 -13599.13 26.27 683.45 65.52 7.18

7

Loss wt of Deck slab due to

drying 953.60 -10534.83 -45.50 657.18 -58.34

0.00

6 De-shuttering 38.09 -11488.42 -2.31 702.67 0.00 0.00

5 Construction Live Load 0.00 -11526.51 0.00 704.98 0.00

4 Weight of cross-girder 0.00 -11526.51 0.00 704.98 0.00 0.00

Page 100: IL & FS

Combination 1+2+3+4+5+6+7+8+9

(Service Condition with Live load)

Combination 1+2+3+4+5+6+7+8

(Service Condition without Live load)

Combination 1+ 2+ 3+ 4+5

( Girder Alone property)

Combination 1+2+3+4+5+6+7+8+9+11

(Service Condition with Live load and

shrinkage)

Combination 1+2+3+4+5+6+7+8+10+11+12

Combinations

339.73 OK

-40800.00 -25876.29 1958.40 704.17 1958.40 330.24 OK

-40800.00 -25847.97 1958.40 725.80 1958.40

Status

-40800.00 -11526.51 1958.40 704.98 1958.40 0.00 OK

1958.40 7.18 OK

Permissible stress

in steel

Actual stress in

steel

Permissible

stress in

concrete

Actual stress

in concrete

Permissible

stress in

concrete

Actual stress in

concrete

-40800.00 -13599.13 1958.40 683.45

Note: Negative value indicates tension. Positive value indicates compression.

1958.40 815.09 1958.40

Combination 1+2+3+4+5+6+7+8+10+11+12

(50% Live Load+ Temp Rise)

-40800.00 -26088.74 OK

Combination 1+2+3+4+5+6+7+8+10+11+13

(50% Live Load+ Temp fall)

-40800.00 -25725.47 1958.40 592.14 1958.40 779.74 OK

116.42

Page 101: IL & FS

Stress Check at 0.391L for outer girder

Grade of concrete = M 40

Span of girder (m) =

Width of beam bw =

Depth of girder =

Depth of girder+slab =

Depth of extreme layer of steel =

Modular ratio, m = 6.06 (for live load)

Modular ratio, m = 12.12 (for DL+SIDL)

fc1

in tmt *+

268

58

380

0

0

0 0.0072 0.80 1.504

0.8 0.00 0.005 Construction Live load 0 0.0072 0.80 1.504 0.15 12.12 0.25

0.25 0.8 0.00 0.004 Weight of cross-girder 0.15 12.12

12.123 Green weight of deck slab 71.37 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.5715 -1274.02 58.412 Weight of shuttering 10.973 0.0072 0.80 1.504

0.5714 -5844.44 267.91

0.25 0.5714 -8286.14 379.82

1 Gider Self weight 50.339 0.0072 0.80 1.504 0.15 12.12 0.25

in m2

in m in m in m in m in m Fbg**+ Ftg*++

b* d ds**

m

bw n

Fts***

17.200 m

0.250 m

1.600 m

1.825 m

S.No. Description

Mom Ast Stress

1.757 m

0

-2.3

-58

68

371

185

* For girder alone property, b = width of top flange, and for composite property, b = effective width of slab

** For girder alone property, ds = tck of top flange, and for composite property, ds = tck of slab

13 Temp Fall -212.45 110.92 -213.82

12 Temp Rise 150.82 -112.03 449.50

11 Differential Shrinkage -28.32 -21.63 -9.49

185.32

0.2111 -17172.61 -24.45 370.60

-4260.24 16.69 68.47

10 50% Live Load 96.898 0.0072 3.00 1.729 0.225

6.06 0.259 Live Load 193.796 0.0072 3.00 1.729 0.225

6.06 0.25 0.2111 -8586.33 -12.21

0.80 1.504

12.12 0.258 SIDL 47.072 0.0072 3.00 1.729 0.225

12.12 0.25 0.5715 1274.02 -43.08 -58.41

0.2975

7 De-shuttering -10.973 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.5668 50.88 -2.306

Loss in wt of Deck slab due

to drying -0.43892 0.0072

0.8 0.00 0.005 Construction Live load 0 0.0072 0.80 1.504 0.15 12.12 0.25

Page 102: IL & FS

b

fc1

ds C1

fc2

n c2

d bw

fst T

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm2

Stress at the bottom of the slab= fc2 = fc1 x (n-ds)/n

Stress at the c.g of steel = fst = m x fc1 x (d - n)/n

Total Compression, C = C1 + C2

Where, C1 = fc1 x b x ds x (2n-ds)/2n

C2 =( fc1 x bw x (n-ds)^2)/2n

C = fc1 x ( b x ds x (2n-ds)/2n + bw x (n-ds)^2/2n )

Total tension, T = m x fc1 x Ast(d - n)/n

By equating the internal forces

Moment of resistance = m x fc1 x Ast(d - n)/n x (d-n/3)

*+ fc1 =

m x Ast(d - n)/n x (d-n/3)

Stress at CG of steel = fst = m x fc1 x (d - n)/n

**+ Stress in the extreme layer of steel = Fbg = (fst *(d-n)+cg form bottom)/(d-n)

*++ Stress in Concrete at top of girder = Ftg = fc1 x (n - ds) / n

*** Stress in Concrete at deck top = Fts = (fst / m) x (n / (d - n ))

Moment

Page 103: IL & FS

Summary of Stress check at section

As per clause:12.2.2 of IRC:112-2011:

Permissible stresses

In concrete = 0.48fck = 19.2 Mpa = 1958 t/m2

In steel = 0.8fyk = 400 Mpa = 40800 t/m2

370.60 380.669 Live Load -17172.61 -35512.55 -24.45 653.00

-58.41 -58.41

8 SIDL -4260.24 -18339.94 16.69 677.45 68.47 10.06

7

Loss wt of Deck slab due to

drying 1274.02 -14079.70 -43.08 660.76

0.00 0.00

6 De-shuttering 50.88 -15353.72 -2.30 703.84 0.00 0.00

5 Construction Live Load 0.00 -15404.60 0.00 706.14

0.00 0.00

4 Weight of cross-girder 0.00 -15404.60 0.00 706.14 0.00 0.00

3 Green weight of deck slab -8286.14 -15404.60 379.82 706.14

TFts

0.00 0.00

2 Weight of shuttering -1274.02 -7118.46 58.41 326.32 0.00 0.00

1 Gider Self weight -5844.44 -5844.44 267.91 267.91

Sr No DescriptionBottom of

GirderCumulative

Bottom of Girder

Top of

GirderCumulative

Top of Girder

Top of

SlabCumulative Top

of Slab

Fbg TFbg Ftg TFtg Fts

-213.82 792.1713 Temp Fall -212.45 -44188.83 110.92 618.04

-9.49 556.49

12 Temp Rise 150.82 -43976.38 -112.03 507.12 449.50 1005.99

11 Differential Shrinkage -28.32 -44127.20 -21.63 619.15

370.60 380.66

10 50 % Live Load -8586.33 -44098.88 -12.21 640.78 185.32 565.98

9 Live Load -17172.61 -35512.55 -24.45 653.00

Page 104: IL & FS

157.35 OK

Combination

1+2+3+4+5+6+7+8+10+11+13

(50% Live Load+ Temp fall) -40800.00 -35753.32 1958.40 742.29 1958.40

371.17 OK

Combination

1+2+3+4+5+6+7+8+10+11+12

(50% Live Load+ Temp Rise) -40800.00 -35390.05 1958.40 519.34 1958.40 820.67 OK

Combination 1+2+3+4+5+6+7+8+9+11

(Service Condition with Live load and

shrinkage) -40800.00 -35540.87 1958.40 631.37 1958.40

10.06 OK

Combination 1+2+3+4+5+6+7+8+9

(Service Condition with Live load)-40800.00 -35512.55 1958.40 653.00 1958.40 380.66 OK

Combination 1+2+3+4+5+6+7+8

(Service Condition without Live load)-40800.00 -18339.94 1958.40 677.45 1958.40

Status

Combination 1+ 2+ 3+ 4+5

( Girder Alone property) -40800.00 -15404.60 1958.40 706.14 1958.40 0.00 OK

CombinationsPermissible

stress in steel

Actual stress in

steel

Permissible

stress in

concrete

Actual stress

in concrete

Permissible

stress in

concrete

Actual stress in

concrete

Note: Negative value indicates tension. Positive value indicates compression.

Page 105: IL & FS

Stress Check at 0.283L for outer girder

Grade of concrete = M 40

Span of girder (m) =

Width of beam bw =

Depth of girder =

Depth of girder+slab =

Depth of extreme layer of steel =

Modular ratio, m = 6.06 (for live load)

Modular ratio, m = 12.12 (for DL+SIDL)

fc1

in tmt *+

228

500.15 12.12 0.25 0.5715 -1083.48 49.672 Weight of shuttering 9.332 0.0072 0.80 1.504

0.5714 -4974.84 228.001 Gider Self weight 42.85 0.0072 0.80 1.504 0.15 12.12 0.25

in m2

in m in m in m in m in m Fbg**+ Ftg*++

b* d ds**

m

bw n

Fts***

17.200 m

0.250 m

1.600 m

1.825 m

S.No. Description

Mom Ast Stress

1.757 m

50

324

0

0

-2

-50

58

319

159

* For girder alone property, b = width of top flange, and for composite property, b = effective width of slab

** For girder alone property, ds = tck of top flange, and for composite property, ds = tck of slab

13 Temp Fall -212.45 110.92 -213.82

12 Temp Rise 150.82 -112.03 449.50

11 Differential Shrinkage -28.32 -21.63 -9.49

159.42

0.2111 -14772.75 -21.03 318.82

-3602.97 14.11 57.90

10 50% Live Load 83.3565 0.0072 3 1.729 0.225

6.06 0.259 Live Load 166.713 0.0072 3 1.729 0.225

6.06 0.25 0.2111 -7386.39 -10.51

0.80 1.504

12.12 0.258 SIDL 39.81 0.0072 3 1.729 0.225

12.12 0.25 0.5715 1083.48 -36.63 -49.67

0.2975

0 0.0072 0.80 1.504

7 De-shuttering -9.332 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.567 43.27 -1.966

Loss in wt of Deck slab due

to drying -0.37328 0.0072

0.8 0.00 0.005 Construction Live load 0 0.0072 0.80 1.504 0.15 12.12 0.25

0.25 0.8 0.00 0.004 Weight of cross-girder 0.15 12.12

12.123 Green weight of deck slab 60.805 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.5715 -1083.48 49.672 Weight of shuttering 9.332 0.0072 0.80 1.504

0.25 0.5715 -7059.62 323.63

Page 106: IL & FS

b

fc1

ds C1

fc2

n c2

d bw

fst T

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm2

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm

Stress at the bottom of the slab= fc2 = fc1 x (n-ds)/n

Stress at the c.g of steel = fst = m x fc1 x (d - n)/n

Total Compression, C = C1 + C2

Where, C1 = fc1 x b x ds x (2n-ds)/2n

C2 =( fc1 x bw x (n-ds)^2)/2n

C = fc1 x ( b x ds x (2n-ds)/2n + bw x (n-ds)^2/2n )

Total tension, T = m x fc1 x Ast(d - n)/n

By equating the internal forces

Moment of resistance = m x fc1 x Ast(d - n)/n x (d-n/3)

*+ fc1 =

m x Ast(d - n)/n x (d-n/3)

Stress at CG of steel = fst = m x fc1 x (d - n)/n

**+ Stress in the extreme layer of steel = Fbg = (fst *(d-n)+cg form bottom)/(d-n)

*++ Stress in Concrete at top of girder = Ftg = fc1 x (n - ds) / n

*** Stress in Concrete at deck top = Fts = (fst / m) x (n / (d - n ))

Moment

Page 107: IL & FS

Summary of Stress check at section

As per clause:12.2.2 of IRC:112-2011:

Permissible stresses

In concrete = 0.48fck = 19.2 Mpa = 1958 t/m2

In steel = 0.8fyk = 400 Mpa = 40800 t/m2

0.00 0.005 Construction Live Load 0.00 -13117.93 0.00 601.31

0.00 0.00

4 Weight of cross-girder 0.00 -13117.93 0.00 601.31 0.00 0.00

3 Green weight of deck slab -7059.62 -13117.93 323.63 601.31

TFts

0.00 0.00

2 Weight of shuttering -1083.48 -6058.31 49.67 277.67 0.00 0.00

1 Gider Self weight -4974.84 -4974.84 228.00 228.00

Sr No DescriptionBottom of

GirderCumulative

Bottom of Girder

Top of

Girder

Cumulative

Top of

Girder

Top of

SlabCumulative Top

of Slab

Fbg TFbg Ftg TFtg Fts

-213.82 712.6613 Temp Fall -212.45 -37843.24 110.92 522.54

-9.49 476.98

12 Temp Rise 150.82 -37630.79 -112.03 411.62 449.50 926.48

11 Differential Shrinkage -28.32 -37781.61 -21.63 523.65

318.82 327.05

10 50 % Live Load -7386.39 -37753.29 -10.51 545.28 159.42 486.47

9 Live Load -14772.75 -30366.91 -21.03 555.79

-49.67 -49.67

8 SIDL -3602.97 -15594.15 14.11 576.82 57.90 8.23

7

Loss wt of Deck slab due to

drying 1083.48 -11991.18 -36.63 562.71

0.00 0.00

6 De-shuttering 43.27 -13074.66 -1.96 599.35 0.00 0.00

5 Construction Live Load 0.00 -13117.93 0.00 601.31

Page 108: IL & FS

317.56 OK

Combination

1+2+3+4+5+6+7+8+10+11+12

(50% Live Load+ Temp Rise) -40800.00 -30244.41 1958.40 422.13 1958.40 767.06 OK

Combination 1+2+3+4+5+6+7+8+9+11

(Service Condition with Live load and

shrinkage) -40800.00 -30395.23 1958.40 534.16 1958.40

8.23 OK

Combination 1+2+3+4+5+6+7+8+9

(Service Condition with Live load)-40800.00 -30366.91 1958.40 555.79 1958.40 327.05 OK

Combination 1+2+3+4+5+6+7+8

(Service Condition without Live load)-40800.00 -15594.15 1958.40 576.82 1958.40

Status

Combination 1+ 2+ 3+ 4+5

( Girder Alone property) -40800.00 -13117.93 1958.40 601.31 1958.40 0.00 OK

CombinationsPermissible

stress in steel

Actual stress in

steel

Permissible

stress in

concrete

Actual stress

in concrete

Permissible

stress in

concrete

Actual stress in

concrete

Note: Negative value indicates tension. Positive value indicates compression.

103.74 OK

Combination

1+2+3+4+5+6+7+8+10+11+13

(50% Live Load+ Temp fall) -40800.00 -30607.68 1958.40 645.08 1958.40

(50% Live Load+ Temp Rise) -40800.00 -30244.41 1958.40 422.13 1958.40 767.06 OK

Page 109: IL & FS

Stress Check at 0.174L for outer girder

Grade of concrete = M 40

Span of girder (m) =

Width of beam bw =

Depth of girder =

Depth of girder+slab =

Depth of extreme layer of steel =

Modular ratio, m = 6.06 (for live load)

Modular ratio, m = 12.12 (for DL+SIDL)

fc1

in tmt *+

162

350.15 12.12 0.25 0.5717 -765.05 35.092 Weight of shuttering 6.589 0.0072 0.80 1.504

0.5714 -3524.79 161.551 Gider Self weight 30.36 0.0072 0.80 1.504 0.15 12.12 0.25

in m2

in m in m in m in m in m Fbg**+ Ftg*++

b* d ds**

m

bw n

Fts***

17.200 m

0.250 m

1.600 m

1.825 m

S.No. Description

Mom Ast Stress

1.757 m

35

230

0

0

-1.4

-35

40

232

116

* For girder alone property, b = width of top flange, and for composite property, b = effective width of slab

** For girder alone property, ds = tck of top flange, and for composite property, ds = tck of slab

13 Temp Fall -212.45 110.92 -213.82

12 Temp Rise 150.82 -112.03 449.50

11 Differential Shrinkage -28.32 -21.63 -9.49

116.06

0.2111 -10755.89 -15.31 232.13

-2502.01 9.80 40.21

10 50% Live Load 60.691 0.0072 3 1.729 0.225

6.06 0.259 Live Load 121.382 0.0072 3 1.729 0.225

6.06 0.25 0.2111 -5377.94 -7.66

0.80 1.504

12.12 0.258 SIDL 27.645 0.0072 3 1.729 0.225

12.12 0.25 0.5717 765.05 -25.88 -35.09

0.2975

0 0.0072 0.80 1.504

7 De-shuttering -6.589 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.572 30.61 -1.416

Loss in wt of Deck slab due

to drying -0.26356 0.0072

0.8 0.00 0.005 Construction Live load 0 0.0072 0.80 1.504 0.15 12.12 0.25

0.25 0.8 0.00 0.004 Weight of cross-girder 0.15 12.12

12.123 Green weight of deck slab 43.162 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.5717 -765.05 35.092 Weight of shuttering 6.589 0.0072 0.80 1.504

0.25 0.5714 -5011.16 229.71

Page 110: IL & FS

b

fc1

ds C1

fc2

n c2

d bw

fst T

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm2

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm

Stress at the bottom of the slab= fc2 = fc1 x (n-ds)/n

Stress at the c.g of steel = fst = m x fc1 x (d - n)/n

Total Compression, C = C1 + C2

Where, C1 = fc1 x b x ds x (2n-ds)/2n

C2 =( fc1 x bw x (n-ds)^2)/2n

C = fc1 x ( b x ds x (2n-ds)/2n + bw x (n-ds)^2/2n )

Total tension, T = m x fc1 x Ast(d - n)/n

By equating the internal forces

Moment of resistance = m x fc1 x Ast(d - n)/n x (d-n/3)

*+ fc1 =

m x Ast(d - n)/n x (d-n/3)

Stress at CG of steel = fst = m x fc1 x (d - n)/n

**+ Stress in the extreme layer of steel = Fbg = (fst *(d-n)+cg form bottom)/(d-n)

*++ Stress in Concrete at top of girder = Ftg = fc1 x (n - ds) / n

*** Stress in Concrete at deck top = Fts = (fst / m) x (n / (d - n ))

Moment

Page 111: IL & FS

Summary of Stress check at section

As per clause:12.2.2 of IRC:112-2011:

Permissible stresses

In concrete = 0.48fck = 19.2 Mpa = 1958 t/m2

In steel = 0.8fyk = 400 Mpa = 40800 t/m2

0.00 0.005 Construction Live Load 0.00 -9301.00 0.00 426.35

0.00 0.00

4 Weight of cross-girder 0.00 -9301.00 0.00 426.35 0.00 0.00

3 Green weight of deck slab -5011.16 -9301.00 229.71 426.35

TFts

0.00 0.00

2 Weight of shuttering -765.05 -4289.84 35.09 196.65 0.00 0.00

1 Gider Self weight -3524.79 -3524.79 161.55 161.55

Sr No DescriptionBottom of

GirderCumulative

Bottom of Girder

Top of

Girder

Cumulative

Top of

Girder

Top of

SlabCumulative Top

of Slab

Fbg TFbg Ftg TFtg Fts

-213.82 579.5113 Temp Fall -212.45 -27231.13 110.92 363.16

-9.49 343.83

12 Temp Rise 150.82 -27018.68 -112.03 252.24 449.50 793.33

11 Differential Shrinkage -28.32 -27169.50 -21.63 364.27

232.13 237.25

10 50 % Live Load -5377.94 -27141.18 -7.66 385.90 116.06 353.32

9 Live Load -10755.89 -21763.24 -15.31 393.56

-35.09 -35.09

8 SIDL -2502.01 -11007.35 9.80 408.87 40.21 5.12

7

Loss wt of Deck slab due to

drying 765.05 -8505.34 -25.88 399.06

0.00 0.00

6 De-shuttering 30.61 -9270.40 -1.41 424.95 0.00 0.00

5 Construction Live Load 0.00 -9301.00 0.00 426.35

Page 112: IL & FS

227.76 OK

Combination

1+2+3+4+5+6+7+8+10+11+12

(50% Live Load+ Temp Rise) -40800.00 -21640.74 1958.40 259.90 1958.40 677.26 OK

Combination 1+2+3+4+5+6+7+8+9+11

(Service Condition with Live load and

shrinkage) -40800.00 -21791.56 1958.40 371.93 1958.40

5.12 OK

Combination 1+2+3+4+5+6+7+8+9

(Service Condition with Live load)-40800.00 -21763.24 1958.40 393.56 1958.40 237.25 OK

Combination 1+2+3+4+5+6+7+8

(Service Condition without Live load)-40800.00 -11007.35 1958.40 408.87 1958.40

Status

Combination 1+ 2+ 3+ 4+5

( Girder Alone property) -40800.00 -9301.00 1958.40 426.35 1958.40 0.00 OK

CombinationsPermissible

stress in steel

Actual stress in

steel

Permissible

stress in

concrete

Actual stress

in concrete

Permissible

stress in

concrete

Actual stress in

concrete

Note: Negative value indicates tension. Positive value indicates compression.

13.94 OK

Combination

1+2+3+4+5+6+7+8+10+11+13

(50% Live Load+ Temp fall) -40800.00 -22004.01 1958.40 482.85 1958.40

(50% Live Load+ Temp Rise) -40800.00 -21640.74 1958.40 259.90 1958.40 677.26 OK

Page 113: IL & FS

Stress Check at 0.0L for outer girder

Grade of concrete = M 40

Span of girder (m) =

Width of beam bw =

Depth of girder =

Depth of girder+slab =

Depth of extreme layer of steel =

Modular ratio, m = 6.06 (for live load)

Modular ratio, m = 12.12 (for DL+SIDL)

fc1

in tmt *+

2.5

0.90.15 12.12 0.45 0.5228 -23.17 0.932 Weight of shuttering 0.203 0.0072 0.80 1.504

0.525 -62.60 2.521 Gider Self weight 0.548 0.0072 0.80 1.504 0.15 12.12 0.45

in m2

in m in m in m in m in m Fbg**+ Ftg*++

b* d ds**

m

bw n

Fts***

17.200 m

0.450 m

1.600 m

1.825 m

S.No. Description

Mom Ast Stress

1.757 m

0.9

3.9

0

0

-0.1

-0.9

4.7

51

26

* For girder alone property, b = width of top flange, and for composite property, b = effective width of slab

** For girder alone property, ds = tck of top flange, and for composite property, ds = tck of slab

13 Temp Fall -214.51 101.31 -221.21

12 Temp Rise 152.35 -104.30 457.19

11 Differential Shrinkage -31.86 -23.77 -11.44

25.52

0.2111 -2365.67 -3.37 51.05

-295.18 1.15 4.73

10 50% Live Load 13.3485 0.0072 3 1.729 0.225

6.06 0.459 Live Load 26.697 0.0072 3 1.729 0.225

6.06 0.45 0.211 -1182.82 -1.69

0.80 1.504

12.12 0.458 SIDL 3.262 0.0072 3 1.729 0.225

12.12 0.45 0.5228 23.17 -0.66 -0.93

0.297

0 0.0072 0.80 1.504

7 De-shuttering -0.203 0.0072 0.80 1.504 0.15

0.15 12.12 0.45 0.672 0.98 -0.066

Loss in wt of Deck slab due

to drying -0.00812 0.0072

0.8 0.00 0.005 Construction Live load 0 0.0072 0.80 1.504 0.15 12.12 0.45

0.45 0.8 0.00 0.004 Weight of cross-girder 0.15 12.12

12.123 Green weight of deck slab 0.848 0.0072 0.80 1.504 0.15

0.15 12.12 0.45 0.5228 -23.17 0.932 Weight of shuttering 0.203 0.0072 0.80 1.504

0.45 0.5249 -96.87 3.90

Page 114: IL & FS

b

fc1

ds C1

fc2

n c2

d bw

fst T

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm2

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm

Stress at the bottom of the slab= fc2 = fc1 x (n-ds)/n

Stress at the c.g of steel = fst = m x fc1 x (d - n)/n

Total Compression, C = C1 + C2

Where, C1 = fc1 x b x ds x (2n-ds)/2n

C2 =( fc1 x bw x (n-ds)^2)/2n

C = fc1 x ( b x ds x (2n-ds)/2n + bw x (n-ds)^2/2n )

Total tension, T = m x fc1 x Ast(d - n)/n

By equating the internal forces

Moment of resistance = m x fc1 x Ast(d - n)/n x (d-n/3)

*+ fc1 =

m x Ast(d - n)/n x (d-n/3)

Stress at CG of steel = fst = m x fc1 x (d - n)/n

**+ Stress in the extreme layer of steel = Fbg = (fst *(d-n)+cg form bottom)/(d-n)

*++ Stress in Concrete at top of girder = Ftg = fc1 x (n - ds) / n

*** Stress in Concrete at deck top = Fts = (fst / m) x (n / (d - n ))

Moment

Page 115: IL & FS

Summary of Stress check at section

As per clause:12.2.2 of IRC:112-2011:

Permissible stresses

In concrete = 0.48fck = 19.2 Mpa = 1958 t/m2

In steel = 0.8fyk = 400 Mpa = 40800 t/m2

0.00 0.005 Construction Live Load 0.00 -182.65 0.00 7.35

0.00 0.00

4 Weight of cross-girder 0.00 -182.65 0.00 7.35 0.00 0.00

3 Green weight of deck slab -96.87 -182.65 3.90 7.35

TFts

0.00 0.00

2 Weight of shuttering -23.17 -85.77 0.93 3.45 0.00 0.00

1 Gider Self weight -62.60 -62.60 2.52 2.52

Sr No DescriptionBottom of

GirderCumulative

Bottom of Girder

Top of

Girder

Cumulative

Top of

Girder

Top of

SlabCumulative Top

of Slab

Fbg TFbg Ftg TFtg Fts

-221.21 304.9213 Temp Fall -214.51 -4096.18 101.31 -24.04

-11.44 68.94

12 Temp Rise 152.35 -3881.67 -104.30 -125.35 457.19 526.13

11 Differential Shrinkage -31.86 -4034.02 -23.77 -21.05

51.05 54.86

10 50 % Live Load -1182.82 -4002.16 -1.69 2.72 25.52 80.38

9 Live Load -2365.67 -2819.35 -3.37 4.41

-0.93 -0.93

8 SIDL -295.18 -453.68 1.15 7.78 4.73 3.81

7

Loss wt of Deck slab due to

drying 23.17 -158.49 -0.66 6.63

0.00 0.00

6 De-shuttering 0.98 -181.67 -0.06 7.29 0.00 0.00

5 Construction Live Load 0.00 -182.65 0.00 7.35

Page 116: IL & FS

43.42 OK

Combination

1+2+3+4+5+6+7+8+10+11+12

(50% Live Load+ Temp Rise) -40800.00 -2698.86 1958.40 -123.66 1958.40 500.61 OK

Combination 1+2+3+4+5+6+7+8+9+11

(Service Condition with Live load and

shrinkage) -40800.00 -2851.21 1958.40 -19.36 1958.40

3.81 OK

Combination 1+2+3+4+5+6+7+8+9

(Service Condition with Live load)-40800.00 -2819.35 1958.40 4.41 1958.40 54.86 OK

Combination 1+2+3+4+5+6+7+8

(Service Condition without Live load)-40800.00 -453.68 1958.40 7.78 1958.40

Status

Combination 1+ 2+ 3+ 4+5

( Girder Alone property) -40800.00 -182.65 1958.40 7.35 1958.40 0.00 OK

CombinationsPermissible

stress in steel

Actual stress in

steel

Permissible

stress in

concrete

Actual stress

in concrete

Permissible

stress in

concrete

Actual stress in

concrete

Note: Negative value indicates tension. Positive value indicates compression.

-177.79 OK

Combination

1+2+3+4+5+6+7+8+10+11+13

(50% Live Load+ Temp fall) -40800.00 -3065.72 1958.40 81.95 1958.40

(50% Live Load+ Temp Rise) -40800.00 -2698.86 1958.40 -123.66 1958.40 500.61 OK

Page 117: IL & FS

Stress Check at 0.5L for inner girder

Grade of concrete = M 40

Span of girder (m) =

Width of beam bw =

Depth of girder =

Depth of girder+slab =

Depth of extreme layer of steel =

Modular ratio, m = 6.06 (for live load)

Modular ratio, m = 12.12 (for DL+SIDL)

fc1

in tmt *+

267

540.15 12.12 0.25 0.6819 -878.70 53.852 Weight of shuttering 10.648 0.0113 0.80 1.474

0.6817 -4359.24 267.011 Gider Self weight 52.829 0.0113 0.80 1.474 0.15 12.12 0.25

in m2

in m in m in m in m in m Fbg**+ Ftg*++

b* d ds**

m

bw n

Fts***

17.200 m

0.250 m

1.600 m

1.825 m

S.No. Description

Mom Ast Stress

1.757 m

54

359

0

0

-2.1

-54

8.6

341

171

* For girder alone property, b = width of top flange, and for composite property, b = effective width of slab

** For girder alone property, ds = tck of top flange, and for composite property, ds = tck of slab

13 Temp Fall -212.45 110.92 -213.82

12 Temp Rise 150.82 -112.03 449.50

11 Differential Shrinkage -28.32 -21.63 -9.49

170.71

0.258 -12566.24 43.67 341.41

-400.04 3.43 8.56

10 50% Live Load 104.975 0.0113 3 1.699 0.225

6.06 0.259 Live Load 209.95 0.0113 3 1.699 0.225

6.06 0.25 0.258 -6283.12 21.83

0.80 1.474

12.12 0.258 SIDL 6.475 0.0113 3 1.699 0.225

12.12 0.25 0.6819 878.70 -42.00 -53.85

0.3757

0 0.0113 0.80 1.474

7 De-shuttering -10.648 0.0113 0.80 1.474 0.15

0.15 12.12 0.25 0.6801 35.12 -2.146

Loss in wt of Deck slab due

to drying -0.42592 0.0113

0.8 0.00 0.005 Construction Live load 0 0.0113 0.80 1.474 0.15 12.12 0.25

0.25 0.8 0.00 0.004 Weight of cross-girder 0.15 12.12

12.123 Green weight of deck slab 70.963 0.0113 0.80 1.474 0.15

0.15 12.12 0.25 0.6819 -878.70 53.852 Weight of shuttering 10.648 0.0113 0.80 1.474

0.25 0.6818 -5855.70 358.72

Page 118: IL & FS

b

fc1

ds C1

fc2

n c2

d bw

fst T

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm2

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm

Stress at the bottom of the slab= fc2 = fc1 x (n-ds)/n

Stress at the c.g of steel = fst = m x fc1 x (d - n)/n

Total Compression, C = C1 + C2

Where, C1 = fc1 x b x ds x (2n-ds)/2n

C2 =( fc1 x bw x (n-ds)^2)/2n

C = fc1 x ( b x ds x (2n-ds)/2n + bw x (n-ds)^2/2n )

Total tension, T = m x fc1 x Ast(d - n)/n

By equating the internal forces

Moment of resistance = m x fc1 x Ast(d - n)/n x (d-n/3)

*+ fc1 =

m x Ast(d - n)/n x (d-n/3)

Stress at CG of steel = fst = m x fc1 x (d - n)/n

**+ Stress in the extreme layer of steel = Fbg = (fst *(d-n)+cg form bottom)/(d-n)

*++ Stress in Concrete at top of girder = Ftg = fc1 x (n - ds) / n

*** Stress in Concrete at deck top = Fts = (fst / m) x (n / (d - n ))

Moment

Page 119: IL & FS

Summary of Stress check at section

As per clause:12.2.2 of IRC:112-2011:

Permissible stresses

In concrete = 0.48fck = 19.2 Mpa = 1958 t/m2

In steel = 0.8fyk = 400 Mpa = 40800 t/m2

0.00 0.005 Construction Live Load 0.00 -11093.65 0.00 679.58

0.00 0.00

4 Weight of cross-girder 0.00 -11093.65 0.00 679.58 0.00 0.00

3 Green weight of deck slab -5855.70 -11093.65 358.72 679.58

TFts

0.00 0.00

2 Weight of shuttering -878.70 -5237.94 53.85 320.86 0.00 0.00

1 Gider Self weight -4359.24 -4359.24 267.01 267.01

Sr No DescriptionBottom of

GirderCumulative

Bottom of Girder

Top of

Girder

Cumulative

Top of

Girder

Top of

SlabCumulative Top

of Slab

Fbg TFbg Ftg TFtg Fts

-213.82 693.0213 Temp Fall -212.45 -29519.18 110.92 681.63

-9.49 457.34

12 Temp Rise 150.82 -29306.73 -112.03 570.71 449.50 906.84

11 Differential Shrinkage -28.32 -29457.55 -21.63 682.74

341.41 296.12

10 50 % Live Load -6283.12 -29429.23 21.83 704.37 170.71 466.83

9 Live Load -12566.24 -23146.11 43.67 682.53

-53.85 -53.85

8 SIDL -400.04 -10579.87 3.43 638.86 8.56 -45.29

7

Loss wt of Deck slab due to

drying 878.70 -10179.83 -42.00 635.43

0.00 0.00

6 De-shuttering 35.12 -11058.53 -2.14 677.43 0.00 0.00

5 Construction Live Load 0.00 -11093.65 0.00 679.58

Page 120: IL & FS

286.63 OK

Combination

1+2+3+4+5+6+7+8+10+11+12

(50% Live Load+ Temp Rise) -40800.00 -23023.61 1958.40 548.87 1958.40 736.13 OK

Combination 1+2+3+4+5+6+7+8+9+11

(Service Condition with Live load and

shrinkage) -40800.00 -23174.43 1958.40 660.90 1958.40

-45.29 OK

Combination 1+2+3+4+5+6+7+8+9

(Service Condition with Live load)-40800.00 -23146.11 1958.40 682.53 1958.40 296.12 OK

Combination 1+2+3+4+5+6+7+8

(Service Condition without Live load)-40800.00 -10579.87 1958.40 638.86 1958.40

Status

Combination 1+ 2+ 3+ 4+5

( Girder Alone property) -40800.00 -11093.65 1958.40 679.58 1958.40 0.00 OK

CombinationsPermissible

stress in steel

Actual stress in

steel

Permissible

stress in

concrete

Actual stress

in concrete

Permissible

stress in

concrete

Actual stress in

concrete

Note: Negative value indicates tension. Positive value indicates compression.

72.81 OK

Combination

1+2+3+4+5+6+7+8+10+11+13

(50% Live Load+ Temp fall) -40800.00 -23386.88 1958.40 771.82 1958.40

(50% Live Load+ Temp Rise) -40800.00 -23023.61 1958.40 548.87 1958.40 736.13 OK

Page 121: IL & FS

Stress Check at 0.391L for inner girder

Grade of concrete = M 40

Span of girder (m) =

Width of beam bw =

Depth of girder =

Depth of girder+slab =

Depth of extreme layer of steel =

Modular ratio, m = 6.06 (for live load)

Modular ratio, m = 12.12 (for DL+SIDL)

fc1

in tmt *+

268

540.15 12.12 0.25 0.5715 -1179.72 54.082 Weight of shuttering 10.161 0.0072 0.80 1.504

0.5714 -5843.58 267.851 Gider Self weight 50.332 0.0072 0.80 1.504 0.15 12.12 0.25

in m2

in m in m in m in m in m Fbg**+ Ftg*++

b* d ds**

m

bw n

Fts***

17.200 m

0.250 m

1.600 m

1.825 m

S.No. Description

Mom Ast Stress

1.757 m

54

360

0

0

-2.2

-54

9.6

384

192

* For girder alone property, b = width of top flange, and for composite property, b = effective width of slab

** For girder alone property, ds = tck of top flange, and for composite property, ds = tck of slab

13 Temp Fall -212.45 110.92 -213.82

12 Temp Rise 150.82 -112.03 449.50

11 Differential Shrinkage -28.32 -21.63 -9.49

191.86

0.2111 -17779.61 -25.31 383.71

-600.30 2.35 9.64

10 50% Live Load 100.323 0.0072 3 1.729 0.225

6.06 0.259 Live Load 200.646 0.0072 3 1.729 0.225

6.06 0.25 0.2111 -8889.81 -12.66

0.80 1.504

12.12 0.258 SIDL 6.633 0.0072 3 1.729 0.225

12.12 0.25 0.5715 1179.72 -39.89 -54.08

0.2974

0 0.0072 0.80 1.504

7 De-shuttering -10.161 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.57 47.16 -2.156

Loss in wt of Deck slab due

to drying -0.40644 0.0072

0.8 0.00 0.005 Construction Live load 0 0.0072 0.80 1.504 0.15 12.12 0.25

0.25 0.8 0.00 0.004 Weight of cross-girder 0.15 12.12

12.123 Green weight of deck slab 67.707 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.5715 -1179.72 54.082 Weight of shuttering 10.161 0.0072 0.80 1.504

0.25 0.5714 -7860.84 360.32

Page 122: IL & FS

b

fc1

ds C1

fc2

n c2

d bw

fst T

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm2

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm

Stress at the bottom of the slab= fc2 = fc1 x (n-ds)/n

Stress at the c.g of steel = fst = m x fc1 x (d - n)/n

Total Compression, C = C1 + C2

Where, C1 = fc1 x b x ds x (2n-ds)/2n

C2 =( fc1 x bw x (n-ds)^2)/2n

C = fc1 x ( b x ds x (2n-ds)/2n + bw x (n-ds)^2/2n )

Total tension, T = m x fc1 x Ast(d - n)/n

By equating the internal forces

Moment of resistance = m x fc1 x Ast(d - n)/n x (d-n/3)

*+ fc1 =

m x Ast(d - n)/n x (d-n/3)

Stress at CG of steel = fst = m x fc1 x (d - n)/n

**+ Stress in the extreme layer of steel = Fbg = (fst *(d-n)+cg form bottom)/(d-n)

*++ Stress in Concrete at top of girder = Ftg = fc1 x (n - ds) / n

*** Stress in Concrete at deck top = Fts = (fst / m) x (n / (d - n ))

Moment

Page 123: IL & FS

Summary of Stress check at section

As per clause:12.2.2 of IRC:112-2011:

Permissible stresses

In concrete = 0.48fck = 19.2 Mpa = 1958 t/m2

In steel = 0.8fyk = 400 Mpa = 40800 t/m2

0.00 0.005 Construction Live Load 0.00 -14884.15 0.00 682.26

0.00 0.00

4 Weight of cross-girder 0.00 -14884.15 0.00 682.26 0.00 0.00

3 Green weight of deck slab -7860.84 -14884.15 360.32 682.26

TFts

0.00 0.00

2 Weight of shuttering -1179.72 -7023.31 54.08 321.94 0.00 0.00

1 Gider Self weight -5843.58 -5843.58 267.85 267.85

Sr No DescriptionBottom of

GirderCumulative

Bottom of Girder

Top of

Girder

Cumulative

Top of

Girder

Top of

SlabCumulative Top

of Slab

Fbg TFbg Ftg TFtg Fts

-213.82 757.3213 Temp Fall -212.45 -41016.92 110.92 581.85

-9.49 521.64

12 Temp Rise 150.82 -40804.47 -112.03 470.93 449.50 971.14

11 Differential Shrinkage -28.32 -40955.29 -21.63 582.96

383.71 339.27

10 50 % Live Load -8889.81 -40926.97 -12.66 604.59 191.86 531.13

9 Live Load -17779.61 -32037.16 -25.31 617.25

-54.08 -54.08

8 SIDL -600.30 -14257.55 2.35 642.56 9.64 -44.44

7

Loss wt of Deck slab due to

drying 1179.72 -13657.26 -39.89 640.22

0.00 0.00

6 De-shuttering 47.16 -14836.98 -2.15 680.10 0.00 0.00

5 Construction Live Load 0.00 -14884.15 0.00 682.26

Page 124: IL & FS

329.78 OK

Combination

1+2+3+4+5+6+7+8+10+11+12

(50% Live Load+ Temp Rise) -40800.00 -31914.66 1958.40 483.59 1958.40 779.28 OK

Combination 1+2+3+4+5+6+7+8+9+11

(Service Condition with Live load and

shrinkage) -40800.00 -32065.48 1958.40 595.62 1958.40

-44.44 OK

Combination 1+2+3+4+5+6+7+8+9

(Service Condition with Live load)-40800.00 -32037.16 1958.40 617.25 1958.40 339.27 OK

Combination 1+2+3+4+5+6+7+8

(Service Condition without Live load)-40800.00 -14257.55 1958.40 642.56 1958.40

Not OK

Combination 1+ 2+ 3+ 4+5

( Girder Alone property) -40800.00 -14884.15 1958.40 682.26 1958.40 0.00 OK

CombinationsPermissible

stress in steel

Actual stress in

steel

Permissible

stress in

concrete

Actual stress

in concrete

Permissible

stress in

concrete

Actual stress in

concrete

Note: Negative value indicates tension. Positive value indicates compression.

115.96 OK

Combination

1+2+3+4+5+6+7+8+10+11+13

(50% Live Load+ Temp fall) -40800.00 -32277.93 1958.40 706.54 1958.40

(50% Live Load+ Temp Rise) -40800.00 -31914.66 1958.40 483.59 1958.40 779.28 OK

Page 125: IL & FS

Stress Check at 0.283L for inner girder

Grade of concrete = M 40

Span of girder (m) =

Width of beam bw =

Depth of girder =

Depth of girder+slab =

Depth of extreme layer of steel =

Modular ratio, m = 6.06 (for live load)

Modular ratio, m = 12.12 (for DL+SIDL)

fc1

in tmt *+

228

460.15 12.12 0.25 0.5714 -1006.25 46.122 Weight of shuttering 8.667 0.0072 0.80 1.504

0.5714 -4973.17 227.951 Gider Self weight 42.835 0.0072 0.80 1.504 0.15 12.12 0.25

in m2

in m in m in m in m in m Fbg**+ Ftg*++

b* d ds**

m

bw n

Fts***

17.200 m

0.250 m

1.600 m

1.825 m

S.No. Description

Mom Ast Stress

1.757 m

46

307

0

0

-1.8

-46

9.3

331

165

* For girder alone property, b = width of top flange, and for composite property, b = effective width of slab

** For girder alone property, ds = tck of top flange, and for composite property, ds = tck of slab

13 Temp Fall -212.45 110.92 -213.82

12 Temp Rise 150.82 -112.03 449.50

11 Differential Shrinkage -28.32 -21.63 -9.49

165.26

0.2111 -15314.34 -21.80 330.50

-576.84 2.25 9.26

10 50% Live Load 86.4125 0.0072 3 1.729 0.225

6.06 0.259 Live Load 172.825 0.0072 3 1.729 0.225

6.06 0.25 0.2111 -7657.17 -10.90

0.80 1.504

12.12 0.258 SIDL 6.374 0.0072 3 1.729 0.225

12.12 0.25 0.5714 1006.25 -34.02 -46.12

0.2973

0 0.0072 0.80 1.504

7 De-shuttering -8.667 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.566 40.17 -1.816

Loss in wt of Deck slab due

to drying -0.34668 0.0072

0.8 0.00 0.005 Construction Live load 0 0.0072 0.80 1.504 0.15 12.12 0.25

0.25 0.8 0.00 0.004 Weight of cross-girder 0.15 12.12

12.123 Green weight of deck slab 57.777 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.5714 -1006.25 46.122 Weight of shuttering 8.667 0.0072 0.80 1.504

0.25 0.5714 -6708.00 307.49

Page 126: IL & FS

b

fc1

ds C1

fc2

n c2

d bw

fst T

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm2

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm

Stress at the bottom of the slab= fc2 = fc1 x (n-ds)/n

Stress at the c.g of steel = fst = m x fc1 x (d - n)/n

Total Compression, C = C1 + C2

Where, C1 = fc1 x b x ds x (2n-ds)/2n

C2 =( fc1 x bw x (n-ds)^2)/2n

C = fc1 x ( b x ds x (2n-ds)/2n + bw x (n-ds)^2/2n )

Total tension, T = m x fc1 x Ast(d - n)/n

By equating the internal forces

Moment of resistance = m x fc1 x Ast(d - n)/n x (d-n/3)

*+ fc1 =

m x Ast(d - n)/n x (d-n/3)

Stress at CG of steel = fst = m x fc1 x (d - n)/n

**+ Stress in the extreme layer of steel = Fbg = (fst *(d-n)+cg form bottom)/(d-n)

*++ Stress in Concrete at top of girder = Ftg = fc1 x (n - ds) / n

*** Stress in Concrete at deck top = Fts = (fst / m) x (n / (d - n ))

Moment

Page 127: IL & FS

Summary of Stress check at section

As per clause:12.2.2 of IRC:112-2011:

Permissible stresses

In concrete = 0.48fck = 19.2 Mpa = 1958 t/m2

In steel = 0.8fyk = 400 Mpa = 40800 t/m2

0.00 0.005 Construction Live Load 0.00 -12687.41 0.00 581.57

0.00 0.00

4 Weight of cross-girder 0.00 -12687.41 0.00 581.57 0.00 0.00

3 Green weight of deck slab -6708.00 -12687.41 307.49 581.57

TFts

0.00 0.00

2 Weight of shuttering -1006.25 -5979.41 46.12 274.08 0.00 0.00

1 Gider Self weight -4973.17 -4973.17 227.95 227.95

Sr No DescriptionBottom of

GirderCumulative

Bottom of Girder

Top of

Girder

Cumulative

Top of

Girder

Top of

SlabCumulative Top

of Slab

Fbg TFbg Ftg TFtg Fts

-213.82 685.0913 Temp Fall -212.45 -35279.30 110.92 492.55

-9.49 449.41

12 Temp Rise 150.82 -35066.85 -112.03 381.63 449.50 898.91

11 Differential Shrinkage -28.32 -35217.67 -21.63 493.66

330.50 293.64

10 50 % Live Load -7657.17 -35189.35 -10.90 515.29 165.26 458.90

9 Live Load -15314.34 -27532.18 -21.80 526.19

-46.12 -46.12

8 SIDL -576.84 -12217.84 2.25 547.99 9.26 -36.86

7

Loss wt of Deck slab due to

drying 1006.25 -11641.00 -34.02 545.74

0.00 0.00

6 De-shuttering 40.17 -12647.24 -1.81 579.75 0.00 0.00

5 Construction Live Load 0.00 -12687.41 0.00 581.57

Page 128: IL & FS

284.15 OK

Combination

1+2+3+4+5+6+7+8+10+11+12

(50% Live Load+ Temp Rise) -40800.00 -27409.68 1958.40 392.53 1958.40 733.65 OK

Combination 1+2+3+4+5+6+7+8+9+11

(Service Condition with Live load and

shrinkage) -40800.00 -27560.50 1958.40 504.56 1958.40

-36.86 OK

Combination 1+2+3+4+5+6+7+8+9

(Service Condition with Live load)-40800.00 -27532.18 1958.40 526.19 1958.40 293.64 OK

Combination 1+2+3+4+5+6+7+8

(Service Condition without Live load)-40800.00 -12217.84 1958.40 547.99 1958.40

Not OK

Combination 1+ 2+ 3+ 4+5

( Girder Alone property) -40800.00 -12687.41 1958.40 581.57 1958.40 0.00 OK

CombinationsPermissible

stress in steel

Actual stress in

steel

Permissible

stress in

concrete

Actual stress

in concrete

Permissible

stress in

concrete

Actual stress in

concrete

Note: Negative value indicates tension. Positive value indicates compression.

70.33 OK

Combination

1+2+3+4+5+6+7+8+10+11+13

(50% Live Load+ Temp fall) -40800.00 -27772.95 1958.40 615.48 1958.40

(50% Live Load+ Temp Rise) -40800.00 -27409.68 1958.40 392.53 1958.40 733.65 OK

Page 129: IL & FS

Stress Check at 0.174L for inner girder

Grade of concrete = M 40

Span of girder (m) =

Width of beam bw =

Depth of girder =

Depth of girder+slab =

Depth of extreme layer of steel =

Modular ratio, m = 6.06 (for live load)

Modular ratio, m = 12.12 (for DL+SIDL)

fc1

in tmt *+

161

330.15 12.12 0.25 0.571 -715.54 32.762 Weight of shuttering 6.164 0.0072 0.80 1.504

0.5714 -3522.11 161.431 Gider Self weight 30.337 0.0072 0.80 1.504 0.15 12.12 0.25

in m2

in m in m in m in m in m Fbg**+ Ftg*++

b* d ds**

m

bw n

Fts***

17.200 m

0.250 m

1.600 m

1.825 m

S.No. Description

Mom Ast Stress

1.757 m

33

219

0

0

-1.3

-33

4.1

245

122

* For girder alone property, b = width of top flange, and for composite property, b = effective width of slab

** For girder alone property, ds = tck of top flange, and for composite property, ds = tck of slab

13 Temp Fall -212.45 110.92 -213.82

12 Temp Rise 150.82 -112.03 449.50

11 Differential Shrinkage -28.32 -21.63 -9.49

122.30

0.2111 -11333.54 -16.14 244.60

-254.61 1.00 4.10

10 50% Live Load 63.9505 0.0072 3 1.729 0.225

6.06 0.259 Live Load 127.901 0.0072 3 1.729 0.225

6.06 0.25 0.2111 -5666.77 -8.07

0.80 1.504

12.12 0.258 SIDL 2.813 0.0072 3 1.729 0.225

12.12 0.25 0.571 715.54 -24.16 -32.76

0.2978

0 0.0072 0.80 1.504

7 De-shuttering -6.164 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.5773 28.69 -1.346

Loss in wt of Deck slab due

to drying -0.24656 0.0072

0.8 0.00 0.005 Construction Live load 0 0.0072 0.80 1.504 0.15 12.12 0.25

0.25 0.8 0.00 0.004 Weight of cross-girder 0.15 12.12

12.123 Green weight of deck slab 41.17 0.0072 0.80 1.504 0.15

0.15 12.12 0.25 0.571 -715.54 32.762 Weight of shuttering 6.164 0.0072 0.80 1.504

0.25 0.5714 -4779.83 219.08

Page 130: IL & FS

b

fc1

ds C1

fc2

n c2

d bw

fst T

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm2

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm

Stress at the bottom of the slab= fc2 = fc1 x (n-ds)/n

Stress at the c.g of steel = fst = m x fc1 x (d - n)/n

Total Compression, C = C1 + C2

Where, C1 = fc1 x b x ds x (2n-ds)/2n

C2 =( fc1 x bw x (n-ds)^2)/2n

C = fc1 x ( b x ds x (2n-ds)/2n + bw x (n-ds)^2/2n )

Total tension, T = m x fc1 x Ast(d - n)/n

By equating the internal forces

Moment of resistance = m x fc1 x Ast(d - n)/n x (d-n/3)

*+ fc1 =

m x Ast(d - n)/n x (d-n/3)

Stress at CG of steel = fst = m x fc1 x (d - n)/n

**+ Stress in the extreme layer of steel = Fbg = (fst *(d-n)+cg form bottom)/(d-n)

*++ Stress in Concrete at top of girder = Ftg = fc1 x (n - ds) / n

*** Stress in Concrete at deck top = Fts = (fst / m) x (n / (d - n ))

Moment

Page 131: IL & FS

Summary of Stress check at section

As per clause:12.2.2 of IRC:112-2011:

Permissible stresses

In concrete = 0.48fck = 19.2 Mpa = 1958 t/m2

In steel = 0.8fyk = 400 Mpa = 40800 t/m2

0.00 0.005 Construction Live Load 0.00 -9017.48 0.00 413.27

0.00 0.00

4 Weight of cross-girder 0.00 -9017.48 0.00 413.27 0.00 0.00

3 Green weight of deck slab -4779.83 -9017.48 219.08 413.27

TFts

0.00 0.00

2 Weight of shuttering -715.54 -4237.65 32.76 194.19 0.00 0.00

1 Gider Self weight -3522.11 -3522.11 161.43 161.43

Sr No DescriptionBottom of

GirderCumulative

Bottom of Girder

Top of

Girder

Cumulative

Top of

Girder

Top of

SlabCumulative Top

of Slab

Fbg TFbg Ftg TFtg Fts

-213.82 564.4213 Temp Fall -212.45 -25618.13 110.92 341.84

-9.49 328.74

12 Temp Rise 150.82 -25405.68 -112.03 230.92 449.50 778.24

11 Differential Shrinkage -28.32 -25556.50 -21.63 342.95

244.60 215.93

10 50 % Live Load -5666.77 -25528.18 -8.07 364.58 122.30 338.23

9 Live Load -11333.54 -19861.40 -16.14 372.65

-32.76 -32.76

8 SIDL -254.61 -8527.86 1.00 388.78 4.10 -28.67

7

Loss wt of Deck slab due to

drying 715.54 -8273.25 -24.16 387.78

0.00 0.00

6 De-shuttering 28.69 -8988.80 -1.34 411.94 0.00 0.00

5 Construction Live Load 0.00 -9017.48 0.00 413.27

Page 132: IL & FS

206.44 OK

Combination

1+2+3+4+5+6+7+8+10+11+12

(50% Live Load+ Temp Rise) -40800.00 -19738.90 1958.40 238.99 1958.40 655.94 OK

Combination 1+2+3+4+5+6+7+8+9+11

(Service Condition with Live load and

shrinkage) -40800.00 -19889.72 1958.40 351.02 1958.40

-28.67 OK

Combination 1+2+3+4+5+6+7+8+9

(Service Condition with Live load)-40800.00 -19861.40 1958.40 372.65 1958.40 215.93 OK

Combination 1+2+3+4+5+6+7+8

(Service Condition without Live load)-40800.00 -8527.86 1958.40 388.78 1958.40

Not OK

Combination 1+ 2+ 3+ 4+5

( Girder Alone property) -40800.00 -9017.48 1958.40 413.27 1958.40 0.00 OK

CombinationsPermissible

stress in steel

Actual stress in

steel

Permissible

stress in

concrete

Actual stress

in concrete

Permissible

stress in

concrete

Actual stress in

concrete

Note: Negative value indicates tension. Positive value indicates compression.

-7.38 OK

Combination

1+2+3+4+5+6+7+8+10+11+13

(50% Live Load+ Temp fall) -40800.00 -20102.17 1958.40 461.94 1958.40

(50% Live Load+ Temp Rise) -40800.00 -19738.90 1958.40 238.99 1958.40 655.94 OK

Page 133: IL & FS

Stress Check at 0.0L for inner girder

Grade of concrete = M 40

Span of girder (m) =

Width of beam bw =

Depth of girder =

Depth of girder+slab =

Depth of extreme layer of steel =

Modular ratio, m = 6.06 (for live load)

Modular ratio, m = 12.12 (for DL+SIDL)

fc1

in tmt *+

2.5

0.40.15 12.12 0.45 0.5209 -10.38 0.412 Weight of shuttering 0.091 0.0072 0.80 1.504

0.5234 -62.57 2.511 Gider Self weight 0.548 0.0072 0.80 1.504 0.15 12.12 0.45

in m2

in m in m in m in m in m Fbg**+ Ftg*++

b* d ds**

m

bw n

Fts***

17.200 m

0.450 m

1.600 m

1.825 m

S.No. Description

Mom Ast Stress

1.757 m

0.4

3

0

0

-0

-0.4

5.6

70

35

* For girder alone property, b = width of top flange, and for composite property, b = effective width of slab

** For girder alone property, ds = tck of top flange, and for composite property, ds = tck of slab

13 Temp Fall -214.51 101.31 -221.21

12 Temp Rise 152.35 -104.30 457.19

11 Differential Shrinkage -31.86 -23.77 -11.44

34.84

0.2111 -3229.80 -4.61 69.70

-352.87 1.36 5.65

10 50% Live Load 18.2245 0.0072 3 1.729 0.225

6.06 0.459 Live Load 36.449 0.0072 3 1.729 0.225

6.06 0.45 0.211 -1614.89 -2.31

0.80 1.504

12.12 0.458 SIDL 3.9 0.0072 3 1.729 0.225

12.12 0.45 0.5209 10.38 -0.29 -0.41

0.2964

0 0.0072 0.80 1.504

7 De-shuttering -0.091 0.0072 0.80 1.504 0.15

0.15 12.12 0.45 0.544 0.42 -0.026

Loss in wt of Deck slab due

to drying -0.00364 0.0072

0.8 0.00 0.005 Construction Live load 0 0.0072 0.80 1.504 0.15 12.12 0.45

0.45 0.8 0.00 0.004 Weight of cross-girder 0.15 12.12

12.123 Green weight of deck slab 0.651 0.0072 0.80 1.504 0.15

0.15 12.12 0.45 0.5209 -10.38 0.412 Weight of shuttering 0.091 0.0072 0.80 1.504

0.45 0.5255 -74.38 3.00

Page 134: IL & FS

b

fc1

ds C1

fc2

n c2

d bw

fst T

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm2

Stress in the extreme compression fibre (i.e at the top of the deck slab) = fc1 N/mm

Stress at the bottom of the slab= fc2 = fc1 x (n-ds)/n

Stress at the c.g of steel = fst = m x fc1 x (d - n)/n

Total Compression, C = C1 + C2

Where, C1 = fc1 x b x ds x (2n-ds)/2n

C2 =( fc1 x bw x (n-ds)^2)/2n

C = fc1 x ( b x ds x (2n-ds)/2n + bw x (n-ds)^2/2n )

Total tension, T = m x fc1 x Ast(d - n)/n

By equating the internal forces

Moment of resistance = m x fc1 x Ast(d - n)/n x (d-n/3)

*+ fc1 =

m x Ast(d - n)/n x (d-n/3)

Stress at CG of steel = fst = m x fc1 x (d - n)/n

**+ Stress in the extreme layer of steel = Fbg = (fst *(d-n)+cg form bottom)/(d-n)

*++ Stress in Concrete at top of girder = Ftg = fc1 x (n - ds) / n

*** Stress in Concrete at deck top = Fts = (fst / m) x (n / (d - n ))

Moment

Page 135: IL & FS

Summary of Stress check at section

As per clause:12.2.2 of IRC:112-2011:

Permissible stresses

In concrete = 0.48fck = 19.2 Mpa = 1958 t/m2

In steel = 0.8fyk = 400 Mpa = 40800 t/m2

0.00 0.005 Construction Live Load 0.00 -147.33 0.00 5.92

0.00 0.00

4 Weight of cross-girder 0.00 -147.33 0.00 5.92 0.00 0.00

3 Green weight of deck slab -74.38 -147.33 3.00 5.92

TFts

0.00 0.00

2 Weight of shuttering -10.38 -72.95 0.41 2.92 0.00 0.00

1 Gider Self weight -62.57 -62.57 2.51 2.51

Sr No DescriptionBottom of

GirderCumulative

Bottom of Girder

Top of

Girder

Cumulative

Top of

Girder

Top of

SlabCumulative Top

of Slab

Fbg TFbg Ftg TFtg Fts

-221.21 334.3113 Temp Fall -214.51 -5428.11 101.31 -26.70

-11.44 98.33

12 Temp Rise 152.35 -5213.60 -104.30 -128.01 457.19 555.52

11 Differential Shrinkage -31.86 -5365.95 -23.77 -23.71

69.70 74.93

10 50 % Live Load -1614.89 -5334.09 -2.31 0.06 34.84 109.77

9 Live Load -3229.80 -3719.20 -4.61 2.37

-0.41 -0.41

8 SIDL -352.87 -489.40 1.36 6.97 5.65 5.23

7

Loss wt of Deck slab due to

drying 10.38 -136.53 -0.29 5.61

0.00 0.00

6 De-shuttering 0.42 -146.91 -0.02 5.91 0.00 0.00

5 Construction Live Load 0.00 -147.33 0.00 5.92

Page 136: IL & FS

63.49 OK

Combination

1+2+3+4+5+6+7+8+10+11+12

(50% Live Load+ Temp Rise) -40800.00 -3598.71 1958.40 -125.70 1958.40 520.68 OK

Combination 1+2+3+4+5+6+7+8+9+11

(Service Condition with Live load and

shrinkage) -40800.00 -3751.06 1958.40 -21.40 1958.40

5.23 OK

Combination 1+2+3+4+5+6+7+8+9

(Service Condition with Live load)-40800.00 -3719.20 1958.40 2.37 1958.40 74.93 OK

Combination 1+2+3+4+5+6+7+8

(Service Condition without Live load)-40800.00 -489.40 1958.40 6.97 1958.40

Not OK

Combination 1+ 2+ 3+ 4+5

( Girder Alone property) -40800.00 -147.33 1958.40 5.92 1958.40 0.00 OK

CombinationsPermissible

stress in steel

Actual stress in

steel

Permissible

stress in

concrete

Actual stress

in concrete

Permissible

stress in

concrete

Actual stress in

concrete

Note: Negative value indicates tension. Positive value indicates compression.

-157.72 OK

Combination

1+2+3+4+5+6+7+8+10+11+13

(50% Live Load+ Temp fall) -40800.00 -3965.57 1958.40 79.91 1958.40

(50% Live Load+ Temp Rise) -40800.00 -3598.71 1958.40 -125.70 1958.40 520.68 OK

Page 137: IL & FS

CRACK WIDTH CHECK for outer girder

Sample calculation at 0.5 L

Crack width checking during SLS condition under Quasi-permanent Load combination

(As per Cl:12.03.4 (1) of IRC:112-2011)

Maximum Crack width is limited to Wkmax = mm Table 12.1

Chararcteristic Strength of Concrete, fck = N/mm2

Table 6.5

Yield Strength of Steel, fy = N/mm2

Table 18.1

Modulus of elasticity of reinf. of steel Es = N/mm2

12.0

0.3

40

500

2E+05

Modulus of elasticity of concrete=22*(fcm/12.5)0.3

Ecm = N/mm2

Creep Coefficient φ = Table 6.9

Effictive Modulus of elasticity Eceff =

Effective Modular ratio αe = (Es/Eceff) αe =

Clear Cover C = mm

Width of Structure Bw = mm

1

16673Cl. 12.4.2 (2) of

IRC:112

12

40

450

33346

Page 138: IL & FS

Details of reinforcement bars provided:

Total area of reinforcement As = mm2

Centroid of reinforcing bars from bottom = mm

Equivalent diameter Φ eq = SniΦi2

= mm

SniΦi

Depth of neutral axis X = mm

Stress in Steel at CG, σsc = Mpa

Σ =

Overall Depth, D or h h = mm

Tensile Strength of Concrete, fctm = Mpa

32 5 132 78.50 160 5120

11259.47

32 5 68 78.50 160 5120 128

Dia Nos.CG from

bottom

c/c

spacingniΦi niΦi

2

0 0 0 0.00 0 0

32

32 0 260 0.00 0 0

32 4 196 104.67 128 4096

113.38

0 0 0 0.00 0 0

0 0 0 0.00 0 0

133.32

448 14336

1825

3

0 0 0 0.00 0 0

Tensile Strength of Concrete, fctm = Mpa

Effective Cover = mm

Effective Depth d = mm

Spacing of bonded reinforcement with in tension zone < 5*(C+φ/2)

Effective spacing = = 88 < mm

Hence the maximum crack width is Sr,max , shall be calculated

Crack Spacing

Coefficent based on bond properties k1 = for Deformed bars

Coefficent based on distribution of strain k2 = for bending

3

56

Eq.12.8 of IRC:112-

2011

0.8

0.5

1697

Cl. 12.3.4 (3) of

IRC:112105445.7 280

1203.68 OK

eff

r

kkcS

ρρ

φ*2*1*425.0*4.3

max+=

Page 139: IL & FS

Calculation of effective area of concrete in tension (Ac.eff):

Depth hceff is the lesser of

1. One third of the tension zone depth of the cracked section, (h-x)/3, with x negative

when whole section is in tension = mm

2. half of section depth,h/2, or = mm

3. 2.5*(h-d) = mm

hceff = mm

Aceff = mm2

ρρeff = As/Aceff ρρeff =

From fig. 12.2 of

IRC:112-2011

570.5

912.5

320

320

Effective area of of Concrete in tension

surrounding the reinforcement

144000

0.078ρρeff = As/Aceff ρρeff =

Crack Spacing Srmax = mm

= =

Crack Width = Wk = mm

< 0.3mm hence Safe

Eq.12.8 of IRC:112-

2011

≥5E-04

Eq. 12.6 of IRC:112-

2011

0.099Eq. 12.5 of IRC:112-

2011

0.078

205.6eff

kkcSr

ρρ

φ*2*1*425.0*4.3max +=

Page 140: IL & FS

Summary of crack width at various sections:

c/c

spacingDia Nos.

CG from

bottom

c/c

spacingDia Nos.

Section

0 2.99 4.86 6.73 8.6

5 68 78.50

CG from

bottom

c/c

spacing

Layers of steel

Layer 1 32 5 68 78.50 32 5

Dia Nos.CG from

bottom

c/c

spacingDia Nos.

CG from

bottom

c/c

spacingDia Nos.

CG from

bottom

32 4 132 104.67 32

68 78.50

Layer 2 32 4 132 104.67 32 4 132

32 5 68 78.50 32 568 78.50 32

104.6732 0 196 0.00 32 0

78.50

Layer 3 32 0 196 0.00 32 0 196 0.00

4 132 104.67 32 5 132104.67

0 0 0.00 0

196 0.00 32 4 196

0 260 0.00

Layer 5 0 0 0 0.00 0 0

0.00 0 0 0 0.00 320 0 0.00 0 0 0Layer 4 0

0 0.00

Layer 6 0 0 0 0.00 0 0 0

0

0

0 0 0.00 0 00 0.00 0 0 0 0.00

0 0 0.00

0.00

Layer 7 0 0 0 0.00 0 0 0 0.00

0 0 0.00 0 0 00.00 0 0 0 0.00

0 0.00 0 0 0 0.000 0 0 0.00 0 0

Total area of 7238.23 7238.23 7238.23 7238.23 11259.47

0.00 0 0 0 0.00 00 0 0.00 0 0 0Layer 8 0 0 0 0.00 0

Total area of

reinforcement7238.23 7238.23 7238.23 7238.23 11259.47

SniΦi 288 288 288 288 448

Centroid of reinforcing

bars from bottom96.44 96.44 96.44 96.44 127.43

Φ eq 32 32 32 32 32

SniΦi2

9216 9216 9216 9216 14336

Shear rf at section 12 12 12 12 12

bw 450 450 450 450 450

Stress in steel at

CG (N/mm2)4.45 107.92 152.88 179.8 133.32

Depth of neutral

axis, x72.88 72.88 72.88 72.88 113.38

Tensile strength of

concrete, fctm3 3 3 3 3

Overall depth, D or

h1825 1825 1825 1825 1825

Page 141: IL & FS

Effective depth, d 1729 1729 1729 1729 1698

Effective cover 56 56 56 56 56

5*(C+φ/2) 280 280 280 280 280

Spacing of bonded rf

in tension zone92.01 92.01 92.01 92.01 87.6

(i) (h-x)/3 584.04 584.04 584.04 584.04 570.54

Check OK OK OK OK OK

(iii) 2.5*(h-d) 240 240 240 240 317.5

(ii) h/2 912.5 912.5 912.5 912.5 912.5

Ac eff 108000 108000 108000 108000 142875

Depth hc eff (lesser of

I,ii &iii)240 240 240 240 317.5

Sr max 217.19 217.19 217.19 217.19 204.86

ρρ eff 0.067 0.067 0.067 0.067 0.079

Wk 0 0.065 0.13 0.152 0.102

εsm-εcm 0 0.0003 0.0006 0.0007 0.0005

Check OK OK OK OK OK

Limiting crack

width0.3 0.3 0.3 0.3 0.3

Page 142: IL & FS

CRACK WIDTH CHECK for inner girder

Sample calculation at 0.5 L

Crack width checking during SLS condition under Quasi-permanent Load combination

(As per Cl:12.03.4 (1) of IRC:112-2011)

Maximum Crack width is limited to Wkmax = mm Table 12.1

Chararcteristic Strength of Concrete, fck = N/mm2

Table 6.5

Yield Strength of Steel, fy = N/mm2

Table 18.1

Modulus of elasticity of reinf. of steel Es = N/mm2

12.0

0.3

40

500

2E+05

Modulus of elasticity of concrete=22*(fcm/12.5)0.3

Ecm = N/mm2

Creep Coefficient φ = Table 6.9

Effictive Modulus of elasticity Eceff =

Effective Modular ratio αe = (Es/Eceff) αe =

Clear Cover C = mm

Width of Structure Bw = mm

1

16673Cl. 12.4.2 (2) of

IRC:112

12

40

450

33346

Page 143: IL & FS

Details of reinforcement bars provided:

Total area of reinforcement As = mm2

Centroid of reinforcing bars from bottom = mm

Equivalent diameter Φ eq = SniΦi2

= mm

SniΦi

Depth of neutral axis X = mm

Stress in Steel at CG, σsc = Mpa

Σ =

Overall Depth, D or h h = mm

Tensile Strength of Concrete, fctm = Mpa

32 5 132 78.50 160 5120

11259.47

32 5 68 78.50 160 5120 126

Dia Nos.CG from

bottom

c/c

spacingniΦi niΦi

2

0 0 0 0.00 0 0

32

0 0 0 0.00 0 0

32 4 190 104.67 128 4096

113.38

0 0 0 0.00 0 0

0 0 0 0.00 0 0

103.72

448 14336

1825

3

0 0 0 0.00 0 0

Tensile Strength of Concrete, fctm = Mpa

Effective Cover = mm

Effective Depth d = mm

Spacing of bonded reinforcement with in tension zone < 5*(C+φ/2)

Effective spacing = = 88 < mm

Hence the maximum crack width is Sr,max , shall be calculated

Crack Spacing

Coefficent based on bond properties k1 = for Deformed bars

Coefficent based on distribution of strain k2 = for bending

3

56

Eq.12.8 of IRC:112-

2011

0.8

0.5

1699

Cl. 12.3.4 (3) of

IRC:112105445.7 280

1203.68 OK

eff

r

kkcS

ρρ

φ*2*1*425.0*4.3

max+=

Page 144: IL & FS

Calculation of effective area of concrete in tension (Ac.eff):

Depth hceff is the lesser of

1. One third of the tension zone depth of the cracked section, (h-x)/3, with x negative

when whole section is in tension = mm

2. half of section depth,h/2, or = mm

3. 2.5*(h-d) = mm

hceff = mm

Aceff = mm2

ρρeff = As/Aceff ρρeff =

From fig. 12.2 of

IRC:112-2011

570.5

912.5

315

315

Effective area of of Concrete in tension

surrounding the reinforcement

141750

0.079ρρeff = As/Aceff ρρeff =

Crack Spacing Srmax = mm

= =

Crack Width = Wk = mm

< 0.3mm hence Safe

Eq.12.8 of IRC:112-

2011

≥3E-04

Eq. 12.6 of IRC:112-

2011

0.068Eq. 12.5 of IRC:112-

2011

0.079

204.5eff

kkcSr

ρρ

φ*2*1*425.0*4.3max +=

Page 145: IL & FS

Summary of crack width at various sections:

c/c

spacingDia Nos.

CG from

bottom

c/c

spacingDia Nos.

Section

0 2.99 4.86 6.73 8.6

5 68 78.5

CG from

bottom

c/c

spacing

Layers of steel

Layer 1 32 5 68 78.5 32 5

Dia Nos.CG from

bottom

c/c

spacingDia Nos.

CG from

bottom

c/c

spacingDia Nos.

CG from

bottom

32 4 132 104.7 32

68 78.5

Layer 2 32 4 132 104.7 32 4 132

32 5 68 78.5 32 568 78.5 32

104.70 0 0 0 0 0

78.5

Layer 3 0 0 0 0 0 0 0 0

4 132 104.7 32 5 132104.7

0 0 0 0

0 0 32 4 190

0 0 0

Layer 5 0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0Layer 4 0

0 0

Layer 6 0 0 0 0 0 0 0

0

0

0 0 0 0 00 0 0 0 0 0

0 0 0

0

Layer 7 0 0 0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0

Total area of 7238.23 7238.23 7238.23 7238.23 11259.47

0 0 0 0 0 00 0 0 0 0 0Layer 8 0 0 0 0 0

Total area of

reinforcement7238.23 7238.23 7238.23 7238.23 11259.47

SniΦi 288 288 288 288 448

Centroid of reinforcing

bars from bottom96.44 96.44 96.44 96.44 125.71

Φ eq 32 32 32 32 32

SniΦi2

9216 9216 9216 9216 14336

Shear rf at section 12 12 12 12 12

bw 450 450 450 450 450

Stress in steel at

CG (N/mm2)4.8 83.61 119.78 139.78 103.72

Depth of neutral

axis, x72.88 72.88 72.88 72.88 113.38

Tensile strength of

concrete, fctm3 3 3 3 3

Overall depth, D or

h1825 1825 1825 1825 1825

Page 146: IL & FS

Effective depth, d 1729 1729 1729 1729 1700

Effective cover 56 56 56 56 56

5*(C+φ/2) 280 280 280 280 280

Spacing of bonded rf

in tension zone92.01 92.01 92.01 92.01 87.6

(i) (h-x)/3 584.04 584.04 584.04 584.04 570.54

Check OK OK OK OK OK

(iii) 2.5*(h-d) 240 240 240 240 312.5

(ii) h/2 912.5 912.5 912.5 912.5 912.5

Ac eff 108000 108000 108000 108000 140625

Depth hc eff (lesser of

I,ii &iii)240 240 240 240 312.5

Sr max 217.19 217.19 217.19 217.19 204

ρρ eff 0.067 0.067 0.067 0.067 0.08

Wk 0 0.065 0.087 0.109 0.061

εsm-εcm 0 0.0003 0.0004 0.0005 0.0003

Check OK OK OK OK OK

Limiting crack

width0.3 0.3 0.3 0.3 0.3

Page 147: IL & FS

CALCULATION OF DEFLECTION for outer girder

Deflection, for simply supported member = 5ML2/48EI

I, Moment of Inertia of section = mm4

Ec, Modulus of Elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

ho =2Ac / u = mm

Φ, creep coefficient =

Ec,eff,effective modulus of elasticity = Ec/(1+φ) = N/mm2

Moment due to girder selfweight = tm

Moment due to slab selfweight = tm

Moment due to SIDL = tm

Total moment due to sustained loading = tm (Permanent loads)

Moment due to vehicular loading = tm (Live loads)

A) Deflection due to vehicular loading

M, moment = tm

L, length = m

E, Modulus of elasticity = N/mm2

3.87E+11

33000

2.71E+11

373.42

13.0

204.195

153.1463

17.2

33000

1.35

14048.85

52.828

69.652

49.481

171.96

E, Modulus of elasticity = N/mm

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

Permissible deflection due to vehicular traffic = L/800 (12.4.1.(2) IRC:112-2011)

= mm

Hence the deflection is Within permissible limit

B) Deflection due to sustained loading

i) For short term deflection,

M, moment = tm

L, length = m

E, Modulus of elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

ii) Deflection due to creep,

acc(perm) = aicc(perm) - ai(perm)

33000

2.71E+11

5.285

21.5

171.96

17.2

33000

2.71E+11

5.934

Page 148: IL & FS

For aicc(perm)

M, moment = t/m

L, length = m

Ec,eff ,Effective modulus of elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

For ai(perm)

M, moment = t/m

L, length = m

Ec,eff ,Effective modulus of elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

acc(perm) = -

= mm

iii) Deflection due to shrinkage,

acs = k3 * Ψcs * L2

Where, k3 is a constant representing effect of support conditions

k3 =

171.96

17.2

14048.85

2.71E+11

13.938

171.96

8.004

0.125 for simply supported members

17.2

33000

2.71E+11

5.934

13.938 5.934

k3 =

Ψcs = 1/ rcs As per Cl: 12.4.2, shrinkage curvature

1 = εcs * αe * S/I

rcs

As per Cl: 6.4.2.6, total shrinkage strain is given by

εcs = εcd + εca

εca = x 10-6

(table 6.6, page 45)

εcd = kh * εcd'

kh = (table 6.7, page 45)

εcd' = for relative humidity 50 %

εcd = x 10-6

Therefore, εcs =

αe =

S = mm3

I = mm4

Ψcs =

acs = mm

Total Deflection = Short term deflection+ Deflection due to creep + Deflection due to Shrinkage

Total Deflection = mm

0.125 for simply supported members

55

0.732

466

5.16

19.10

341.1

4E-04

14.24

9.56E+06

3.87E+11

1.39E-07

Page 149: IL & FS

CALCULATION OF DEFLECTION for inner girder

Deflection, for simply supported member = 5ML2/48EI

I, Moment of Inertia of section = mm4

Ec, Modulus of Elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

ho =2Ac / u = mm

Φ, creep coefficient =

Ec,eff,effective modulus of elasticity = Ec/(1+φ) = N/mm2

Moment due to girder selfweight = tm

Moment due to slab selfweight = tm

Moment due to SIDL = tm

Total moment due to sustained loading = tm (Permanent loads)

Moment due to vehicular loading = tm (Live loads)

A) Deflection due to vehicular loading

M, moment = tm

L, length = m

E, Modulus of elasticity = N/mm2

157.4625

17.2

33000

123.98

209.95

373.42

1.35

52.829

64.679

6.475

3.87E+11

33000

2.71E+11

14048.85

E, Modulus of elasticity = N/mm

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

Permissible deflection due to vehicular traffic = L/800 (12.4.1.(2) IRC:112-2011)

= mm

Hence the deflection is Within permissible limit

B) Deflection due to sustained loading

i) For short term deflection,

M, moment = tm

L, length = m

E, Modulus of elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

ii) Deflection due to creep,

acc(perm) = aicc(perm) - ai(perm)

33000

2.71E+11

5.434

123.98

17.2

33000

2.71E+11

4.278

21.5

Page 150: IL & FS

For aicc(perm)

M, moment = t/m

L, length = m

Ec,eff ,Effective modulus of elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

For ai(perm)

M, moment = t/m

L, length = m

Ec,eff ,Effective modulus of elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

acc(perm) = -

= mm

iii) Deflection due to shrinkage,

acs = k3 * Ψcs * L2

Where, k3 is a constant representing effect of support conditions

k3 = 0.125

10.049 4.278

5.771

for simply supported members

123.98

4.278

17.2

14048.85

2.71E+11

123.98

33000

2.71E+11

10.049

17.2

k3 =

Ψcs = 1/ rcs As per Cl: 12.4.2, shrinkage curvature

1 = εcs * αe * S/I

rcs

As per Cl: 6.4.2.6, total shrinkage strain is given by

εcs = εcd + εca

εca = x 10-6

(table 6.6, page 45)

εcd = kh * εcd'

kh = (table 6.7, page 45)

εcd' = for relative humidity 50 %

εcd = x 10-6

Therefore, εcs =

αe =

S = mm3

I = mm4

Ψcs =

acs = mm

Total Deflection = Short term deflection+ Deflection due to creep + Deflection due to Shrinkage

Total Deflection = mm

0.125 for simply supported members

5.16

15.21

55

4E-04

14.24

466

341.1

9.57E+06

0.732

1.4E-07

3.87E+11

Page 151: IL & FS

CHECK FOR INTERFACE SHEAR for outer girder (10.3.4 IRC:112-2011)

Sample Calculation for section @ 0.0L

VDS, the shear due to Dead load of slab = x = t

VSIDL-1,the shear due to SIDL except surfacing = x = t

VSIDL-2, the shear due to surfacing = x = t

VLL, the shear due to live load = x = t

VED, the transverse shear force (factored) = t

Vgrdr ,factored shear due to dead weight of girder = x = t

Effective length considered = mm

μ, Coefficient of friction =

z, lever arm = mm

b1, width of interface = mm

ds, depth of slab = mm

β, ratio of longitudinal force in new concrete

to total longitudinal force

14.0

225.00

0.706

5.188 1.75 9.08

52.625 1.5 78.94

15.884 1.35 21.44

11.672 1.35 15.76

125.22

0.7

1555.70

800.00

13.007 1.35 17.56

VSIDL+VLL

VSIDL+VLL+Vgrdr+VDS

1000.00

= = Page 20 IRC:22-

1986

VEDi ,interface shear stress = β VED = N/mm2

z b1

Provided shear reinforcement: @ mm c/c spacing

As, area of shear reinforcement already provided = mm2

Additional reinforcement: @ mm c/c spacing

Ai, area of interface reinforcement = mm2

Asteel, total area of reinforcement crossing the joint = mm2

Aj, interface area of the joint = mm2

Amin, area of minimum reinforcement required = mm2

ρmin , mimimum reinforcement ratio =

ρ = /Aj =

α,angle of reinforcement to the interface = ˚

σn, minimum coexisting normal stress = < 0.6fcd = N/mm2

2261.95

800000

0.0057

90

6.96

0.71

VED/(b1.ds)

Cl:10.3.4 IRC:112-

2011

12 dia 2 Leg 100

12 dia 2 Leg 100

2261.95

4523.9

Asteel

1200

OK

0.0015

OK

Page 152: IL & FS

ν, reduction factor for concrete cracked in shear = 0.6(1-fck/310) =

VRdi ,resisting capacity at section = μσn+ρfyd[μsinα+cosα] ≤ 0.5νfcd

= N/mm2 ≤ N/mm

2

= N/mm2

Interface Shear stress, VEDi = N/mm2

Resisting capacity at section, VRdi = N/mm2

Summary of interface shear at various sections:

Deff EOT 0.283L 0.391L 0.5L

0.71

4.645

OK

Section

0L

13.007 9.814

8.719

6.834

VDL (t)

VSIDL-1 (t)

VSIDL-2 (t)

VLL (t)

VED (t)

μ

Vgrdr (t)

15.884

11.672

5.188

52.625

125.2171

0.7

12.361

9.522

4.223

52.63

115.8773

0.7

12.361

9.522

4.219

47.784

108.6013

0.7

9.724 5.354 2.68

2.903

36.352

80.6048

0.7

0.525

13.906

26.43795

0.7

5.332

4.163

1.714

25.997

54.81325

0.7

0

4.645

0.52

6.607

4.645

1.824

1.628

eq 10.6 IRC:112-

2011

eq 10.21 IRC:112-

2011

90 ˚ 90 ˚ 90 ˚ 90 ˚ 90 ˚ 90 ˚

VRdi (t/m2) o

o

800.00

0.706

72.452

0.75

71.227

150

12 dia 2 Leg 12 dia 2 Leg

100 100 100 120 150

12 dia 2 Leg 12 dia 2 Leg 12 dia 2 Leg 12 dia 2 Leg

65.508

μ

z (mm)

b1 (mm)

β

α (deg;rad)

σn

VEDi (t/m2)

Status

VEDi (t/m2)

Shear r/f

spacing

As (mm2)

Aj (mm2)

ρ

VRdi (t/m2)

Additional rf

Ai (mm2)

Amin (mm2)

ρmin

Status

Asteel (mm2)

Status

0.7

1555.70

800

1555.70

0.7

35.89450.603

0.7

1555.70

800.00

0.736

0.7 0.7

1555.70

800.00

0.766

0.7

0.799

OK

473.824

2261.95 2261.95 1884.96 1507.96

800000 800000 800000 800000

0.0057

709.56

673.64

72.452

2261.95

800000

1.571 1.571 1.571 1.571

71.227 65.508 50.603 35.894

OK OK OK OK OK

0.0057 0.0052 0.0047 0.0038 0.0038

19.813

656.64 615.41 456.76 310.61 149.82

636.596 592.213 465.636 335.392 222.839

335.392 222.839

473.824

473.824 473.824 473.824 465.636

1.571 1.571

1527.81

800.00

0.898

19.813

1507.96

800000

1555.70

800.00

473.824 473.824 473.824 473.824

2 Leg 12 dia 2 Leg

spacing 100 100 120 120 150 150

12 dia 2 Leg 12 dia 2 Leg 12 dia 2 Leg 12 dia 2 Leg 12 dia

2261.95 2261.95 1884.96 1884.96 1507.96 1507.96

4523.9 4523.9 4146.91 3769.92 3015.92 3015.92

0.0015 0.0015 0.0015 0.0015 0.0015

1200 1200 1200 1200 1200 1200

OK OK OK OK OK OK

OK OK OK OK OK OK

0.0015

Page 153: IL & FS

CHECK FOR INTERFACE SHEAR for inner girder (10.3.4 IRC:112-2011)

Sample Calculation for section @ 0.0L

VDS, the shear due to Dead load of slab = x = t

VSIDL-1,the shear due to SIDL except surfacing = x = t

VSIDL-2, the shear due to surfacing = x = t

VLL, the shear due to live load = x = t

VED, the transverse shear force (factored) = t

Vgrdr ,factored shear due to dead weight of girder = x = t

Effective length considered = mm

μ, Coefficient of friction =

z, lever arm = mm

b1, width of interface = mm

ds, depth of slab = mm

β, ratio of longitudinal force in new concrete

to total longitudinal forcePage 20 IRC:22-

1986VSIDL+VLL+Vgrdr+VDS

1555.70

800.00

225.00

=VSIDL+VLL

= 0.705

118.97

13.006 1.35 17.56

1000.00

0.7

4.526 1.75 7.92

58.257 1.5 87.39

14.0

14.554 1.35 19.65

2.967 1.35 4.01

VEDi ,interface shear stress = β VED = N/mm2

z b1

Provided shear reinforcement: @ mm c/c spacing

As, area of shear reinforcement already provided = mm2

Additional reinforcement: @ mm c/c spacing

Ai, area of interface reinforcement = mm2

Asteel, total area of reinforcement crossing the joint = mm2

Aj, interface area of the joint = mm2

Amin, area of minimum reinforcement required = mm2

ρmin , mimimum reinforcement ratio =

ρ = /Aj =

α,angle of reinforcement to the interface = ˚

σn, minimum coexisting normal stress = < 0.6fcd = N/mm2

OK

90

VED/(b1.ds) 6.61

800000

1200

OK

0.0015

Asteel 0.0057

2261.95

12 dia 2 Leg 100

2261.95

4523.9

0.67Cl:10.3.4 IRC:112-

2011

12 dia 2 Leg 100

Page 154: IL & FS

ν, reduction factor for concrete cracked in shear = 0.6(1-fck/310) =

VRdi ,resisting capacity at section = μσn+ρfyd[μsinα+cosα] ≤ 0.5νfcd

= N/mm2 ≤ N/mm

2

= N/mm2

Interface Shear stress, VEDi = N/mm2

Resisting capacity at section, VRdi = N/mm2

Summary of interface shear at various sections:

0.7μ 0.7 0.7 0.7 0.7 0.7

34.94895

Vgrdr (t) 13.006 9.822 9.725 5.35 2.676 0

VED (t) 118.95935 68.18705 99.0778 70.07315 51.4496

0.282

VLL (t) 58.257 29.01 49.619 35.643 27.994 21.236

VSIDL-2 (t) 4.526 3.782 3.769 2.375 1.331

1.694

VSIDL-1 (t) 2.967 2.018 2.018 1.077 0.355 0.233

VDL (t) 14.554 11.355 11.355 8.147 4.926

OK

Section

0L Deff EOT 0.283L 0.391L 0.5L

eq 10.21 IRC:112-

20116.362 4.645

4.645

0.67

4.645

0.52 eq 10.6 IRC:112-

2011

90 ˚ 90 ˚ 90 ˚ 90 ˚ 90 ˚ 90 ˚

VRdi (t/m2) o

o

OKStatus OK OK OK OK OK

256.593

VEDi (t/m2) 68.734 34.76 58.789 42.67 33.564 27.038

VRdi (t/m2) 473.824 447.421 473.824 423.86 322.05

473.824 473.824 473.824 473.824 473.824 473.824

648.818 447.421 554.434 423.86 322.05 256.593

1.571

σn 674.1 386.39 561.44 397.08 291.55 198.04

α (deg;rad) 1.571 1.571 1.571 1.571 1.571

0.0038

Status OK OK OK OK OK OK

ρ 0.0057 0.0057 0.0052 0.0047 0.0038

OK

ρmin 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015

Status OK OK OK OK OK

800000

Amin (mm2) 1200 1200 1200 1200 1200 1200

Aj (mm2) 800000 800000 800000 800000 800000

1507.96

Asteel (mm2) 4523.9 4523.9 4146.91 3769.92 3015.92 3015.92

Ai (mm2) 2261.95 2261.95 1884.96 1884.96 1507.96

2 Leg

spacing 100 100 120 120 150 150

2 Leg 12 dia 2 Leg 12 dia 2 Leg 12 diaAdditional rf 12 dia 2 Leg 12 dia 2 Leg 12 dia

150

As (mm2) 2261.95 2261.95 2261.95 1884.96 1507.96 1507.96

12 dia 2 Leg 12 dia 2 Leg

spacing 100 100 100 120 150

27.038

Shear r/f 12 dia 2 Leg 12 dia 2 Leg 12 dia 2 Leg 12 dia 2 Leg

VEDi (t/m2) 68.734 34.76 58.789 42.67 33.564

800.00

β 0.705 0.622 0.724 0.743 0.796 0.928

b1 (mm) 800.00 800 800.00 800.00 800.00

0.7

z (mm) 1555.70 1555.70 1555.70 1555.70 1555.70 1529.36

μ 0.7 0.7 0.7 0.7 0.7

Page 155: IL & FS

DESIGN OF DIAPHRAGMS

A) Jacking Condition

3.0 3.0 3.0

0.75 1.5 0.75 0.75 1.5 0.75 0.75 1.5 0.75

Total length of cross-girder = m

Distance between supports (jacks) = m

Centre to centre distance between main girders = m

Overall depth of girder = m

Width of girder = m

15.0

9

1.5

3

1.575

0.4

Reactions on main girders due to various loading. (These reactions would be the loads for cross-

girder)

t/m for m length

33.038

26.037

(Loads in t)

Self wt of cross-girder

LL (symmetric)

LL (eccentric)

SIDL

Dead Load

1.575

0

0 0

0

0

Reaction on G1 Reaction on G2 Reaction on G3

30.077 33.038

11.046 26.037

0

9.0

Page 156: IL & FS

Cross-diaphragm is analysed as continous beam on STAAD and BM and Shear Forces are tabulated

below.

i) Hogging Moment

Σ = 68.22235 44.749

Dead Load 25.221

19.528

0

1.35

1.75

1.5

Moment (t

m)

Factored Moment (t m)Loading

1 1

0Live Load

SIDL

1

1

Factors

0 0

ULS Rare Quasi perm ULS Rare Quasi perm

34.04835 25.221 25.221

34.174 19.528 19.528

1

44.749

0

Page 157: IL & FS

ii) Sagging Moment

Σ =

Effective span of girder, L = mm

Dia of jacks = mm

Clear length of girder, Lclear = mm

Overall Depth of girder, D = mm

Ratio of effective span to overall depth = L/D =

Support conditions =

As the beam is a Continuous beam and the ratio l/D < it is a deep beam

Lever arm, z = = mm

Design Moment = tm

0 0

29.62 18.68 18.68

1500

1200

1575

0

7.67 7.67

SIDL 11.01 1.75 1 1 19.27 11.01 11.01

Dead Load 7.668 1.35 1 1 10.35

LoadingMoment (t

m)

Factors Factored Moment (t m)

ULS Rare Quasi perm ULS Rare Quasi perm

0.952

Continuous

2.5

0.5l 750

29.62

Live Load 0 1.5 1 0

300

Design Moment = tm

Grade of steel = Fe 500

29.62

Page 158: IL & FS

Grade of concrete =

Width of section, b = mm

Overall depth of section = mm

Clear cover to any reinforcement = mm

Positive reinforcement requirement: 29.3.1 IS456:2000

Area of steel required, Ast = Mu/0.87fyz = mm2

Depth of tensile zone for reinforcement = 0.25D-0.05l = mm

Reinforcement details : = 16 mm Φ x 4 bars

16 mm Φ x 2 bars

16 mm Φ x 0 bars

Area of steel required <= Area of steel provided ----OK

907.89

318.75

= 1206.37

M 40

400

1575

40

mm2

16 mm Φ 0 bars

16 mm Φ 2 bars

16 mm Φ 4 bars

Negative reinforcement requirement: 29.3.2 IS456:2000

Area of steel required, Ast = Mu/0.87fyz = mm2

Ratio of clear span to overall depth = Lclear/D =

2091.11

0.76

Page 159: IL & FS

Zone 1:

Depth of zone = = mm

Required Area of steel in zone = = mm2

Reinforcement details : = 20 mm Φ x 8 bars

0 mm Φ x 0 bars

Area of steel required <= Area of steel provided ----OK

Zone 2:

Depth of zone = 0 D =

Required Area of steel in zone = = mm2

Reinforcement details : = 12 mm Φ x 2 bars

12 mm Φ x 2 bars

Area of steel required <= Area of steel provided ----OK

1260.00

Entire area of steel 2091.11

= 2513.27 mm2

0

Ast - Ast in Zone 1 0.00

= 452.39 mm2

According to Cl: 29.3.2a)1) of IS456:2000, not more than half the negative reinforcement may be curtailed

after extending a distance of 0.5D from the face of support

0.8D

So all the negative reinforcement needs to be extended at least upto mm

from face of support

20mm dia 8bars

0mm dia 0bars 1260mm

787.50

Page 160: IL & FS

Side face reinforcement requirement:

Vertical shear reinforcement:

Area of steel required = = mm2/m

Area of steel required on each face = mm2/m

Maximum diameter of bar = mm

Spacing of vertical bars, sv <= mm

Vertical reinforcement details on each face : = 12 mm Φ bars at

mm c/c spacing

Area of steel required <= Area of steel provided ----OK

Bar dia provided <= Maximum bar dia ----OK

Spacing provided <= Maximum Spacing ----OK

Horizontal reinforcement:

Area of steel required = = mm2/m

Area of steel required on each face = mm2/m

Maximum diameter of bar = mm

Spacing of horizintal bars, s <= mm

16

s < 450mm and s < 3b 450.00

0.12% of Gross area 480.00

240.00

16

sv < 450mm and sv < 3b 450.00

= 753.98 mm2/m

150

0.20% of Gross area 800.00

400.00

Spacing of horizintal bars, sh <= mm

Horizontal reinforcement details on face 1: = 12 mm Φ bars at

mm c/c spacing

Area of steel required <= Area of steel provided ----OK

Bar dia provided <= Maximum bar dia ----OK

Spacing provided <= Maximum Spacing ----OK

Horizontal reinforcement details on face 2: = 12 mm Φ bars at

mm c/c spacing

Area of steel required <= Area of steel provided ----OK

Bar dia provided <= Maximum bar dia ----OK

Spacing provided <= Maximum Spacing ----OK

Check for Shear at support location:

Σ =

Effective depth of girder = mm

Area of steel provided = mm2

Width of web = mm

=

=

sh < 450mm and sh < 3b 450.00

= 452.39 mm2/m

250

= 452.39 mm2/m

250

LoadingShear (t)

Factors Factored Moment (t m)

ULS Rare Quasi perm ULS Rare Quasi perm

Dead Load 34.31 1.35 1 1 46.32 34.31 34.31

SIDL 26.037 1.75 1 1 45.56 26.04 26.04

Live Load 0 1.5 1 0 0 0 0

91.88 60.35 60.35

1525.00

1206.37

400.00

1.36

0.31

Page 161: IL & FS

=

NED, the applied longitudinal force =

=

The design Shear resistance of the member without Shear reinforcement VRD.c is given by,

subject to minimum of

= t

Total shear = t

Check for shear reinforcement requirement : Shear reinforcement required

0.002

0

18.91

91.88

0

Page 162: IL & FS

=

z = lever arm to be taken as 0.9 for RC sect & calculated for PSC section = mm

1 = Strength reduction factor for concrete cracked in shear =

= for fck<=80Mpa

= 0.9-fck/250 > 0.5 for fck>80Mpa

αcw =

θ = ˚ = radians

cot θ =

tan θ =

Shear reinforcement : mm dia legged stirrups at mm c/c spacing.

Min area of reinforcement required, = mm2

Cross sectional area of shear reinforcement at a section, Asw = mm2

Min shear reinforcement required <= Shear reinforcement provided ----OK

Maximum spacing for steel provided, = mm

0.0009

1372.5

0.6

0.6

1

21.8 0.3805

628.32

2.5

0.4

54

12 2 150

226.195

αρ sinmin wreqd sbA =

max

swAs =Maximum spacing for steel provided, = mm

Spacing provided, s = mm

Maximum spacing for steel Spacing provided, s ----OK

For members with vertical shear reinforcement, the shear resistance Vrd is smaller of,

= t

= t

Vrd = t

Total factored shear, V = t

Check for shear ----OK

628.32

150

>

179.97

202.94

179.97

91.88

αρ sinmin

max

wbs =

Page 163: IL & FS

B) Service Condition

3.0 3.0 3.0

Total length of cross-girder = m

Distance between supports (bearings) = m

Centre to centre distance between main girders = m

9.0

3.0

3.0

Overall depth of girder = m

Width of girder = m

Reactions on main girders due to various loading. (These reactions would be the loads for cross-

girder)

t/m for m length

Cross-diaphragm is analysed as continous beam on STAAD and BM and Shear Forces are tabulated

below.

i) Hogging Moment

Σ =

1.575

0.4

(Loads in t) Reaction on G1 Reaction on G2 Reaction on G3

LL (eccentric) 0 0 0

LL (symmetric) 0 0 0

Dead Load 33.038 30.077 33.038

SIDL 26.037 11.046 26.037

Self wt of cross-girder 1.575 9

LoadingMoment (t

m)

Factors Factored Moment (t m)

ULS Rare Quasi perm ULS Rare Quasi perm

Dead Load 2.946 1.35 1 1 3.9771 2.946 2.946

SIDL 4.615 1.75 1 1 8.07625 4.615 4.615

8.129 0

24.24685 15.69 7.561

Live Load 8.129 1.5 1 0 12.1935

Page 164: IL & FS

ii) Sagging Moment

Σ =

Effective span of girder, L = mm

Width of bearing = mm

Clear length of girder, Lclear = mm

Overall Depth of girder, D = mm

LoadingMoment (t

m)

Factors Factored Moment (t m)

ULS Rare Quasi perm ULS Rare Quasi perm

Dead Load 1.572 1.35 1 1 2.12 1.57 1.57

1.67 1.67

Live Load 8.177 1.5 1 0 12.27 8.18 0

SIDL 1.67 1.75 1 1 2.92

1575

17.31 11.42 3.24

3000

400

2600

Overall Depth of girder, D = mm

Ratio of effective span to overall depth = L/D =

Support conditions =

As the beam is a Continuous beam and the ratio l/D < it is a deep beam

Lever arm, z = = mm

Design Moment = tm

Grade of steel =

Grade of concrete =

Width of section, b = mm

Overall depth of section = mm

Clear cover to any reinforcement = mm

1575

1.905

Continuous

2.5

0.2(l+1.5D) 1072.5

17.31

Fe 500

M 40

400

1575

40

Page 165: IL & FS

Positive reinforcement requirement: 29.3.1 IS456:2000

Area of steel required, Ast = Mu/0.87fyz = mm2

Depth of tensile zone for reinforcement = 0.25D-0.05l = mm

Reinforcement details : = 16 mm Φ x 4 bars

16 mm Φ x 2 bars

16 mm Φ x 0 bars

Area of steel required <= Area of steel provided ----OK

16 mm Φ 0 bars

371.03

243.75

= 1206.37 mm2

16 mm Φ 0 bars

16 mm Φ 2 bars

16 mm Φ 4 bars

Negative reinforcement requirement: 29.3.2 IS456:2000

Area of steel required, Ast = Mu/0.87fyz = mm2

Ratio of clear span to overall depth = Lclear/D =

Zone 1:

Depth of zone = = mm

Required Area of steel in zone = = mm2

Reinforcement details : = 20 mm Φ x 8 bars

0 mm Φ x 0 bars

Area of steel required <= Area of steel provided ----OK

519.72

mm2

1.65

0.2D 315.00

Ast*(0.5*(L/D-0.5)) 299.10

= 2513.27

Page 166: IL & FS

Zone 2:

Depth of zone = 0.3D on either side of mid-depth =

Required Area of steel in zone = = mm2

Reinforcement details : = 12 mm Φ x 2 bars

12 mm Φ x 2 bars

Area of steel required <= Area of steel provided ----OK

So all the negative reinforcement needs to be extended at least upto mm

from face of support

472.5

mm on either side of

mid-depth

Ast - Ast in Zone 1 220.62

= 452.39 mm2

According to Cl: 29.3.2a)1) of IS456:2000, not more than half the negative reinforcement may be curtailed

after extending a distance of 0.5D from the face of support

787.50

315mm

20mm dia 8bars

0mm dia 0bars 472.5mm

472.5mm

12mm dia 2bar

12mm dia 2bar

Side face reinforcement requirement:

Vertical shear reinforcement:

Area of steel required = = mm2/m

Area of steel required on each face = mm2/m

0.12% of Gross area 480.00

240.00

Page 167: IL & FS

Maximum diameter of bar = mm

Spacing of vertical bars, sv <= mm

Vertical reinforcement details on each face : = 12 mm Φ bars at

mm c/c spacing

Area of steel required <= Area of steel provided ----OK

Bar dia provided <= Maximum bar dia ----OK

Spacing provided <= Maximum Spacing ----OK

Horizontal reinforcement:

Area of steel required = = mm2/m

Area of steel required on each face = mm2/m

Maximum diameter of bar = mm

Spacing of horizintal bars, s <= mm

sv < 450mm and sv < 3b 450.00

= 753.98 mm2/m

150

16

0.20% of Gross area 800.00

400.00

16

s < 450mm and s < 3b 450.00Spacing of horizintal bars, sh <= mm

Horizontal reinforcement details on face 1: = 12 mm Φ bars at

mm c/c spacing

Area of steel required <= Area of steel provided ----OK

Bar dia provided <= Maximum bar dia ----OK

Spacing provided <= Maximum Spacing ----OK

Horizontal reinforcement details on face 2: = 12 mm Φ bars at

mm c/c spacing

Area of steel required <= Area of steel provided ----OK

Bar dia provided <= Maximum bar dia ----OK

Spacing provided <= Maximum Spacing ----OK

Check for Shear at support location:

Σ =

= 452.39 mm2/m

250

= 452.39 mm2/m

250

sh < 450mm and sh < 3b 450.00

LoadingShear (t)

Factors Factored Moment (t m)

ULS Rare Quasi perm ULS Rare Quasi perm

3.5 3.5

SIDL 1.282 1.75 1 1 2.24 1.28 1.28

Dead Load 3.498 1.35 1 1 4.72

11.56 0

24.29 16.34 4.78

Live Load 11.556 1.5 1 0 17.33

Page 168: IL & FS

Effective depth of girder = mm

Area of steel provided = mm2

Width of web = mm

=

=

=

NED, the applied longitudinal force =

=

The design Shear resistance of the member without Shear reinforcement VRD.c is given by,

subject to minimum of

1525.00

1206.37

400.00

1.36

0.31

0.002

0

0

subject to minimum of

= t

Total shear = t

Check for shear reinforcement requirement : Shear reinforcement required

=

z = lever arm to be taken as 0.9 for RC sect & calculated for PSC section = mm

1 = Strength reduction factor for concrete cracked in shear =

= for fck<=80Mpa

= 0.9-fck/250 > 0.5 for fck>80Mpa

αcw =

θ = ˚ = radians

cot θ =

tan θ =

Shear reinforcement : mm dia legged stirrups at mm c/c spacing.

18.91

24.29

0.0009

1372.5

0.6

0.6

1

21.8 0.3805

2.5

0.4

12 2 150

αρ sinsbA =

Page 169: IL & FS

Min area of reinforcement required, = mm2

Cross sectional area of shear reinforcement at a section, Asw = mm2

Min shear reinforcement required <= Shear reinforcement provided ----OK

Maximum spacing for steel provided, = mm

Spacing provided, s = mm

Maximum spacing for steel Spacing provided, s ----OK

For members with vertical shear reinforcement, the shear resistance Vrd is smaller of,

= t

= t

V = t

54

226.195

628.32

150

>

179.97

202.94

179.97

αρ sinmin wreqd sbA =

αρ sinmin

max

w

sw

b

As =

Vrd = t

Total factored shear, V = t

Check for shear ----OK

179.97

24.29

Page 170: IL & FS

DECK SLAB

Page 171: IL & FS

Input Data

Span of Long. Girder (C/c of support) = m

No.of Cross Girder =

Width of Deck (Centre to centre of cross girder) = m

Type of Deck slab =

Overall Length of Deck = m

Dist.from Deck End to face of kerb(incl. footway if any)on LHS = m

Carriageway Width = m

Dist.from Deck End to face of kerb(incl. footway if any)on RHS = m

No. of Long. Girders =

Spacing between Long.Girders (Effective Span of Deck) = m

Top Flange Width of Girders = m

Thickness of Deck Between Long.Girders = m

Wearing Coat = m

Cantiliver Span of Deck on LHS = m

Dist.from centre of web to face of support of Cantilever. On LHS = m

Thickness of Deck at Free End of Cantilever.On LHS = m

Thickness of Deck at Face of Support of Cantilever.On LHS = m

Cantiliver Span of Deck on RHS = m

Dist.from centre of web to face of support of Cantilever. On RHS = m

Thickness of Deck at Free End of Cantilever.On RHS = m

Thickness of Deck at Face of Support of Cantilever.On RHS = m

Simple supp

1.500

0.225

2.500

0.500

0.065

0.800

0.225

0.225

0.225

9.000

3.000

4

1.500

12.000

2

17.200

17.200

0.225

0.225

0.225

On LHS

Area of Crash barrier/End Railing = m x m = m2

Footway = m x m

kerb (wheel guard) /Crash barrier = m x m = m2

On RHS

Area of Crash barrier/End Railing = m x m = m2

Footway = m x m

kerb (wheel guard) /Crash barrier = m x m = m2

Number of Lane for design purpose =

Designing slab for width = m

Material Properties:

Density of Wearing Coat = t/m3

Density of Concrete = t/m3

Chararcteristic Strength of Concrete, fck = N/mm2

Yield Strength of Steel, fy = N/mm2

1.0

0.450

0.000

500

2.2

1.500 0.300

40

2.5

2

0.000

0.000 0.900 0.000

0.450

Length Depth

Length Depth

0.500 0.900

0.500 0.900

0.500 0.4500.900

Page 172: IL & FS

Dead Load & SIDL Calculations

Uniformly Distributed Load :

Deck (bet.long.girders)

wearing coat (carriageway)

Left Cant.Deck(sup.)

Left Cant.Deck(free end)

Right Cant.Deck(sup.)

Right Cant.Deck(free end)

Left Footway slab

Right Footway slab

Concentrated Load:

On LHS

Crash Barrier

Kerb

On RHS

Crash Barrier

Kerb

Description No.

2.500 1.125

1.1251 - - 0.450

1

1 - - 0.450 1.000

Length

0.450 1.000 2.500 1.125

Total Load

tt/m3

2.500

1 1.000

m m m2

0.225 0.225

1.000 0.225

0.300

Depth Area

1 1.000

1 1.000 0.000

0.300

1 1.000 0.065 0.065 -

1 1.000 0.225 0.225

t/m

1 1.000 0.225 0.225 -

t/m3

m

Length

0.563

0.200

0.563

0.5632.500

Width Density

Description No. Width Depth Area

m

Density

2.500

1

1 1.000 0.225

0.563

2.500

- 2.5000.225

Total Load

-

m

2.200

2.500-

m2

0.225 -

-

0.000 -

2.500

0.000

0.563

- -

0.000

2.500 0.750

m

2.500

1.000

1.0000.0001 - -

Footway Live Load Calculations

(i) For effective span of 7.5 m or less, footway live load P = 500 kg/m2

(ii) For effective span of over 7.5 m but not exceeding 30 m, the intensity of load,

P = P' - 40L - 300 where, P' = kg/m2

L = Effective span of main girder in m

(iii) For effective span of over 30 m, the intensity of load,

P = P' - + * - W where, W = Width of Footway in m

L

So, Footway live load on LHS = kg/m2

= t/m2

So, Footway live load on RHS = kg/m2

= t/m2

0.00

500

9

260

0.00

IRC:6-2000,Cl.209.4

456.89 0.45

4800

15

16.5

Page 173: IL & FS

Live Load Calculation

70R Tracked

20t boggie

(For Tyre)

Class A

Where,

Vw = Outer to outer dist.of wheels of axles across the direction of motion

B = Ground Contact Area of Wheels in the direction of Motion

W = Ground Contact Area of Wheels Across the direction of Motion

f = Minimum Clearance of Outer edge of wheel from kerb, f

g =

For 20t boggie

Tyre contact area over road surface =

= x

= cm2

1.50

IRC:6-2000, cl.207.1.3

Min.Dist.bet.s

uccessive

axles (m)

-

0.263

1.2 1.22

Minimum Clearance between the Outer edges passing or crossing vehicles on

multi-lane bridges, g

1.500

1000

1.2

5.273

948.23

0.36

5

1.2

0.86

0.5 0.1511.4 0.25

Vehicle

Impact

Factor

(internal

Span)

1.25

1.25

4.57

-

0.84 1.270

20

Axle

Load (t)

2.9

1.2

1.2

f (m)Vw (m) B (m) W (m)

Impact

Factor

(Canti.

Span)

1.25

1.25

g (m)

Actual max. tyre load

Max. tyre pressure

2.79

2.3

= cm

Tyre width across the dir.of motion = - = mm

Tyre width along dir.of motion = * = mm

Dispersion of load across span (Simply Supported):

Effective width for a single concentrated load,

b ef = a a 1 - a + b1

lo

where, lo = Effective span = m

a = distance of c.g. of concentrated load from nearer support

b1 = width of concentration area of load = tyre width B + 2 x

b = width of slab = m

b/lo =

a = a constant depending upon the ratio of b/lo =

Dispersion of load across span (Cantilever) :

Effective width for a single concentrated load,

b ef = * a + b1

where,

a = distance of c.g. of concentrated load from face of cantilever support

b1 = width of concentration area of load = tyre width B + 2 x

Dispersion of load along span:

= + 2 x ( + deck thk. )

0.333

263.40

W (m) 0.065

0.065

410

948.23

50

IRC:21-2000,Cl.305.16.3

0.065

1.2

IRC:21-2000,Cl.305.16.2

3.000

1.00

1.267

IRC:21-2000,Cl.305.16.2

360

360.00

948.23 100

Page 174: IL & FS

Dispersion calculation for 2-Lane Class-A Live Load on Deck Slab As per IRC21-2000, Clause 305.16

1Class A Tow Lane

1 2 3 4

0.9 1.8 1.7 1.8 1.7

1.200 0.10 3.100 1.30 2.801.2 4.700 -1.700

0.600 -1.200 1.80 0.1 1.3002.900 -0.100 -1.301.300

1.500 3.00 3.00 1.500

Dispersion along the span = = 0.5 x 2 x ( 0.225 + 0.065 )

1.08 mt

b1= = 0.25 + 0.065 x 2

0.38 mt

Beffective for Load (1) = 1.2 x a +b1

1.2 x 0.600 + 0.38

1.1 mt

Combined eff width = 1.1 mt

Beffective for Load (1) = 1.2 x a +b1

= 1.2 x 0.000 + 0

= 0 mt

Combined eff width = 0 mtCombined eff width = 0 mt

Beffective for Load (2) = α a (l-a/l0) +b1

2.60 x 1.200 x( 1 - 1.200 / 3.0 ) + 0.38

2.252 mt

Combined eff width = 1.726 mtBeffective for Load (3) = α a (l-a/l0) +b1

2.60 x 0.100 x( 1 - 0.100 / 3.0 ) + 0.380.6313 mt

Combined eff width = 0.6313 mtBeffective for Load (4) = α a (l-a/l0) +b1 0.6313

2.60 x 1.300 x( 1 - 1.300 / 3.0 ) + 0.382.2953 mt

Combined eff width = 1.7477 mt

UDL of

Tyre 1 = 5.70 x 1.5 /( 1.08 x 1.1 ) = 7.20 t/m2

Tyre 2 = 5.70 x 1.5 /( 1.08 x 1.726 ) = 4.59 t/m2

Tyre 3 = 5.70 x 1.5 /( 1.08 x 0.6313 ) = 12.54 t/m2

Tyre 4 = 5.70 x 1.5 /( 1.08 x 1.7477 ) = 4.53 t/m2

Page 175: IL & FS

Dispersion calculation for 20T Boggie Axle Live Load on Deck Slab As per IRC21-2000, Clause 305.16

2 20 T Boggie axle ( Eccentrically placed)

1 2

2.130 1.93

0.630 0.440

-0.63 2.37 -0.440 3.4402.560

1.500 3.00 3.00 1.500

Dispersion along the span = = 0.81 + 2 x ( 0.225 + 0.065 )

1.39 mt

b1= = 0.263 + 0.065 x 2

0.393 mt

Beffective for Load (1) = 1.2 x a +b1

= 1.2 x 0.000 + 0

= 0 mt

Combined eff width = 0 mtor

Beffective for Load (1) = α a (l-a/l0) +b1

2.60 x 0.630 x( 1 - 0.630 / 3.0 ) + 0.393

1.687 mt

Combined eff width = 1.4435 mtCombined eff width = 1.4435 mt

Beffective for Load (2) = α a (l-a/l0) +b1

2.60 x 0.440 x( 1 - 0.440 / 3.0 ) + 0.39

1.3692 mt

Combined eff width = 1.2846 mt

UDL of

Tyre 1 = 12.5 /( 1.39 x 1.44351 ) = 6.23 t/m2

Tyre 2 = 12.5 /( 1.39 x 1.28461 ) = 7.00 t/m2

Page 176: IL & FS

Dispersion calculation for 20T Boggie Axle Live Load on Deck Slab As per IRC21-2000, Clause 305.16

3 20 T Boggie axle ( Centrally placed)

1 2

1.93

0.535 0.535

2.4652.465

1.500 3.00 3.00 1.500

Dispersion along the span = = 0.81 x 2 x ( 0.225 + 0.065 )

1.39 mt

b1= = 0.263 + 0.065 x 2

0.393 mt

Beffective for Load (1) = α a (l-a/l0) +b1

2.60 x 0.535 x( 1 - 0.535 / 3.0 ) + 0.39

1.5359 mt

Combined eff width = 1.368 mt

Beffective for Load (3) = α a (l-a/l0) +b1

2.60 x 0.535 x( 1 - 0.535 / 3.0 ) + 0.39

1.5359 mt

Combined eff width = 1.368 mt

UDL of

Tyre 1 = 12.5 /( 1.39 x 1.37 ) = 6.57 t/m2

Tyre 2 = 12.5 /( 1.39 x 1.37 ) = 6.57 t/m2

Page 177: IL & FS

Dispersion calculation for 20T Boggie Axle Live Load on Deck Slab As per IRC21-2000, Clause 305.16

4 20 T Boggie axle ( Centrally placed) on interior span

1 2

1.93

0.535 0.535

2.4652.465

4.500 3.00 1.50 1.500

Dispersion along the span = = 0.81 x 2 x ( 0.225 + 0.065 )

1.39 mt

b1= = 0.263 + 0.065 x 2

0.393 mt

Beffective for Load (1) = α a (l-a/l0) +b1

2.60 x 0.535 x( 1 - 0.535 / 3.0 ) + 0.39

1.5359 mt

Combined eff width = 1.368 mt

Beffective for Load (3) = α a (l-a/l0) +b1

2.60 x 0.535 x( 1 - 0.535 / 3.0 ) + 0.39

1.5359 mt

Combined eff width = 1.368 mt

UDL of

Tyre 1 = 12.5 /( 1.39 x 1.37 ) = 6.57 t/m2

Tyre 2 = 12.5 /( 1.39 x 1.37 ) = 6.57 t/m2

Page 178: IL & FS

Dispersion calculation for 20T Boggie Axle Live Load on Deck Slab As per IRC21-2000, Clause 305.16

5 20 T Boggie axle ( Centrally placed) on interior support

1 2

1.93

0.965 0.965

2.0352.035

1.500 3.00 3.00 1.500

Dispersion along the span = = 0.81 x 2 x ( 0.225 + 0.065 )

1.39 mt

b1= = 0.263 + 0.065 x 2

0.393 mt

Beffective for Load (1) = α a (l-a/l0) +b1

2.60 x 0.965 x( 1 - 0.965 / 3.0 ) + 0.39

2.0949 mt

Combined eff width = 1.6475 mt

Beffective for Load (3) = α a (l-a/l0) +b1

2.60 x 0.965 x( 1 - 0.965 / 3.0 ) + 0.39

2.0949 mt

Combined eff width = 1.6475 mt

UDL of Tyre 1 = 12.5 /( 1.39 x 1.65 ) = 5.46 t/m2

Tyre 2 = 12.5 /( 1.39 x 1.65 ) = 5.46 t/m2

Page 179: IL & FS

Dispersion calculation for 20T Boggie Axle Live Load on Deck Slab As per IRC21-2000, Clause 305.16

6 20 T Boggie axle ( Centrally placed) on central support

1 2

1.93

0.965 0.965

2.0352.035

4.500 3.00 3.00 1.500

Dispersion along the span = = 0.81 x 2 x ( 0.225 + 0.065 )

1.39 mt

b1= = 0.263 + 0.065 x 2

0.393 mt

Beffective for Load (1) = α a (l-a/l0) +b1

2.60 x 0.965 x( 1 - 0.965 / 3.0 ) + 0.39

2.0949 mt

Combined eff width = 1.6475 mt

Beffective for Load (3) = α a (l-a/l0) +b1

2.60 x 0.965 x( 1 - 0.965 / 3.0 ) + 0.39

2.0949 mt

Combined eff width = 1.6475 mt

UDL of Tyre 1 = 12.5 /( 1.39 x 1.65 ) = 5.46 t/m2

Tyre 2 = 12.5 /( 1.39 x 1.65 ) = 5.46 t/m2

Page 180: IL & FS

Design of Solid RCC Slab

Material Properties:

Table 6.5 Chararcteristic Strength of Concrete, fck = N/mm2

Table 18.1 Yield Strength of Steel, fyk = N/mm2

Partial material safety factor for concrete = basic & seismic

Partial material safety factor for Steel = basic & seismic

Modulus of elasticity of reinforcement of steel Es = N/mm2

Anx A-2 & Tb:6.5 Tensile Strength of Concrete = 0.259*(fck)0.67

fctm = N/mm2

Design yield strength of shear reinforcement = fywd = N/mm2

fywd = 0.8*fyk/γs

Ultimate compressive strain in the concrete єcu3 =

Modulus of elasticity of concrete=22*(fcm/12.5)0.3 Ecm = N/mm

2

Modular ratio αe = (Es/Ecm) =

Ultimate tensile strain in the steel (εs) = =

[{fy/(γsEs)}+0.002]

Coefficient to consider the influence of concrete strength =

Factor (λ) =

Factor (η) =

fcd = (α*fck/gm) = = N/mm2

Creep Coefficient (taking long term of creep) =

for Balance section Limiting Neutral Axis Depth {εcu3/(εcu3+εs)}*d Xulim =

Limiting value of R = Q

0.456 d

η 1

fcd 0.447fck 17.867

Φ 1.2472

εs 0.0042

α 0.67

λ 0.8

200000

3.03

347.83

0.0035

33346

αe 5.9978

40

500

γm 1.5

γs 1.15

for Balance section Limiting value of R = Qlim =

0.36*fck*(Xulim/d)*{1-0.42*(Xulim/d)}

IRC:6-2010 Factors for Limit State Design:

Factored moment in ULS from STAAD (support) = tm

Factored moment in ULS from STAAD (span) = tm

Factored moment in rare combination (SLS) from STAAD (support) = tm

Factored moment in rare combination (SLS) from STAAD (span) = tm

Factored moment in Quasi-permanent (SLS) from STAAD (support) = tm

Factored moment in Quasi-permanent (SLS) from STAAD (span) = tm

5.31

ULSType of Load

Dead Load

SIDL-except

surfacing

SIDL-surfacing

Live load-Leading

Live load-

Accompanying

1.35 1.00

1.00 1.00

1.50 1.00 0.00

0.522

Frequent

1.00

1.00

1.00

0.75

0.20

SLS

1.15 0.75 0.00

Rare Quasi-perm

9.93

6.8

2.139

6.52

4.4

1.00

1.35 1.00 1.00

1.75

Page 181: IL & FS

Design for Flexure

Sagging Moment:

Depth of member = mm

Width of Member = mm

Clear Cover, = mm

Dia.of Bar = mm

Effective Depth of Slab, d = mm

Bending Moment due to Applied Loads, Muls = kNm

SLS Moment (Rare Combination) = kNm

SLS Moment (Quasi-permanent Combination) = kNm

Required effective depth of slab = Sqrt(M/(Q*B)) = mm

SQRT(63.91*10^6/ (5.31*1000))

Area of Main Reinforcement:

Ast required = = mm2

Cl 16.5.1.1 IRC:112 Ast minimum = 0.26(fctm/fyk)*b*d or 0.0013*b*d = mm2

Hence, Ast required, = mm2

So, providing mm diameter bars @ mm spacing

Hence, Ast provided, = mm2/m

Percentage steel provided = %

Check for Area of steel reqd. A provided >= A required OK

12 110

1028.2

0.6

63.91

42.94

5.12

109.7

875

282.0

225

1000

179.0

40

12

874.6

−−=

2**

*6.411

**5.0

dbfck

Mu

fyk

dbfckAst

Check for Area of steel reqd. A st provided >= A st required OK

Spacing provided, Sprov = mm

Cl 16.6.1.1 (4) IRC:112 Maximum spacing, Smax = lesser of 2h and 250mm = mm

Check for Spacing S max >= S prov OK

Stress Check :-

Dist. of Netural Axis from Top = Xu = mm

[-αe*Ast-sqrt{(αe*Ast)^2-4*(0.5*b)*(-αe*Ast)}]/b

Compr. Stress for other load=M/(Area of comp.*LA) = < Mpa

Tensile Stress for other load=M/(Area of Tension*LA) = < Mpa

Hogging Moment:

Depth of member = mm

Width of Member = mm

Clear Cover, = mm

Dia.of Bar = mm

Effective Depth of Slab, d = mm

Bending Moment due to Applied Loads, Muls = kNm

SLS Moment (Rare Combination) = kNm

SLS Moment (Quasi-permanent Combination) = kNm

Required effective depth of slab = Sqrt(M/(Q*B)) = mm

SQRT(97.34*10^6/ (12.6065623877732*1000))

250

41.222

12.6 19.2

252.7 400

110

225

1000

40

16

177.0

97.34

66.73

20.98

135.4

Page 182: IL & FS

Area of Main Reinforcement:

Ast required = = mm2

Cl 16.5.1.1 IRC:112 Ast minimum = 0.26(fctm/fyk)*b*d or 0.0013*b*d = mm2

Hence, Ast required, = mm2

So, providing mm diameter bars @ mm spacing

and mm diameter bars @ mm spacing

Hence, Ast provided, = mm2/m

Percentage steel provided = %

Check for Area of steel reqd. A st provided >= A st required OK

Spacing provided, Sprov = mm

Cl 16.6.1.1 (4) IRC:112 Maximum spacing, Smax = lesser of 2h and 250mm = mm

Check for Spacing S max >= S prov OK

Stress Check :-

Dist. of Netural Axis from Top = Xu = mm

[-αe*Ast-sqrt{(αe*Ast)^2-4*(0.5*b)*(-αe*Ast)}]/b

Compr. Stress for other load=M/(Area of comp.*LA) = < Mpa

Tensile Stress for other load=M/(Area of Tension*LA) = < Mpa

a) At Bottom

Area of the main reinforcement (Ast) = mm2

1028.2

1404

278.9

16 110

1827.8

1.0

110

250

52.291

16.0 19.2

228.8 400

1404.1

0 110

−−=

2**

*6.411

**5.0

dbfck

Mu

fyk

dbfckAst

Area of the main reinforcement (Ast) = mm

Cl 16.6.1.1(3) IRC 112 Area of transverse reinforcement required (0.2 Ast) = mm2

Cl 16.5.4(4) IRC 112 Min area of surface reinforcement (0.01Act.ext) = mm2

Min area of reinforcement at bottom face (0.12% of b.d) = mm2

Area of distribution steel required (max of above 3) = mm2

Dia of bars to be used for distribution reinforcement = mm

Spacing of bars to be used for distribution reinforcement = mm

Area of steel provided = = mm2

Check for Area of steel reqd. A st provided >= A st required OK

Spacing provided, Sprov = mm

Cl 16.6.1.1 (4) IRC:112 Maximum spacing, Smax = lesser of 3h and 400mm = mm

Check for Spacing S max >= S prov OK

Hence provide 10mm dia bars @ 150mm c/c spacing at bottom of slab

150

150

400

400

270

400

10

150

78.54 x 1000 523.6

1028.2

205.63

Page 183: IL & FS

b) At Top

Area of the main reinforcement (Ast) = mm2

Cl 16.6.1.1(3) IRC 112 Area of transverse reinforcement required (0.2 Ast) = mm2

Cl 16.5.4(4) IRC 112 Min area of surface reinforcement (0.01Act.ext) = mm2

Min area of reinforcement at bottom face (0.12% of b.d) = mm2

Area of distribution steel required (max of above 3) = mm2

Dia of bars to be used for distribution reinforcement = mm

Spacing of bars to be used for distribution reinforcement = mm

Area of steel provided = = mm2

Check for Area of steel reqd. A st provided >= A st required OK

Spacing provided, Sprov = mm

Cl 16.6.1.1 (4) IRC:112 Maximum spacing, Smax = lesser of 3h and 400mm = mm

Check for Spacing S max >= S prov OK

Hence provide 10mm dia bars @ 150mm c/c spacing at top of slab

Cl 12.3.4 IRC 112 CALCULATION OF CRACK WIDTH

For bottom

Crack width ,

εsm-εcm =

150

1827.8

365.57

400

270

400

10

150

78.54 x 1000 523.6

150

400

σsc = N/mm2

Kt =

fct,eff = N/mm2

ρp,eff = As/Ac,eff =

αe = Es/Ecm =

εsm-εcm =

For the case of deformed bars associated with pure bending, as per Eq. 12.11 of IRC:112-2011

Φ eq = = mm

=

= mm < 0.3 mm As per Cl.12.3 Table 12.1

30.1

0.5

3.03

3.2171

5.9978

0.0001

12.0

136.63

0.01

∑∑

ii

ii

n

n

φ

φ2

`

Page 184: IL & FS

For top

Crack width ,

εsm-εcm =

σsc = N/mm2

Kt =

fct,eff = N/mm2

ρp,eff = As/Ac,eff =

αe = Es/Ecm =

εsm-εcm =

For the case of deformed bars associated with pure bending, as per Eq. 12.11 of IRC:112-2011

Φ eq = = mm

=

= mm < 0.3 mm As per Cl.12.3 Table 12.1

Cl 12.4 IRC 112 CALCULATION OF DEFLECTION

Deflection, for simply supported member = 5ML2/48EI

I, Moment of Inertia of section = mm4

Ec, Modulus of Elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

ho = 2Ac / u = mm

7E+08

220.86

9E+08

33346

136.47

0.04

71.9

0.5

3.03

5.7861

5.9978

0.0003

16.0

∑∑

ii

ii

n

n

φ

φ2

`

ho = 2Ac / u = mm

Φ, creep coefficient =

Ec,eff,effective modulus of elasticity = Ec/(1+φ) = N/mm2

Moment due to slab selfweight = tm

Moment due to SIDL (surfacing) = tm

Moment due to SIDL (except surfacing) = tm

Total moment due to sustained loading = tm (Permanent loads)

Moment due to vehicular loading = tm (Live loads)

A) Deflection due to vehicular loading

Table3.3 IRC:6-2010 M, moment (including factor of 0.75 for freq combi) = tm

L, length = m

E, Modulus of elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

12.4.1.(2) IRC:112-2011 Permissible deflection due to vehicular traffic =

= mm

Hence the deflection is Within permissible limit

3.00

33346

7E+08

1.481

L/800

3.75

1.46

2.26

4.67

3.4995

220.86

1.25

14839

0.63

0.16

Page 185: IL & FS

B) Deflection due to sustained loading

i) For short term deflection,

Table3.3 IRC:6-2010 M, moment (including factors for freq combi) = tm

L, length = m

E, Modulus of elasticity = N/mm2

Ir, Moment of Inertia of section = mm4

Deflection (δ) = mm

ii) Deflection due to creep,

acc(perm) = aicc(perm) - ai(perm)

For aicc(perm)

M, moment = t/m

L, length = m

Ec,eff ,Effective modulus of elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

For ai(perm)

M, moment = t/m

L, length = m

Ec,eff ,Effective modulus of elasticity = N/mm2

33346

3.00

14839

7E+08

2.15

2.26

3.00

2.26

3.00

33346

9E+08

0.668

2.26

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

acc(perm) = -

= mm

7E+08

0.95

2.15 0.95

1.20

Page 186: IL & FS

iii) Deflection due to shrinkage,

acs = k3 * Ψcs * L2

Where, k3 is a constant representing effect of support conditions

k3 =

Ψcs= 1/ rcs As per Cl: 12.4.2, shrinkage curvature

1 = εcs * αe * S/I

rcs

As per Cl: 6.4.2.6, total shrinkage strain is given by

= +

= x 10-6

table 6.6, page 45 = kh * εcd'

table 6.7, page 45 =

= for relative humidity %

= x 10-6

Therefore,

=

=

= mm3

= mm4

=

S 23648

I 9E+08

Ψcs 1E-07

εcd 386.31

εcs 0.0004

αe 13.48

εcd

kh 0.829

εcd' 466 50

0.063 for continuous members

εcs εcd εca

εca 55

= mm

Total Deflection = Short term deflection+ Deflection due to creep + Deflection due to Shrinkage

Total Deflection = mm

acs 0.08

1.95

Page 187: IL & FS

Design of Deck Slab Beyond Diaphragm

12 Wearing Coat

Depth m

Cantilever Span m

Wearing coat thickness = mTotal load/Axle = = tDistance between two wheel = mDistance between two Axle = mMin. dist. Between face of kerb and outer edge of wheel = m

Ground Contact Area of Tyre W = Width = m

Ground Contact Area of Tyre B = Breath = m

Cantilever slab projection beyond diaphragm has been checked for 40t boggie load,for the wheel placing as shown in above fig.

b1 = m(0.5-2*0.05)+2*(0.065)

a = m0.55-(0.25/2)

Effective width at support = m1.2*0.425+0.53 >1.2m over lap

Net Effective Width = = m1.04*0.5+0.5*0.5

Moment due to DL = tm0.35*2.5*0.55*0.55/2

Moment due to SIDL = tm0.065*2.2*0.55*0.55/2

Moment due to LL = tm11.4*1.5*0.425/0.77

Total Moment at support = tm9.438+0.132+0.022

1.8

0.55

0.5

0.25

1.04

0.425

1.2

0.35

11.40.065

9.592

9.438

0.022

0.132

0.770

0.53

0.250

0.5

0.15

Class A

65

Page 188: IL & FS

IRC:6-2010 Factors for Limit State Design:

ULS factored moment due to DL = tm

ULS factored moment due to SIDL = tm

ULS factored moment due to LL = tm

Total ULS factored Moment = tm

Rare Combination factored moment due to DL = tm

Rare Combination factored moment due to SIDL = tm

Rare Combination factored moment due to LL = tm

Total Rare Combination factored Moment = tm

Quasi-permanent Combination factored moment due to DL = tm

Quasi-permanent Combination factored moment due to SIDL = tm

Quasi-permanent Combination factored moment due to LL = tm

Total Quasi-permanent Combination factored Moment = tm

Design for Flexure

Depth of member = mm

Width of Member = mm

Clear Cover, = mm

Dia.of Bar = mm

Effective Depth of Slab, d = mm

Bending Moment due to Applied Loads, Muls = kNm

SLS Moment (Rare Combination) = kNm

SLS Moment (Quasi-permanent Combination) = kNm

Required effective depth of slab = Sqrt(M/(Q*B)) = mm

SQRT(140.96*10^6/ (*1000))

SLS

Rare Quasi-perm FrequentType of Load ULS

Dead Load 1.35 1.00 1.00 1.00

SIDL-except

surfacing1.35 1.00 1.00 1.00

SIDL-surfacing 1.75 1.00 1.00 1.00

Live load-

Accompanying1.15 0.75 0.00

1.00 0.00 0.75

0.20

0.039

0.178

16

140.96

94.07

0.132

14.16

350

1000

40

302.0

1.51

162.9

0.022

0

0.154

14.37

0.132

0.022

9.438

9.592

Live load-Leading 1.50

Page 189: IL & FS

Area of Main Reinforcement:

Ast required = = mm2

Cl 16.5.1.1 IRC:112 Ast minimum = 0.26(fctm/fyk)*b*d or 0.0013*b*d = mm2

Hence, Ast required, = mm2

So, providing mm diameter bars @ mm spacing

Hence, Ast provided, = mm2/m

Percentage steel provided = %

Check for Area of steel reqd. A st provided >= A st required OK

Spacing provided, Sprov = mm

Cl 16.6.1.1 (4) IRC:112 Maximum spacing, Smax = lesser of 2h and 250mm = mm

Check for Spacing S max >= S prov OK

Stress Check :-

Dist. of Netural Axis from Top = Xu = mm[-αe*Ast-sqrt{(αe*Ast)^2-4*(0.5*b)*(-αe*Ast)}]/b

Compr. Stress for other load=M/(Area of comp.*LA) = < Mpa

Tensile Stress for other load=M/(Area of Tension*LA) = < Mpa

Distribution Reinforcement

a) At Top

Area of the main reinforcement (Ast) = mm2

Cl 16.6.1.1(3) IRC 112 Area of transverse reinforcement required (0.2 Ast) = mm2

Cl 16.5.4(4) IRC 112 Min area of surface reinforcement (0.01Act.ext) = mm2

Min area of reinforcement at bottom face (0.12% of b.d) = mm2

Area of distribution steel required (max of above 3) = mm2

Dia of bars to be used for distribution reinforcement = mm

Spacing of bars to be used for distribution reinforcement = mm

Area of steel provided = = mm2

Check for Area of steel reqd. A st provided >= A st required OK

Spacing provided, Sprov = mm

Cl 16.6.1.1 (4) IRC:112 Maximum spacing, Smax = lesser of 3h and 400mm = mm

Check for Spacing S max >= S prov OK

Hence provide 10mm dia bars @ 150mm c/c spacing at bottom of slab

−−=

2**

*6.411

**5.0

dbfck

Mu

fyk

dbfckAst

Page 190: IL & FS

b) At Bottom

Cl 16.5.4(4) IRC 112 Min area of surface reinforcement (0.01Act.ext) = mm2

Area of the distribution reinforcement required = mm2

Dia of bars to be used for distribution reinforcement = mm

Spacing of bars to be used for distribution reinforcement = mm

Area of steel provided = = mm2

Check for Area of steel reqd. A st provided >= A st required OK

Spacing provided, Sprov = mm

Cl 16.6.1.1 (4) IRC:112 Maximum spacing, Smax = lesser of 3h and 400mm = mm

Check for Spacing S max >= S prov OK

Hence provide 10mm dia bars @ 150mm c/c spacing at top of slab

Cl 12.3.4 IRC 112 CALCULATION OF CRACK WIDTH

Crack width ,

εsm-εcm =

σsc = N/mm2

Kt =

fct,eff = N/mm2

ρp,eff = As/Ac,eff =

αe = Es/Ecm =

εsm-εcm =

For the case of deformed bars associated with pure bending, as per Eq. 12.11 of IRC:112-2011

Φ eq = = mm

=

= mm < 0.3 mm As per Cl.12.3 Table 12.1

Cl 12.4 IRC 112 CALCULATION OF DEFLECTION

Deflection, for simply supported member = 5ML2/48EI

I, Moment of Inertia of section = mm4

Ec, Modulus of Elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

ho = 2Ac / u = mm

Φ, creep coefficient =

Ec,eff,effective modulus of elasticity = Ec/(1+φ) = N/mm2

Moment due to slab selfweight = tm

Moment due to SIDL = tm

Total moment due to sustained loading = tm (Permanent loads)

Moment due to vehicular loading = tm (Live loads)

1E-05

16.0

136.6

4.0

0.5

150

10

150

400

400

1.25

14839

9.438

78.54 x 1000 523.6

0.00

150

400

0.13

0.02

0.15

4E+09

33346

3E+09

220.9

3.03

4.288

5.998

∑∑

ii

ii

n

n

φ

φ2

`

Page 191: IL & FS

A) Deflection due to vehicular loading

Table3.3 IRC:6-2010 M, moment (including factor of 0.75 for freq combi) = tm

L, length = m

E, Modulus of elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

12.4.1.(2) IRC:112-2011Permissible deflection due to vehicular traffic =

= mm

Hence the deflection is Within permissible limit

B) Deflection due to sustained loading

i) For short term deflection,

Table3.3 IRC:6-2010 M, moment (including factors for freq combi) = tm

L, length = m

E, Modulus of elasticity = N/mm2

Ir, Moment of Inertia of section = mm4

Deflection (δ) = mm

ii) Deflection due to creep,

acc(perm) = aicc(perm) - ai(perm)

For aicc(perm)

M, moment = t/m

L, length = m

Ec,eff ,Effective modulus of elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

For ai(perm)

M, moment = t/m

L, length = m

Ec,eff ,Effective modulus of elasticity = N/mm2

Ir, Moment of Inertia of cracked section = mm4

Deflection (δ) = mm

acc(perm) = -

= mm

0.15

0.550

33346

0.550

14839

3E+09

7.079

0.550

33346

0.000

0.001

0.15

0.550

33346

3E+09

0.15

4E+09

0.001

0.001

0.001

0.000

0.027

0.688

3E+09

L/800

Page 192: IL & FS

iii) Deflection due to shrinkage,

acs = k3 * Ψcs * L2

Where, k3 is a constant representing effect of support conditions

k3 =

Ψcs= 1/ rcs As per Cl: 12.4.2, shrinkage curvature

1 = εcs * αe * S/I

rcs

As per Cl: 6.4.2.6, total shrinkage strain is given by

= +

= x 10-6

table 6.6, page 45 = kh * εcd'

table 6.7, page 45 =

= for relative humidity %

= x 10-6

Therefore,

=

=

= mm3

= mm4

=

= mm

Total Deflection = Short term deflection+ Deflection due to creep + Deflection due to Shrinkage

Total Deflection = mm

εcd

kh 0.829

0.5 for cantilevers

Ψcs 5E-08

acs 0.0081

0.009

εcs εcd εca

55

50

εcd 386.3

I 4E+09

αe 13.48

S 32170

εcd' 466

εcs 4E-04

εca