introduction and mm wave work - tweether

16
Bristol 5G city testbed with 5G-XHaul extensions INTRODUCTION AND MMWAVE WORK PRESENTER: DANIEL CAMPS (I2CAT) 1

Upload: others

Post on 04-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Bristol 5G city testbed with 5G-XHaul extensions

INTRODUCTION AND MM‐WAVE WORKPRESENTER: DANIEL CAMPS (I2CAT)

1

5G‐XHAUL IN A NUTSHELL

2

Focused on Transport

Convergence Wireless – Optical Backhaul – Fronthaul

SDN Control plane Unified for Wireless & 

Optical Aware of demand spatio‐

temporal variations (in the RAN)

Interfaces for joint RAN –Transport

Data Plane Wireless

P2MP mm‐Wave (60 GHz) Sub‐6

Optical TSON WDM‐PON

• Huawei Technologies

• TU Dresden

• Telefónica I+D

• TES Electronic Solutions

• University of Bristol

• University of Thessaly

CONSORTIUM OVERVIEW

3

• IHP GmbH (Coordinator)

• ADVA Optical Networking

• Airrays GmbH

• Blu Wireless Technology

• COSMOTE

• Fundació i2CAT

3

• Universities (3x), Research Institutes (2x), SMEs (2x), Operators (2x), Industry partners (3x)

DENSE URBAN SCENARIO

As per NGMN [1]: 2500 active users / Km2 300Mbps DL / 50 Mbps UL

Example applications: Pervasive high resolution 

video Augmented reality 3D services

4

Possible physical locations of a Small

Cell

Possible physical locations of a Small

Cell

Illustrative example of a

rooftop Macro Cell site

60 GHz

[1] NGMN White paper on 5G use cases and requirements

Physical infrastructure: Dense small cells and back/fronthaul transport units mounted on 

lamp posts or street furniture Fiber presence in macro‐sites or some street cabinets

5G‐XHAUL OVERVIEW OF OPTICAL INNOVATIONS WDM‐PON

Increased data rates up to 25+ Gbps (new modulation formats). 40 ONUs/ OLT Colorless ONU transceivers with centralized wavelength assignment SDN controlled interface shutdown (SFP+)

Time Shared Optical Networks (TSON) Very granular bandwidth allocation through TDM frame/Flexigrid Protocol Convergence through Ethernet access. SDN enabled datapath

5

B. R. Rofoee, K. Katsalis, Y. Yan, Y. Shu, T. Korakis, L. Tassiulas, A. Tzanakaki, G. Zervas, D. Simeonidou, "Demonstration of Service-differentiated Communications over Converged Optical Sub-Wavelength and LTE/WiFi Networks using GEANT Link," in Proc. of OFC 2015, Los Angeles, California, USA

Optical

Priority Queuing

TDM frame length

Time slice Allocation

Traffic Eng

Flow classification

Datacenter

WirelessSub wavelength FPGA at edge

5G‐XHAUL SDN CONTROLLED MM‐WAVE/SUB6 TRANSPORT 

SDN controlled mm‐wave/Sub6 wireless transport:

6

NLoSSub6

Mm-Wave

Mm-Wave antennasteering range

Mm-wave P2MP throughTDMA beam hopping, orSDMA.

PHYSICAL view SDN controller viewFor each link:

- QoS metrics: capacity, latency

- Physical metrics: TX_rate, packetdrops, SNR, etc

- Actions: Set bandwidth:- Through TDMA slots in mWave- Through contention setting in

Sub6

Allocates traffic

EXAMPLE USE CASE: LOAD BALANCING

7

140 meters

Rooftop macro

Rooftop repeater

Street Level transport unit

Rooftop ↔ RooftopStreet ↔ RooftopStreet ↔ Street

State of the art

- Static 60 GHz links

- 32 units- 10 units- 10 units

P2MPbetween two links

OVERVIEW OF MM‐WAVE WORK IN 5G‐XHAUL

5G‐XHAUL mm‐wave focus is

5G‐XHAUL will work on:1. Antenna and Front End design2. Base band processing algorithms3. Localisation and Synchronization4. SDN Network control5. Standardization

8

ANTENNA AND FRONT END DESIGN: EXPERIMENTAL WORK

Preliminary antenna design: Array of ≈8x4 ‐ 16x4 printed radiating elements; 60 GHz band 2D (azimuth and elevation) steering Horizontal steering range of ±45° 4 such arrays for a 360° azimuthal coverage

Beam steering front end module Antenna integrated with beamforming (BF) IC 

on the same PCB  Each BF IC chip contains PAs, LNAs, 

phase shifters A new BF IC will be manufactured for the project More BF ICs could be used to form

larger array

9

Current IHP’s BF chipset prototype to be improved in theproject

Antenna model fromTES

BASE BAND PROCESSING: THEORY & SIMULATIONS

Multi‐Stream for mm‐wave P2P Spatial multiplexing in low rank mm‐Wave channels

Transceiver architectures:  Hybrid: Large arrays with antenna elements clustered in few RF chains

Increased data rates in realistic BH conditions:  e.g. 30 Gbps at 150+ meters 

Mm‐wave MIMO Channel estimation Using Krylov methods or compressed sensing

Beam alignment and tracking algorithms 

Extensions for mm‐wave P2MP TDMA based beam switching: 

To be validated experimentally using a 802.11ad MAC

SDM, in a multiuser fashion Requires more RF chains (suitable for BS)

10

Sample of BWT HYDRA mm-wave simulator with IEEE 802.11ad cannel model

SYNCHRONIZATION AND RANGING: THEORY & EXPERIMENTATION

Mm‐wave based ranging: Can be used in the RAN to track user location

and allocate BH/FH resources accordingly Current ToF based prototype available with cm 

level precisión on LoS conditions

The same functionality can be used for clocksynchronization between transport nodes Complement IEEE 1588 in the wireless

segment Control plane used to configure roles 

(master/slave)

11

IHP’s 60GHz ranging prototypeperformance

1588

M. Ehrig, M. Petri. V. Sark. J. Gutiérrez and E. Grass, “Combined high‐resolution ranging and high data rate wireless communication system in the 60 GHz band”, in Positioning, Navigation and Communication (WPNC), 2014 11th Workshop on , vol., no., pp.1‐6, 12‐13, March 2014.

MM‐WAVE SDN NETWORKING: THEORY,EMULATION & EXPERIMENTAL VALIDATION

Resilient mm‐wave based meshdeployments

SDN datapath:  Simple to minimise forwarding delay

SDN interfacing: What mm‐wave radio interface information

should we bring to the controller?

SDN driven multi‐level scheduling based on802.11ad MAC: SDN controller hierarchy for coarse resource allocation 11ad coordinator performs fine grained allocation

Mm‐wave and Sub6 cooperation driven by controller12

HYDRA mm-wave modules from BWT

Reliable PMP mm-wave mesh

A

C

B EH

G D F

*

* *

5G-XHAULControl Plane

Multi-level scheduling

MM‐WAVE TARGET STANDARD CONTRIBUTIONS

ETSI mWT ISG working group on mm‐wave Expected relevant contributions to regulatory and standards 

bodies

Wi‐Fi Alliance: 60 GHz TTG group working on Wi‐Gig certification 60 GHz MKT working on future marketing requirements

IEEE 802.11ay (NG60) MIMO architectures for mm‐wave Channel bonding

13

5G‐XHAUL CITY WIDE TESTBED IN BRISTOL

14

CURRENT PROJECT STATUS

15

Started July 2015. 3 year project. Current status:

Current work on deriving functional and performance requirements from: Packetized FH implementations (CPRI over Ethernet) NGFI: Potential functional splits from Sub6 and mm‐wave RANs 

are being analyzed to dimension the transport network

WP2: Use Cases, Requirements, KPIs and Architecture

WP3: SDN based control plane

WP4: Programmable Wireless & OpticalData plane

WP5: Testbed deployment and evaluation

July 2015 Jan 2016

Feb 2016: D2.1 Requirements, Specifications and KPIs

Sept 2015: Kick Off in Bristol

Dec 2015: 2nd F2F Madrid

Thanks for your attention!

Questions?