integral forms and trigonometric integrals

19
Integral Forms and Trigonometric Integrals MATH 166 Fall 2011 Integral forms that you need to know Let k be a real number, r a rational number and a> 0 be a positive real number. 1. k du = ku + C 2. u r du = u r+1 r +1 + C, r ̸= 1 ln |u| + C, r = 1 3. e u du = e u + C 4. a u du = a u ln a + C, a ̸=1 5. sin u du = cos u + C 6. cos u du = sin u + C 7. sec 2 u du = tan u + C 8. csc 2 u du = cot u + C 9. sec u tan u du = sec u + C 10. csc u cot u du = csc u + C 11. tan u du = ln | cos u| + C 12. cot u du = ln | sin u| + C 13. du a 2 u 2 = sin 1 u a + C 14. du a 2 + u 2 = 1 a tan 1 u a + C 15. du u u 2 a 2 = 1 a sec 1 |u| a + C 16. sinh u du = cosh u + C 17. cosh u du = sinh u + C Taken from pp. 383-384 in Calculus, 9th ed. by Varberg, Purcell and Rigdon. 1

Upload: others

Post on 26-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Integral Forms and Trigonometric Integrals

MATH 166

Fall 2011

Integral forms that you need to know

Let k be a real number, r a rational number and a > 0 be a positive real number.

1.

k du = ku+ C

2.

ur du =

ur+1

r + 1+ C, r ̸= −1

ln |u|+ C, r = −1

3.

eu du = eu + C

4.

au du =au

ln a+ C, a ̸= 1

5.

sin u du = − cosu+ C

6.

cosu du = sin u+ C

7.

sec2 u du = tanu+ C

8.

csc2 u du = − cot u+ C

9.

sec u tanu du = sec u+ C

10.

csc u cotu du = − csc u+ C

11.

tan u du = − ln | cosu|+ C

12.

cot u du = ln | sin u|+ C

13.

du√a2 − u2

= sin−1

(u

a

)

+ C

14.

du

a2 + u2=

1

atan−1

(u

a

)

+ C

15.

du

u√u2 − a2

=1

asec−1

(

|u|a

)

+ C

16.

sinh u du = cosh u+ C

17.

cosh u du = sinh u+ C

Taken from pp. 383-384 in Calculus, 9th ed. by Varberg, Purcell and Rigdon.

1

Integration by parts∫

u dv = uv −∫

v du

∫ b

au dv = [uv]ba −

∫ b

av du.

Look for a product of functions such that the derivative of one and the inte-gral of another is a basic form.

Simple radicals

Look for n

√ax+ b:

u = (ax+ b)1/n

un = ax+ b ⇔ x = (un − b)/a

nun−1 du = a dx

Trigonometric substitution√a2 − x2 x = a sin t −π/2 ≤ t ≤ π/2√a2 + x2 x = a tan t −π/2 < t < π/2√x2 − a2 x = a sec t 0 ≤ t ≤ π, t ̸= π/2

Can drop absolute value bars.Use sin−1, tan−1, sec−1 or triangles to back-substitute.

sec x dx = ln |sec x+ tanx|+ C∫

csc x dx = ln |csc x− cotx|+ C

Completing the square

x2 +Bx + C = x2 + 2(B/2)x+ (B/2)2 +[

C − (B/2)2]

= (x+ B/2)2 +[

C −B2/4]

3

Rational functions

Let p(x), q(x) be polynomials.∫

p(x)

q(x)dx

0. Do long division to ensure that the degree of p(x) is less than the degreeof q(x).

1. Factor q(x) into linear and (unfactorable) quadratic terms.

2. Each term of the factorization of q(x) gives a cluster of terms.

• The term (x− a)n gives rise to the cluster of terms:

A1

x− a+

A2

(x− a)2+ · · ·+

An

(x− a)n.

• The term (x2 + bx+ c)m gives rise to the cluster of terms:

B1x+ C1

x2 + bx+ c+

B2x+ C2

(x2 + bx+ c)2+ · · ·+

Bmx+ Cm

(x2 + bx+ c)m.

3. Solve for the unknown coefficients to get a Partial Fraction Decomposi-tion.

4. Integrate using∫

dx

x− a= ln |x− a| + C

2x+ b

x2 + bx+ cdx = ln |x2 + bx+ c|+ C

dx

(x+ d)2 + a2=

1

atan−1

(

x+ d

a

)

+ C.

4