iron oxide-silica nanocomposites yielded by chemical route ......barnstead easypureii water...

10
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/297756384 Iron oxide-silica nanocomposites yielded by chemical route and sol–gel method Article in Journal of Sol-Gel Science and Technology · March 2016 DOI: 10.1007/s10971-016-3996-1 CITATIONS 0 READS 182 7 authors, including: Some of the authors of this publication are also working on these related projects: Synthesis and nanostructural analysis of SiQDs-cellulose composites View project Liviu Sacarescu Petru Poni Institute of Macromolecular Chem… 120 PUBLICATIONS 463 CITATIONS SEE PROFILE Marian Grigoras National Institute of Research & Developmen… 50 PUBLICATIONS 128 CITATIONS SEE PROFILE Maria Balasoiu Joint Institute for Nuclear Research 103 PUBLICATIONS 555 CITATIONS SEE PROFILE Dorina Creanga Universitatea Alexandru Ioan Cuza 184 PUBLICATIONS 685 CITATIONS SEE PROFILE All content following this page was uploaded by Dorina Creanga on 21 March 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.

Upload: others

Post on 12-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Seediscussions,stats,andauthorprofilesforthispublicationat:https://www.researchgate.net/publication/297756384

    Ironoxide-silicananocompositesyieldedbychemicalrouteandsol–gelmethod

    ArticleinJournalofSol-GelScienceandTechnology·March2016

    DOI:10.1007/s10971-016-3996-1

    CITATIONS

    0

    READS

    182

    7authors,including:

    Someoftheauthorsofthispublicationarealsoworkingontheserelatedprojects:

    SynthesisandnanostructuralanalysisofSiQDs-cellulosecompositesViewproject

    LiviuSacarescu

    PetruPoniInstituteofMacromolecularChem…

    120PUBLICATIONS463CITATIONS

    SEEPROFILE

    MarianGrigoras

    NationalInstituteofResearch&Developmen…

    50PUBLICATIONS128CITATIONS

    SEEPROFILE

    MariaBalasoiu

    JointInstituteforNuclearResearch

    103PUBLICATIONS555CITATIONS

    SEEPROFILE

    DorinaCreanga

    UniversitateaAlexandruIoanCuza

    184PUBLICATIONS685CITATIONS

    SEEPROFILE

    AllcontentfollowingthispagewasuploadedbyDorinaCreangaon21March2016.

    Theuserhasrequestedenhancementofthedownloadedfile.Allin-textreferencesunderlinedinblueareaddedtotheoriginaldocument

    andarelinkedtopublicationsonResearchGate,lettingyouaccessandreadthemimmediately.

    https://www.researchgate.net/publication/297756384_Iron_oxide-silica_nanocomposites_yielded_by_chemical_route_and_sol-gel_method?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_2&_esc=publicationCoverPdfhttps://www.researchgate.net/publication/297756384_Iron_oxide-silica_nanocomposites_yielded_by_chemical_route_and_sol-gel_method?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_3&_esc=publicationCoverPdfhttps://www.researchgate.net/project/Synthesis-and-nanostructural-analysis-of-SiQDs-cellulose-composites?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_9&_esc=publicationCoverPdfhttps://www.researchgate.net/?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_1&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Liviu_Sacarescu?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Liviu_Sacarescu?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdfhttps://www.researchgate.net/institution/Petru_Poni_Institute_of_Macromolecular_Chemistry?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Liviu_Sacarescu?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Marian_Grigoras2?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Marian_Grigoras2?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdfhttps://www.researchgate.net/institution/National_Institute_of_Research_Development_for_Technical_Physics?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Marian_Grigoras2?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Maria_Balasoiu2?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Maria_Balasoiu2?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdfhttps://www.researchgate.net/institution/Joint_Institute_for_Nuclear_Research?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Maria_Balasoiu2?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Dorina_Creanga?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Dorina_Creanga?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdfhttps://www.researchgate.net/institution/Universitatea_Alexandru_Ioan_Cuza?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Dorina_Creanga?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdfhttps://www.researchgate.net/profile/Dorina_Creanga?enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

  • ORIGINAL PAPER: NANO-STRUCTURED MATERIALS (PARTICLES, FIBERS, COLLOIDS, COMPOSITES, ETC.)

    Iron oxide-silica nanocomposites yielded by chemical routeand sol–gel method

    E. Puscasu1 • L. Sacarescu2 • N. Lupu3 • M. Grigoras3 • G. Oanca1 •

    M. Balasoiu4,5 • D. Creanga1

    Received: 1 August 2015 /Accepted: 19 February 2016

    � Springer Science+Business Media New York 2016

    Abstract Magnetic nanoparticles yielded by chemical

    route were surface modified with stabilizing agents being

    further coated by sol–gel method with silica shell to be

    used for various applications. Iron oxide magnetic cores

    were dispersed in water by single citrate layer and,

    respectively, by double oleate hydrophilic coating. Sol–gel

    reaction with tetraethylorthosilicate provided further coat-

    ing with silica that confers increased reactivity for ligand

    coupling. Microstructural and magnetic properties were

    investigated by standard methods evidencing nanometric

    size, good crystallinity, and superparamagnetic behavior.

    Comparative analysis evidenced similar crystallite size for

    both citrate- and oleate-coated magnetic nanoparticles,

    while granularity was changed after silica adding. Satura-

    tion magnetization diminished less for oleate-stabilized

    nanoparticles than for citrate-stabilized ones after silica

    coating and moderate thermal treatment. Such prepared

    magnetic nanocomposites could have possible utilization

    as magnetic vectors for targeted biomolecules.

    Graphical Abstract

    Keywords Iron oxides � Citrate � Oleate double layer �Sol–gel coating � Superparamagnetic nanocomposites

    1 Introduction

    Nanotechnology development offered tremendous oppor-

    tunity for various applications of nanoparticles and

    nanocomposites based on their special properties from

    viewpoint of both microstructural and magnetic features.

    Multidisciplinary approach is imperiously needed to yield

    basic nanocores, stabilize them against aggregation ten-

    dency, coat them with adequate molecular shell and graft

    on them biomolecules of interest when biomedical pur-

    poses are intended. Magnetic nanosystems appeared as

    very promising tools either for clinical diagnosis through

    & D. [email protected]; [email protected]

    E. Puscasu

    [email protected]

    L. Sacarescu

    [email protected]

    N. Lupu

    [email protected]

    M. Balasoiu

    [email protected]

    1 Physics Faculty, ‘‘Alexandru Ioan Cuza’’ University, 11

    Blvd. Carol I, 700506 Iasi, Romania

    2 ‘‘Petru Poni’’ Institute of Macromolecular Chemistry, Iasi,

    Romania

    3 National Institute of Research and Development for

    Technical Physics, 47 Blvd. D. Mangeron, Iasi 700050,

    Romania

    4 Joint Institute for Nuclear Research, Dubna, Moscow Region,

    Russian Federation 141980

    5 Horia Hulubei Institute of Physics and Nuclear Engineering,

    Bucharest, Romania

    123

    J Sol-Gel Sci Technol

    DOI 10.1007/s10971-016-3996-1

    http://crossmark.crossref.org/dialog/?doi=10.1007/s10971-016-3996-1&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1007/s10971-016-3996-1&domain=pdf

  • magnetic resonance imagistic [1–3] or for therapeutic

    methods based on magnetic fields: magnetically assisted

    drug delivery [4–6] and tumor therapy through hyperther-

    mia with magnetic nanoparticles (MNP) and electromag-

    netic fields [3, 7, 8].

    To prepare magnetic nanocores various techniques were

    developed, the most utilized being sol–gel technique,

    thermal decomposition of iron complex combinations and

    coprecipitation in alkali medium which successfully pro-

    vided convenient amounts of material that can be easy

    manipulated for surface modification with organic mole-

    cules. Sol–gel procedure was found useful for nanoparticle

    coating with silica shell, not only for iron compounds but

    also for other metallic particles since silica is known to

    interact easily with cations and the abundant silanol groups

    at the surface of silica-coated nanoparticles allow activa-

    tion with various functional groups [9].

    Some literature reports are worth to be mentioned

    regarding sol–gel reaction for nanoparticle coating with

    silica protective and reactive shell. Metallic biocompatible

    TiO2 nanoparticles were coated with silica layer by sol–gel

    procedure resulting in surface homogenous coverage with

    controllable thickness [10]. Semiconductor fluorescent

    nanoparticles stabilized in the form of quantum dots

    through surface modification with carboxyl groups were

    coated by sol–gel reaction using tetraethylorthosilicate

    (TEOS) that provided silica shell of various thickness and

    preserved fluorescence properties too [11]. Superparam-

    agnetic FePt nanoparticles were embedded in silica matrix

    by sol–gel method to control their behavior during high-

    temperature treatment [12].

    In [13], the authors worked on submicron-sized mag-

    netite/silica nanocomposites that were yielded starting

    from 10 nm magnetite grains coprecipitated in alkali media

    according to Massart method [14], being then surface

    modified with carboxyethylsilanetriol—as silane coupling

    agent—and then coated with silica shell through sol–gel

    procedure based on TEOS; finally, 100 nm magnetite/silica

    composites were obtained with the aim to allow further

    attachment of biomolecules for medical purposes.

    Magnetic nanopowders designed to reach target organs

    during medical procedures tend to agglomerate quickly if

    directly exposed to biological media so that their prepa-

    ration as colloidal suspensions is needed before medical

    administration.

    As underlined in [9], most of applications of magnetic

    particles in biomedicine and bioengineering require non-

    magnetic protection to ensure stability of particle proper-

    ties by avoiding agglomeration or sedimentation as well as

    to endow them with particular surface modifications

    required by specific applicative purposes.

    The pristine magnetic nanoparticle stability has real

    limitations not only because of aggregation in liquids,

    especially at physiological pH, but also because of iron

    oxide reactivity with blood. The reactivity of nanosized

    iron oxides affect their stability during direct contact with

    biological structures where such particles can be endocy-

    tated and easily digested due to cell lysosomal processes

    [15], the released iron ions eventually contributing to the

    total cellular iron pool [16]. In [17], the authors underlined

    that silica coating of iron oxide nanoparticles is benefic not

    only in preventing aggregation and improving chemical

    stability in liquids, but also due to the fact that the silanol-

    terminated surface groups may be modified with various

    coupling agents to covalently bind to specific ligands.

    Silica interaction with iron oxides could occur by direct

    binding or by means of intermediate stabilizer capping

    ingredients.

    During last years, biomedical applications of iron oxide

    core-silica shell systems were reported by some authors. In

    [18], the authors reported enzyme entrapping on magnetite-

    silica particles, while in [19] cross-linked enzyme mole-

    cules were shown to form clusters on the surface of the

    magnetite-silica nanoparticles; iron-cobalt oxide-silica

    nanoparticles prepared to be used for glucose oxidase

    immobilization via cross-linking with glutaraldehyde were

    presented in [20]; silica-coated Fe3O4 nanoparticles func-

    tionalized with amino groups to bind bovine serum albu-

    min were described in [21]; in [22], a review of magnetic

    nanoparticle applications in protein immobilization can be

    seen. As mentioned in [23], silica layer provides magnetic

    nanoparticles with chemically friendly surface which is

    essential for biological utilization while the silanol surface

    groups could interact with various intermediate chemical

    ingredients enabling the magnetic nanocomposites to react

    with molecules of particular interest.

    Various technological routes have been shown to be

    effective in using silica for coating or embedding iron

    oxide nanoparticles to improve stability in suspension.

    Maghemite silanization has resulted in single or multiple

    magnetic cores in silica matrix when synthesized by rapid

    flame spray pyrolysis as reported in [24]. The yielding of

    superparamagnetic hierarchical material involving silica

    coating was described in [25], while in [26] maghemite

    nanoparticle precipitation from an iron salt precursor dur-

    ing the sol–gel processing of the silica matrix was

    presented.

    According to the mechanism proposed in [22], the direct

    binding of silica on magnetic nanoparticle surface involves

    the base-catalyzed hydrolysis of TEOS followed by con-

    densation on iron oxide particles. The OH groups’ presence

    on the iron oxide surface is essential in silica attraction by

    hydrogen bonds. Thus, when OH groups are already stably

    associated with magnetic particle surface via previous

    capping with hydrophilic surfactant molecules, silanization

    is expected to occur more successfully. Based on this,

    J Sol-Gel Sci Technol

    123

    https://www.researchgate.net/publication/230763714_Prijic_S_and_Sersa_G_Magnetic_nanoparticles_as_targeted_delivery_systems_in_oncology_Radiol_Oncol_45_1-16?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/230763714_Prijic_S_and_Sersa_G_Magnetic_nanoparticles_as_targeted_delivery_systems_in_oncology_Radiol_Oncol_45_1-16?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/51029950_Mitoxantrone-Iron_Oxide_Biodistribution_in_Blood_Tumor_Spleen_and_Liver-Magnetic_Nanoparticles_in_Cancer_Treatment?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/267033444_Toxicity_of_superparamagnetic_iron_oxide_nanoparticles_Research_strategies_and_implications_for_nanomedicine?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/45288781_Superparamagnetic_hierarchical_material_fabricated_by_protein_molecule_assembly_on_natural_cellulose_nanofibres?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/222686810_Magnetic_nanoparticles_for_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225517073_Direct_coating_of_quantum_dots_with_silica_shell?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/46391794_Potential_toxicity_of_superparamagnetic_iron_oxide_nanoparticles_SPION?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/275420285_Preparation_and_characterization_of_surface-functionalization_of_silica-coated_magnetite_nanoparticles_for_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/5662071_Simple_Synthesis_of_Functionalized_Superparamagnetic_MagnetiteSilica_CoreShell_Nanoparticles_and_their_Application_as_Magnetically_Separable_High-Performance_Biocatalysts?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/263476678_Characterization_of_Modified_Magnetite_Nanoparticles_for_Albumin_Immobilization?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/250981973_Synthesis_and_characterization_of_magnetic_nanoparticles_coated_with_silica_through_a_sol-gel_approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/231652963_Evolution_of_Morphology_and_Magnetic_Properties_in_SilicaMaghemite_Nanocomposites?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/5297175_Magnetic_nanoparticles_in_MR_imaging_and_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/41418890_Water-soluble_superparamagnetic_manganese_ferrite_nanoparticles_for_magnetic_resonance_imaging?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/242653361_Synthesis_Surface_Modification_and_Characterisation_of_Biocompatible_Magnetic_Iron_Oxide_Nanoparticles_for_Biomedical_Applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/3105400_Preparation_of_Aqueous_Magnetic_Liquids_in_Alkaline_and_Acidic_Media?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/231652434_Controlled_Synthesis_of_Magnetite-Silica_Nanocomposites_via_a_Seeded_Sol-Gel_Approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/264639920_Application_of_Iron_Magnetic_Nanoparticles_in_Protein_Immobilization?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/264639920_Application_of_Iron_Magnetic_Nanoparticles_in_Protein_Immobilization?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/7463518_Clinical_hyperthermia_of_prostate_cancer_using_magnetic_nanoparticles_Presentation_of_a_new_interstitial_technique?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/7010809_Intracranial_Thermotherapy_Using_Magnetic_Nanoparticles_Combined_with_External_Beam_Radiotherapy_Results_of_a_Feasibility_Study_on_Patients_with_Glioblastoma_Multiforme?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/257613133_Synthesis_and_characterization_of_FePt_nanoparticles_and_FePt_nanoparticleSiO2-matrix_composite_films?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/226884041_Synthesis_of_Spherical_Submicron-Sized_MagnetiteSilica_Nanocomposite_Particles?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/223036894_An_Improved_Way_to_Prepare_Superparamagnetic_Magnetite-Silica_Core-Shell_Nanoparticles_for_Possible_Biological_Application?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/51566341_Maghemite-silica_nanocomposites_sol-gel_processing_enhancement_of_the_magneto-optical_response?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/260210199_Investigation_of_formation_of_silica-coated_magnetite_nanoparticles_via_sol-gel_approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/260210199_Investigation_of_formation_of_silica-coated_magnetite_nanoparticles_via_sol-gel_approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==

  • silanization of citrate-coated magnetic nanoparticles with

    average size of about 15 nm was presented in [9] where

    silica coating resulted in about 40 nm structures. Tetram-

    ethyl ammonium hydroxide-coated iron oxide nanoparti-

    cles of about 14.5 nm were coated with silica by sol–gel

    technique in [27] and resulted in apparently very few

    increased size systems as conditioned by TEM device

    contrast imaging.

    We have chosen to study silica coating of two kinds of

    MNP-capped samples: short-chain citrate-coated MNPs

    versus long-chain oleate-coated MNPs. While citrate/

    MNPs in silica were studied by some research groups [9,

    20], no available literature was found regarding hydrophilic

    oleate/MNPs in silica coating.

    2 Experimental

    2.1 Synthesis technology

    The ferrophase was obtained via coprecipitation method at

    high temperature [14]. All chemicals used in experiments

    were analytical high-purity reagents purchased from Lach-

    ner, Merck, Sigma-Aldrich, being used without further

    purification, while purified water (18.2 MX/cm) usedthroughout the whole experiment was obtained using

    Barnstead EasyPureII water purification system.

    Briefly, 100 mL aqueous solution containing 1.332 g

    ferrous chloride (FeCl2�4H2O) and 100 mL aqueous solu-tion containing 3.622 g ferric chloride (FeCl3�6H2O) weremixed using intense magnetic stirring at about 80 �C. Next50 mL of 1.7 M hot NaOH solution was dropped into the

    mixture of metal salts solutions, and the black powder that

    precipitated was processed for other 30 min in the same

    conditions in order to ensure crystal formation and growth.

    The collected magnetic slurry was washed for three times

    with 200 mL deionized water volumes to remove all

    impurities.

    Then ferrophase was mixed with 1.7 g citric acid

    (C6H8O7) dissolved in 3.5 mL water under constant

    mechanical stirring (1200 rpm) at 80 �C for 1 h to getMNPs colloidal suspension; repeated washing with water

    was done to eliminate surfactant excess; carefully pH

    adjusting was carried out aiming to ensure long-term sta-

    bility (pH * 5) of iron oxide/citrate MNPs—sample P1. Insimilar conditions, but after washing the ferrophase with

    slightly acidic water, 0.3 g sodium oleate (C18H33NaO2)

    dissolved in 10 mL deionized water was added to get

    MNPs colloidal suspension—sample S1.

    In the next step, amorphous silica addition, via the

    hydrolysis of a sol–gel precursor (TEOS), resulted in final

    samples P2 and S2, respectively.

    After coating by sol–gel method at room temperature,

    according to the method described in [28], moderate ther-

    mal treatment was performed.

    First, in a glass beaker equipped with mechanical stirrer

    (1200 rpm) consecutively reagent addition was done:

    0.25 g iron oxide/citrate in suspension from P1 and,

    respectively, iron oxide/oleate MNPs from S1 dispersed in

    water up to 7 mL were mixed each with 35 mL 2-propanol,

    0.07 g sodium hydroxide and 1 mL tetraethylorthosilicate.

    Vigorous stirring was carried out for 3 h at room temper-

    ature in order to ensure interaction of reagents with the P1

    and S1 samples.

    Then, silica-coated particles were separated from the

    reaction medium by centrifugation at 3500 rpm and were

    repeatedly washed with water until the pH reached *6.Finally, waxy (gelatinous) magnetic materials were

    dried under vacuum at 90 �C for 6 h and then wereannealed for 3 h up to 165 �C temperature to finalize ironoxide/citrate/silica composites preparation [26]—P2 sam-

    ple, and, respectively, iron oxide/oleate/silica compos-

    ites—sample S2 (Scheme 1).

    2.2 Investigation methods

    Transmission electron microscope (TEM) model Hitachi

    High-Tech HT7700—with scanning transmission electron

    microscopy (STEM) module and also with energy-disper-

    sive X-ray analysis (EDX) module (HV of 100.0 kV, range

    20 keV/130 kcps), was utilized to image and estimate

    nanosystem sizing for P1, S1, P2 and S2 samples. X-ray

    diffraction (XRD) analysis using Shimadzu LabX XRD-

    6000 diffractometer (Cu-Ka radiation at k = 1.5406 Å)was applied for checking crystalline structure of MNPs and

    calculate crystallites size. Magnetic properties analysis by

    vibrating sample magnetometry (VSM) was performed

    using Lake Shore VSM 7410 model at room temperature in

    order to evidence magnetization capacity up to 2T and to

    evaluate magnetic core diameter.

    3 Results and discussion

    TEM image analysis and measurement showed rather

    regular geometric structures, mostly quasi-spherical—with

    about 15 nm average size for iron oxide/citrate MNPs (P1

    sample, Fig. 1a)—concordant with [9] and about 20 nm for

    iron oxide/oleate MNPs (S1 sample) (Fig. 2a). The dif-

    ferences could be discussed as follows.

    As shown for example, in [29] citric acid interaction

    with surface ions of magnetite or maghemite particles

    consists in efficient binding via one or two carboxylate

    groups that results in only monolayer citrate—even when

    citric acid is added in excess. In [17], the authors sustained

    J Sol-Gel Sci Technol

    123

    https://www.researchgate.net/publication/3105400_Preparation_of_Aqueous_Magnetic_Liquids_in_Alkaline_and_Acidic_Media?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/231652434_Controlled_Synthesis_of_Magnetite-Silica_Nanocomposites_via_a_Seeded_Sol-Gel_Approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/216212877_Modifying_the_Surface_Properties_of_Superparamagnetic_Iron_Oxide_Nanoparticles_through_A_Sol-Gel_Approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/223036894_An_Improved_Way_to_Prepare_Superparamagnetic_Magnetite-Silica_Core-Shell_Nanoparticles_for_Possible_Biological_Application?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/51566341_Maghemite-silica_nanocomposites_sol-gel_processing_enhancement_of_the_magneto-optical_response?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/49942838_Design_of_water-based_ferrofluids_as_contrast_agents_for_magnetic_resonance_imaging?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/260210199_Investigation_of_formation_of_silica-coated_magnetite_nanoparticles_via_sol-gel_approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/260210199_Investigation_of_formation_of_silica-coated_magnetite_nanoparticles_via_sol-gel_approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/260210199_Investigation_of_formation_of_silica-coated_magnetite_nanoparticles_via_sol-gel_approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225867869_Magnetite_Nanoparticles_Stabilized_Under_Physiological_Conditions_for_BiomedicalApplication?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==

  • the efficacy of such MNP capping technique as a useful

    intermediate step in further improving MNP coating with

    silica shell, due to the fact that citrate binding ensures

    rather stable and uniform distribution of OH from carboxyl

    groups, allowing better interaction with silica. In [20], the

    utilization of magnetite nanoparticles capped with citrate

    ions as seeds for silica coating by sol–gel procedure was

    also reported. This way single MNP cores in silica shell

    were yielded together with some clusters of MNP cores in

    silica matrix—what we probably obtained also in our

    samples besides dominant single core MNPs coated in

    silica shell (Fig. 1b).

    In [29], the oleate double layer formation around iron

    oxide nanoparticles in aqueous medium was described,

    which confers hydrophilicity and still higher stability of

    magnetic particles in acidic media. First layer of oleate ions

    interacts with iron ions at the level of carboxylate groups of

    long hydrophobic chain; second oleate layer is assembled

    Scheme 1 MNP synthesis,stabilization and coating

    Fig. 1 a Iron oxide/citrate MNPs before silica coating (P1). b Iron oxide/citrate MNPs after silica coating (P2). c STEM image of iron oxide/citrate MNPs in silica coating (P2). d EDX mapping of iron oxide/citrate/silica nanocomposites (P2)

    J Sol-Gel Sci Technol

    123

    https://www.researchgate.net/publication/231652434_Controlled_Synthesis_of_Magnetite-Silica_Nanocomposites_via_a_Seeded_Sol-Gel_Approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225867869_Magnetite_Nanoparticles_Stabilized_Under_Physiological_Conditions_for_BiomedicalApplication?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==

  • through tight hydrophobic interactions with fatty acid

    chains of first layer [30], while the carboxyl groups remain

    exposed to the aqueous suspension conferring hydrophilic-

    ity to entire coated particles; thus, silica binding is thought

    to have increased efficiency leading also to stable

    suspensions.

    In previous work [31], we reported the yielding of oleate-

    coated MNP suspensions by similar technological approach

    and stability analysis carried out by dynamic light scattering.

    Zeta potential was found around -60 mV, which corre-

    sponds to stable colloidal suspension according to theoretical

    threshold of -30/? 30 mV [32]; other authors reported

    10 nm citric acid-coated magnetite nanoparticles having

    zeta potential of about -43 mV for pH of 5 (in [33]) or

    citrate-coated magnetite particles in silica clusters having

    zeta potential at the limit of stability [34]. It could be men-

    tioned also that when oleate ions are supplied in hydrocarbon

    reaction media from oleic acid source [35], they ensure

    single layer coating of iron oxide particles and excellent

    stabilization in hydrophobic environment– which is suit-

    able for technical applications but not equally for biomedical

    purposes.

    After silica coating larger systems, up to 40 nm

    (Fig. 1b—P2 sample and Fig. 2b—S2 sample) could be

    observed—which is similar with the data reported in [9].

    Some particle overlapping could be the consequence of the

    fact that TEM measurements were performed on dried

    particles that couldn’t be impeded to agglomerate. We may

    say that TEM images show similar dispersion degree of

    dominant small MNPs after and before silica coating.

    STEM imaging alternatively was carried out—Fig. 1c

    for P2 and Fig. 2c for S2. Good dispersion of metallic

    cores surrounded by silica was evidenced by STEM pic-

    tures, as shown also with TEM before sol–gel coating

    procedure (Figs. 1a and 2a).

    Final dispersion of the nanocomposites is going to be

    adjusted when ligand binding or biomolecule grafting will

    be carried out in order to complete the sample for the

    biomedical application.

    It is probable also that not only single iron oxide cores

    resulted in silica coatings but also some magnetic cores

    groups could be embedded in the same silica aggregate as

    reported for example in [24]; this was concluded also in

    [26] where maghemite-silica nanocomposites were yielded

    Fig. 2 a Iron oxide/oleate MNPs before silica coating (S1). b Iron oxide/oleate MNPs after silica coating (S2). c STEM image of iron oxide/oleate MNPs in silica coating (S2). d EDX mapping of iron oxide/oleate/silica nanocomposites (S2)

    J Sol-Gel Sci Technol

    123

    https://www.researchgate.net/publication/231652963_Evolution_of_Morphology_and_Magnetic_Properties_in_SilicaMaghemite_Nanocomposites?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/262109821_Monodisperse_sodium_oleate_coated_magnetite_high_susceptibility_nanoparticles_for_hyperthermia_applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225157271_Horizontal_low_gradient_magnetophoresis_behaviour_of_iron_oxide_nanoclusters_at_the_different_steps_of_the_synthesis_route?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/240610807_Magnetic_nanofluids_stabilized_with_various_chain_length_surfactants?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/284918463_Preparation_of_soft_magnetic_materials_and_characterization_with_investigation_methods_for_fluid_samples?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/51566341_Maghemite-silica_nanocomposites_sol-gel_processing_enhancement_of_the_magneto-optical_response?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/260210199_Investigation_of_formation_of_silica-coated_magnetite_nanoparticles_via_sol-gel_approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/265970391_Magnetic_liposomes_for_colorectal_cancer_cells_therapy_by_high-frequency_magnetic_field_treatment?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==

  • by direct sol–gel process. According to [29], thinner citrate

    layer could be suspected not to cover entirely magnetic

    particles surface so that these ones could eventually asso-

    ciate and lead to multiple core systems in silica or frequent

    clusters of single iron oxide-silica systems; the size of such

    citrate monolayer-iron oxide-silica structures could reach

    the same average value as in the case of double oleate layer

    where more compact coverage is expected and significantly

    less particle association before silica adding occurs. In

    [36], the authors also found single or multiple citrate

    capped magnetic cores embedded in silica coating which

    probably exists in our samples too.

    EDX mapping is presented in Figs. 1d and 2d. In

    Fig. 1d, the results of EDX investigation of P2—iron

    oxide/citrate/silica nanocomposites, is presented with nor-

    malized values for Fe (green curve with maximum at 100

    units). It is evident that Si distribution (red line) on the

    direction chosen for exemplification across one MNP

    agglomeration reached lower levels than Fe (green line).

    Neighbor peaks of the recorded green curves are distanced

    with 15–25 nm in the case of P2 (Fig. 1d). Relatively

    parallel Si red curve was recorded indicating that the

    scanned structures are formed from MNP cores individu-

    ally coated with silica shell; only at the edges of the ana-

    lyzed linear segment across MNP group Si amount is

    occasionally higher than that of Fe. It is not excluded that

    the maxima of Si amounts are not precisely centered on the

    Fe maxima, some shifts between the two recordings being

    noticed.

    In Fig. 2d, the results of EDX investigation of S2—iron

    oxide/oleate/silica nanocomposites, can be seen. The

    neighbor peaks on the two recordings (green curve for Fe

    and red curve for Si) are distanced with 25–45 nm, while

    the Si level is lower than for P2 sample (about 55 %

    compared to 80 % in P2). This indicates the higher amount

    of silica attaching to the iron oxide/citrate cores than to

    oleate-coated ones due to the nature and electric charge of

    citrate—ensuring primary electrostatic stabilization of

    magnetic cores. In the case of S2, steric stabilization by

    double oleate shell seems to allow smaller amount of silica

    attaching.

    Analysis of raw XRD recorded data—according to the

    reference for XRD peak attribution, i.e., ASTM Card

    11-614 [37], confirmed spinel-structured crystallites for all

    samples (Fig. 3a, b). It is expected that partial conversion

    to maghemite at the surface of some magnetite nanoparti-

    cles occurred during open air manipulation and reaction

    medium temperature which is not easy to discern from

    XRD data. Oleate-surfacted MNPs covered with silica (S2

    sample, Fig. 3b) evidenced distinct XRD peak at about 27

    degrees suggesting structured silica presence. It is possible

    that oleate-surfacted MNPs were embedded in silica matrix

    with porous surface, while citrate surfacted MNPs (P2

    sample, Fig. 3a) were encapsulated in thinner silica shell

    with small, hardly visible peak comparable with recording

    noise.

    Average crystallite size, Dijk, was calculated (Table 1)

    using Scherrer’s formula for the strongest peak (311):

    Dijk ¼K � k

    b � cos h ð1Þ

    where K is a dimensionless factor which varies with the

    shape of the crystallite (in this case K = 0.89), k (Å) isX-ray wavelength, b (rad) is line broadening at half of themaximum intensity and h (rad) is the Bragg angle of (ijk)peak.

    The results presented in Table 1 for P1 are in agreement

    with those of published in [38] where the authors reported

    citrate-capped magnetite with crystallite size of 12 nm,

    while for P2 our results are concordant with those

    Fig. 3 a XRD recordings for P1 and P2. b XRD recordings for S1and S2

    J Sol-Gel Sci Technol

    123

    https://www.researchgate.net/publication/216358130_Effect_of_pH_citrate_treatment_and_silane-coupling_agent_concentration_on_the_magnetic_structural_and_surface_properties_of_functionalized_silica-coated_iron_oxide_nanocomposite_particles?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225375454_Effect_of_a_SiO_2_coating_on_the_magnetic_properties_of_Fe_3_O_4_nanoparticles?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225867869_Magnetite_Nanoparticles_Stabilized_Under_Physiological_Conditions_for_BiomedicalApplication?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/281037521_Standard_X-ray_diffraction_powder_patterns?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==

  • published in [30] for double oleate layer magnetite parti-

    cles of about 10 nm.

    Estimated values suggest that crystallite size could not

    change significantly after silica coating in either case.

    However, higher values for iron oxide/citrate MNPs com-

    pared to iron oxide/oleate ones could result from accuracy

    measurement diminution—with Scherrer’s formula—be-

    cause of possible oleate excess remained in the colloidal

    suspension as well as to some changes in surface atom

    arrangement during silica binding/thermal treatment—in-

    cluding conversion to maghemite or possible amorphous

    phase that increased noise-to-signal ratio.

    VSM recording evidenced relatively high magnetization

    capacity for iron oxide/citrate MNPs (about 62 emu/g

    saturation magnetization for P1). In [39], the authors

    reported still higher magnetization (over 70 emu/g) for

    citrate-capped MNPs with about 10 nm physical diameter,

    while in [17] only 43 emu/g saturation magnetization for

    magnetite/citrate MNPs with about 7 nm crystallites was

    reported.

    In P2, the saturation magnetization was reduced con-

    siderably (with over 50 % compared to P1) following

    interaction with silica (Table 2). This is similar with the

    data published in [38] where citrate-stabilized MNPs with

    73 emu/g were transformed in magnetite-citrate-silica

    composites with about half saturation magnetization

    (37 emu/g). Also the decrease of specific saturation mag-

    netization of maghemite nanoparticles after embedding in

    silica matrix was reported in [24].

    Also in [17], the study of silica coating of magnetite/

    citrate nanoparticles resulted in considerable lowering of

    saturation magnetization (from 43 to about 13 emu/g)

    which is interpreted also as the effect of total mass

    increasing relatively to initial ferrophase amount when

    silica is added. Other researchers [9] obtained magnetite/

    citrate/silica composites with lower saturation

    magnetization (less than 10 emu/g) and their magneto-

    metric study evidenced also magnetization remarkable

    diminution after silica coating (up to 2 emu/g).

    According to Fig. 4a, b, saturation magnetization of

    oleate-stabilized MNPs (S1) of about 48 emu/g was lower

    than that for citrate-stabilized MNPs (P1); according to

    [30], the relatively reduced magnetization of oleate double

    layer MNPs could be partially attributed to dilution effects

    caused by the presence of significant quantity of oleate.

    After we have carried out the reaction with TEOS, the

    sample magnetization decreased, with around 30 % (for S2

    compared to S1, Fig. 4b).

    It could be assumed that thinner stabilization citrate

    shell allowed higher effect of conversion to maghemite

    (with lower magnetic moment) than the thicker double

    oleate shell (Fig. 4a, b) during thermal treatment—but

    bounded silica favored capping shell preserving which is

    also supposed to occur for oleate capping shell too. Dom-

    inant superparamagnetic properties of prepared samples

    were evidenced; very thin hysteresis loop—coercive mag-

    netic field of 1.4 and 1.5 mT (for P1 and P2- Table 2) and,

    respectively, of about 1.1 and *1 mT (for S1 and S2)(Table 2) were found. This fact could be assumed to affect

    the precision of slope measuring around graph origin and

    thus the magnetic diameter calculation precision. Magnetic

    diameter (Table 2) was calculated from Langevin’s theory:

    d3M ¼18 � kB � T

    p � l0 �Ms � msdM

    dH

    � �H!0

    ð2Þ

    where dM is MNP largest magnetic diameter, kB is Boltz-

    mann’s constant, T is the absolute temperature, Ms is sat-

    uration magnetization of MNP-coated powder, l0 isvacuum magnetic permeability, ms = 0.48 9 10

    6 A/m

    (bulk magnetite saturation magnetization according to

    [40]) and (dM/dH) is the slope in the graph origin (for H—

    magnetic field intensity—near zero).

    It seems that in spite of total magnetic moment lowering

    during sol–gel coating and moderate thermal treatment that

    could transform some magnetite particles into maghemite

    ones however, magnetite particles with largest diameter

    could have persisted into the analyzed samples determining

    the values calculated with Eq. (2) and presented in Table 2.

    It seems that granularity properties exploring by alternative

    methods for colloidal suspensions—like small angle neu-

    tron diffraction, need to be further applied to avoid the

    Table 1 Crystallite size from XRD data

    Sample 2h (�) b (rad) Dijk (nm)

    P1 35.60 0.01116 12.9

    P2 35.59 0.01134 12.7

    S1 35.67 0.01343 10.7

    S2 35.65 0.01326 10.8

    Table 2 Magnetic properties ofMNPs and silica

    nanocomposites

    Sample Maximum magnetization at 2T (emu/g) Coercive field (mT) Magnetic diameter (nm)

    P1 62.78 1.4176 9.0

    P2 30.06 1.5727 10.0

    S1 48.47 1.1281 9.7

    S2 33.49 0.9727 9.9

    J Sol-Gel Sci Technol

    123

    https://www.researchgate.net/publication/231652963_Evolution_of_Morphology_and_Magnetic_Properties_in_SilicaMaghemite_Nanocomposites?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/262109821_Monodisperse_sodium_oleate_coated_magnetite_high_susceptibility_nanoparticles_for_hyperthermia_applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/262109821_Monodisperse_sodium_oleate_coated_magnetite_high_susceptibility_nanoparticles_for_hyperthermia_applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/276491205_Citrate_capped_superparamagnetic_iron_oxide_nanoparticles_used_for_hyperthermia_therapy?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/223036894_An_Improved_Way_to_Prepare_Superparamagnetic_Magnetite-Silica_Core-Shell_Nanoparticles_for_Possible_Biological_Application?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/223036894_An_Improved_Way_to_Prepare_Superparamagnetic_Magnetite-Silica_Core-Shell_Nanoparticles_for_Possible_Biological_Application?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225375454_Effect_of_a_SiO_2_coating_on_the_magnetic_properties_of_Fe_3_O_4_nanoparticles?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/260210199_Investigation_of_formation_of_silica-coated_magnetite_nanoparticles_via_sol-gel_approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==

  • relative disadvantage of TEM/STEM where particle over-

    lapping could occur during fluid sample drying on the grid

    supports. Such nanocomposites could have possible uti-

    lization in magnetically assisted drug delivery after final

    dispersion in the presence of suitable ligand or grafted

    biomolecule.

    4 Conclusion

    Magnetic nanopowders were yielded by applying sol–gel

    technique for coating with silica reactive shell the magnetic

    cores previously prepared by co-precipitation method, and

    stabilized in aqueous suspension with two different organic

    structures: citrate and, respectively, oleate. The features of

    new iron oxide/oleate/silica nanocomposites were pre-

    sented in comparison with already-known iron oxide/ci-

    trate/silica nanosystems with focus on the different

    properties related to long-chain double oleate shell and,

    respectively, short-chain single citrate shell coating.

    Nanometric sizes evidenced by TEM measurements

    before silica coating (15 nm and respectively 20 nm for

    iron oxide/citrate and respectively iron oxide/oleate MNPs)

    have been increased to about 40 nm after silanization for

    both types of magnetic nanopowders. Typical spinel crys-

    tallites of 10–12 nm were evidenced in all samples. Satu-

    ration magnetization appeared as being lower in iron oxide/

    oleate MNPs (48.47 emu/g) than in iron oxide/citrate

    MNPs (62.78 emu/g) since total sample mass could be

    increased more in the first case when long molecular chain

    arranged in double layer compared to smaller mass of

    single citrate shell.

    TEOS reaction resulted in diminished magnetization: in

    the case of iron oxide/citrate/silica nanocomposites, satu-

    ration magnetization diminished about twice like in other

    authors’ report but that of iron oxide/oleate/silica

    nanocomposites was diminished with only 30 % suggest-

    ing that double layer MNP stabilization was more efficient

    against conversion to maghemite than single citrate layer.

    Dominant superparamagnetic behavior was evidenced both

    before and after silica adding to magnetic nanocomposites,

    with very thin coercive field.

    Considering the benefits of sol–gel coating with silica

    shell—known for reactive properties in biological media,

    new attempts are planned to develop further the yielding of

    magnetic carriers for drug delivery by ligand attachment

    and suitable dispersion in the final suspension.

    Acknowledgment This research was supported by JINR Grant57/04-4-1121-2015/2017.

    References

    1. Sun C, Lee JSH, Zhang MQ (2008) Magnetic nanoparticles in

    MR imaging and drug delivery. Adv Drug Deliv Rev

    60:1252–1265

    2. Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu H,

    Yang S (2010) Water-soluble superparamagnetic manganese

    ferrite nanoparticles for magnetic resonance imaging. Biomate-

    rials 31:3667–3673

    3. Prijic S, Sersa G (2011) Magnetic nanoparticles as targeted

    delivery systems in oncology. Radiol Oncol 45:1–16

    4. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman

    MZ, Amin J (2013) Synthesis, surface modification and charac-

    terisation of biocompatible magnetic iron oxide nanoparticles for

    biomedical applications. Molecules 18:7533–7548. doi:10.3390/

    molecules18077533

    5. Arruebo M, Fernandez-Pacheco R, Ibarra M (2007) Magnetic

    nanoparticles for drug delivery. Nanotoday 2:22–32

    6. Krukemever MG, Krenn V, Jakobs M, Wagner W (2012)

    Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen

    and liver-magnetic nanoparticles in cancer treatment. J Surg Res

    175:35–43. doi:10.1016/j.jss.2011.01.060

    7. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N,

    Scholz R, Deger S, Wust P, Sa Loening, Jordan A (2005) Clinical

    hyperthermia of prostate cancer using magnetic nanoparticles:

    presentation of a new interstitial technique. Int J Hyperther

    21:637–647. doi:10.1080/02656730500158360

    Fig. 4 aMagnetization curves for P1 and P2. bMagnetization curvesfor S1 and S2

    J Sol-Gel Sci Technol

    123

    http://dx.doi.org/10.3390/molecules18077533http://dx.doi.org/10.3390/molecules18077533http://dx.doi.org/10.1016/j.jss.2011.01.060http://dx.doi.org/10.1080/02656730500158360https://www.researchgate.net/publication/230763714_Prijic_S_and_Sersa_G_Magnetic_nanoparticles_as_targeted_delivery_systems_in_oncology_Radiol_Oncol_45_1-16?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/230763714_Prijic_S_and_Sersa_G_Magnetic_nanoparticles_as_targeted_delivery_systems_in_oncology_Radiol_Oncol_45_1-16?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/51029950_Mitoxantrone-Iron_Oxide_Biodistribution_in_Blood_Tumor_Spleen_and_Liver-Magnetic_Nanoparticles_in_Cancer_Treatment?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/51029950_Mitoxantrone-Iron_Oxide_Biodistribution_in_Blood_Tumor_Spleen_and_Liver-Magnetic_Nanoparticles_in_Cancer_Treatment?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/51029950_Mitoxantrone-Iron_Oxide_Biodistribution_in_Blood_Tumor_Spleen_and_Liver-Magnetic_Nanoparticles_in_Cancer_Treatment?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/51029950_Mitoxantrone-Iron_Oxide_Biodistribution_in_Blood_Tumor_Spleen_and_Liver-Magnetic_Nanoparticles_in_Cancer_Treatment?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/222686810_Magnetic_nanoparticles_for_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/222686810_Magnetic_nanoparticles_for_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/5297175_Magnetic_nanoparticles_in_MR_imaging_and_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/5297175_Magnetic_nanoparticles_in_MR_imaging_and_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/5297175_Magnetic_nanoparticles_in_MR_imaging_and_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/41418890_Water-soluble_superparamagnetic_manganese_ferrite_nanoparticles_for_magnetic_resonance_imaging?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/41418890_Water-soluble_superparamagnetic_manganese_ferrite_nanoparticles_for_magnetic_resonance_imaging?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/41418890_Water-soluble_superparamagnetic_manganese_ferrite_nanoparticles_for_magnetic_resonance_imaging?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/41418890_Water-soluble_superparamagnetic_manganese_ferrite_nanoparticles_for_magnetic_resonance_imaging?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/242653361_Synthesis_Surface_Modification_and_Characterisation_of_Biocompatible_Magnetic_Iron_Oxide_Nanoparticles_for_Biomedical_Applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/242653361_Synthesis_Surface_Modification_and_Characterisation_of_Biocompatible_Magnetic_Iron_Oxide_Nanoparticles_for_Biomedical_Applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/242653361_Synthesis_Surface_Modification_and_Characterisation_of_Biocompatible_Magnetic_Iron_Oxide_Nanoparticles_for_Biomedical_Applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/242653361_Synthesis_Surface_Modification_and_Characterisation_of_Biocompatible_Magnetic_Iron_Oxide_Nanoparticles_for_Biomedical_Applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/242653361_Synthesis_Surface_Modification_and_Characterisation_of_Biocompatible_Magnetic_Iron_Oxide_Nanoparticles_for_Biomedical_Applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/7463518_Clinical_hyperthermia_of_prostate_cancer_using_magnetic_nanoparticles_Presentation_of_a_new_interstitial_technique?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/7463518_Clinical_hyperthermia_of_prostate_cancer_using_magnetic_nanoparticles_Presentation_of_a_new_interstitial_technique?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/7463518_Clinical_hyperthermia_of_prostate_cancer_using_magnetic_nanoparticles_Presentation_of_a_new_interstitial_technique?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/7463518_Clinical_hyperthermia_of_prostate_cancer_using_magnetic_nanoparticles_Presentation_of_a_new_interstitial_technique?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/7463518_Clinical_hyperthermia_of_prostate_cancer_using_magnetic_nanoparticles_Presentation_of_a_new_interstitial_technique?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==

  • 8. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P,

    Thiesen B, Feussner A, Deimling A, Waldoefner N, Felix R,

    Jordan A (2007) Intracranial thermotherapy using magnetic

    nanoparticles combined with external beam radiotherapy: results

    of a feasibility study on patients with glioblastoma multiforme.

    J Neuro-Oncol 81:53–60

    9. Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Investi-

    gation of formation of silica-coated magnetite nanoparticles via

    sol–gel approach. Col Surf A 262:87–93

    10. Chen Q, Boothroyd C, Soutar AM, Zeng XT (2010) Sol–gel

    nanocoating on commercial TiO2 nanopowder using ultrasound.

    J Sol-Gel Sci Techn 53:115–120. doi:10.1007/s10971-009-2066-3

    11. Kobayashi Y, Nozawa T, Nakagawa T, Gonda K, Takeda M,

    Ohuchi N, Kasuya A (2010) Direct coating of quantum dots with

    silica shell. J Sol-Gel Sci Techn 55:79–85. doi:10.1007/s10971-

    010-2218-5

    12. Zhang JL, Kong JZ, Li AD, Gong YP, Guo HR, Yan QY, Wu D

    (2012) Synthesis and characterization of FePt nanoparticles and

    FePt nanoparticle/SiO2-matrix composite films. J Sol-Gel Sci

    Techn 64:269–275. doi:10.1007/s10971-010-2373-8

    13. Kobayashi Y, Saeki S, Yoshida M, Nagao D, Konno M (2008)

    Synthesis of spherical submicron-sized magnetite/silica

    nanocomposite particles. J Sol-Gel Sci Techn 45:35–41. doi:10.

    1007/s10971-007-1648-1

    14. Massart R (1981) Preparation of aqueous magnetic liquids in

    alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    15. Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxi-

    city of superparamagnetic iron oxide nanoparticles (SPION).

    Nano Reviews 1:3402–5358

    16. Lei L, Ling-Ling J, Yun Z, Gang L (2013) Toxicity of super-

    paramagnetic iron oxide nanoparticles: research strategies and

    implications for nanomedicine. Chinese Phys B 22:127503

    17. Sun Y, Duan L, Guo Z, DuanMu Y, Ma M, Xu L, Zhang Y, Gu N

    (2005) An improved way to prepare superparamagnetic mag-

    netite-silica core-shell nanoparticles for possible biological

    application. J Magn Magn Mater 285:65–70. doi:10.1016/j.

    jmmm.2004.07.016

    18. Zhang CW, Zeng CC, Xu Y (2014) Preparation and characteri-

    zation of surface-functionalization of silica-coated magnetite

    nanoparticles for drug delivery. NANO 09:1450042. doi:10.1142/

    S1793292014500428

    19. Lee J, Lee Y, Youn JK, Na HB, Yu T, Kim H, Lee SM, Koo YM,

    Kwak JH, Park HG, Chang HN, Hwang M, Park JG, Kim J,

    Hyeon T (2008) Simple synthesis of functionalized superparam-

    agnetic magnetite/silica core/shell nanoparticles and their appli-

    cation as magnetically separable high-performance biocatalysts.

    Small 4:143–152. doi:10.1002/smll.200700456

    20. Yang D, Hu J, Fu S (2009) Controlled synthesis of magnetite–

    silica nanocomposites via a seeded sol–gel approach. J Phys

    Chem C 113:7646–7651. doi:10.1021/jp900868d

    21. Bordbar AK, Rastegari AA, Amiri R, Ranjbakhsh E, Abbasi M,

    Khosropour AR (2014) Characterization of modified magnetite

    nanoparticles for albumin immobilization. Biotechnol Res Int

    2014:705068. doi:10.1155/2014/705068

    22. Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M (2014) Appli-

    cation of iron magnetic nanoparticles in protein immobilization.

    Molecules 19:11465–11486. doi:10.3390/molecules190811465

    23. Andrade AL, Souza DM, Pereira MC, Fabris JD, Domingues RZ

    (2009) Synthesis and characterization of magnetic nanoparticles

    coated with silica through a sol-gel approach. Cerâmica 55:420–424

    24. Li D, Teoh WY, Woodward RC, Cashion JD, Selomulya C, Amal

    R (2009) Evolution of morphology and magnetic properties in

    silica/maghemite nanocomposites. J Phys Chem C

    113:12040–12047. doi:10.1021/jp902684g

    25. Gu Y, Liu X, Niu T, Huang J (2010) Superparamagnetic hier-

    archical material fabricated by protein molecule assembly on

    natural cellulose nanofibres. Chem Commun 46:6096–6098.

    doi:10.1039/C0CC01440K

    26. Ortega D, Garcı́a R, Marı́n R, Barrera-Solano C, Blanco E,

    Domı́nguez M, Ramı́rez-del-Solar M (2008) Maghemite–silica

    nanocomposites: sol–gel processing enhancement of the mag-

    neto-optical response. Nanotechnology 19:475706. doi:10.1088/

    0957-4484/19/47/475706

    27. Casula MF, Corrias A, Arosio P, Lascialfari A, Sen T, Floris P,

    Bruce IJ (2011) Design of water-based ferrofluids as contrast

    agents for magnetic resonance imaging. J Colloid Interf Sci

    357:50–55. doi:10.1016/j.jcis.2011.01.088

    28. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface

    properties of superparamagnetic iron oxide nanoparticles through

    a sol-gel approach. Nano Lett 2:183–186. doi:10.1021/nl015681q

    29. Hajdú A, Tombácz E, Illés E, Bica D, Vékás L (2008) Magnetite

    nanoparticles stabilized under physiological conditions for

    biomedical application. Prog Coll Pol Sci S 135:29–37. doi:10.

    1007/2882_2008_11

    30. Araújo-Neto RP, Silva-Freitas EL, Carvalho JF, Pontes TRF,

    Silva KL, Damasceno IHM, Egito EST, Dantas AL, Morales MA,

    Carriço AS (2014) Monodisperse sodium oleate coated magnetite

    high susceptibility nanoparticles for hyperthermia applications.

    J Magn Magn Mater 364:72–79. doi:10.1016/j.jmmm.2014.04.001

    31. Nadejde C, Puscasu E, Brinza F, Ursu L, Creanga D, Stan C

    (2015) Preparation of soft magnetic materials and characteriza-

    tion with investigation methods for fluid samples. U Politeh Buch

    Ser A 77:277–284

    32. Taboada E, Rodriguez E, Roig A, Oro J, Roch A, Muller RN

    (2007) Relaxometric and magnetic characterization of ultrasmall

    iron oxide nanoparticles with high magnetization. Lagmuir

    23:4583–4588

    33. Hardiansyah A, Huang LY, Yang MC, Liu TY, Tsai SC, Yang

    CY, Kuo CY, Chan TY, Zou HM, Lian WN, Lin CH (2014)

    Magnetic liposomes for colorectal cancer cells therapy by high-

    frequency magnetic field treatment. Nanoscale Res Lett 9:497.

    doi:10.1186/1556-276X-9-49

    34. Benelmekki M, Caparros C, Montras A, Gonçalves R, Lanceros-

    Mendez S, Martinez LM (2011) Horizontal low gradient mag-

    netophoresis behaviour of iron oxide nanoclusters at the different

    steps of the synthesis route. J Nanopart Res 13:3199–3206.

    doi:10.1007/s11051-010-0218-6

    35. Vékás L, Bica D, Marinica O (2006) Magnetic nanofluids stabi-

    lized with various chain length surfactants. Rom Rep Phys

    58:257–267

    36. Mohammad-Beigi H, Yaghmaei S, Roostaazad R, Bardania H,

    Arpanaei A (2011) Effect of pH, citrate treatment and silane-

    coupling agent concentration on the magnetic, structural and

    surface properties of functionalized silica-coated iron oxide

    nanocomposite particles. Phys E 44:618–627. doi:10.1016/j.

    physe.2011.10.015

    37. Swanson HE, McMurdie HF, Morris MC, Evans EH (1967)

    Standard X-ray diffraction powder patterns. Government Printing

    Office, Washington

    38. Larumbe S, Gomez-Polo C, Perez-Landazabal JI, Pastor JM

    (2012) Effect of a SiO2 coating on the magnetic properties of

    Fe3O4 nanoparticles. J Phys Condens Matter 24:266007. doi:10.

    1088/0953-8984/24/26/266007

    39. Cheraghipour E, Javadpour S, Mehdizadeh AR (2012) Citrate

    capped superparamagnetic iron oxide nanoparticles used for

    hyperthermia therapy. J Biomed Sci Eng 5:715–719. doi:10.4236/

    jbise.2012.512089

    40. Rosensweig RE (1985) Ferrohydrodynamics. Cambridge

    University Press, Cambridge

    J Sol-Gel Sci Technol

    123

    View publication statsView publication stats

    http://dx.doi.org/10.1007/s10971-009-2066-3http://dx.doi.org/10.1007/s10971-010-2218-5http://dx.doi.org/10.1007/s10971-010-2218-5http://dx.doi.org/10.1007/s10971-010-2373-8http://dx.doi.org/10.1007/s10971-007-1648-1http://dx.doi.org/10.1007/s10971-007-1648-1http://dx.doi.org/10.1016/j.jmmm.2004.07.016http://dx.doi.org/10.1016/j.jmmm.2004.07.016http://dx.doi.org/10.1142/S1793292014500428http://dx.doi.org/10.1142/S1793292014500428http://dx.doi.org/10.1002/smll.200700456http://dx.doi.org/10.1021/jp900868dhttp://dx.doi.org/10.1155/2014/705068http://dx.doi.org/10.3390/molecules190811465http://dx.doi.org/10.1021/jp902684ghttp://dx.doi.org/10.1039/C0CC01440Khttp://dx.doi.org/10.1088/0957-4484/19/47/475706http://dx.doi.org/10.1088/0957-4484/19/47/475706http://dx.doi.org/10.1016/j.jcis.2011.01.088http://dx.doi.org/10.1021/nl015681qhttp://dx.doi.org/10.1007/2882_2008_11http://dx.doi.org/10.1007/2882_2008_11http://dx.doi.org/10.1016/j.jmmm.2014.04.001http://dx.doi.org/10.1016/j.jmmm.2014.04.001http://dx.doi.org/10.1186/1556-276X-9-49http://dx.doi.org/10.1007/s11051-010-0218-6http://dx.doi.org/10.1016/j.physe.2011.10.015http://dx.doi.org/10.1016/j.physe.2011.10.015http://dx.doi.org/10.1088/0953-8984/24/26/266007http://dx.doi.org/10.1088/0953-8984/24/26/266007http://dx.doi.org/10.4236/jbise.2012.512089http://dx.doi.org/10.4236/jbise.2012.512089https://www.researchgate.net/publication/267033444_Toxicity_of_superparamagnetic_iron_oxide_nanoparticles_Research_strategies_and_implications_for_nanomedicine?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/267033444_Toxicity_of_superparamagnetic_iron_oxide_nanoparticles_Research_strategies_and_implications_for_nanomedicine?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/267033444_Toxicity_of_superparamagnetic_iron_oxide_nanoparticles_Research_strategies_and_implications_for_nanomedicine?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/45288781_Superparamagnetic_hierarchical_material_fabricated_by_protein_molecule_assembly_on_natural_cellulose_nanofibres?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/45288781_Superparamagnetic_hierarchical_material_fabricated_by_protein_molecule_assembly_on_natural_cellulose_nanofibres?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/45288781_Superparamagnetic_hierarchical_material_fabricated_by_protein_molecule_assembly_on_natural_cellulose_nanofibres?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/45288781_Superparamagnetic_hierarchical_material_fabricated_by_protein_molecule_assembly_on_natural_cellulose_nanofibres?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225517073_Direct_coating_of_quantum_dots_with_silica_shell?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225517073_Direct_coating_of_quantum_dots_with_silica_shell?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225517073_Direct_coating_of_quantum_dots_with_silica_shell?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225517073_Direct_coating_of_quantum_dots_with_silica_shell?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/46391794_Potential_toxicity_of_superparamagnetic_iron_oxide_nanoparticles_SPION?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/46391794_Potential_toxicity_of_superparamagnetic_iron_oxide_nanoparticles_SPION?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/46391794_Potential_toxicity_of_superparamagnetic_iron_oxide_nanoparticles_SPION?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/275420285_Preparation_and_characterization_of_surface-functionalization_of_silica-coated_magnetite_nanoparticles_for_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/275420285_Preparation_and_characterization_of_surface-functionalization_of_silica-coated_magnetite_nanoparticles_for_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/275420285_Preparation_and_characterization_of_surface-functionalization_of_silica-coated_magnetite_nanoparticles_for_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/275420285_Preparation_and_characterization_of_surface-functionalization_of_silica-coated_magnetite_nanoparticles_for_drug_delivery?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/5662071_Simple_Synthesis_of_Functionalized_Superparamagnetic_MagnetiteSilica_CoreShell_Nanoparticles_and_their_Application_as_Magnetically_Separable_High-Performance_Biocatalysts?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/5662071_Simple_Synthesis_of_Functionalized_Superparamagnetic_MagnetiteSilica_CoreShell_Nanoparticles_and_their_Application_as_Magnetically_Separable_High-Performance_Biocatalysts?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/5662071_Simple_Synthesis_of_Functionalized_Superparamagnetic_MagnetiteSilica_CoreShell_Nanoparticles_and_their_Application_as_Magnetically_Separable_High-Performance_Biocatalysts?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/5662071_Simple_Synthesis_of_Functionalized_Superparamagnetic_MagnetiteSilica_CoreShell_Nanoparticles_and_their_Application_as_Magnetically_Separable_High-Performance_Biocatalysts?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/5662071_Simple_Synthesis_of_Functionalized_Superparamagnetic_MagnetiteSilica_CoreShell_Nanoparticles_and_their_Application_as_Magnetically_Separable_High-Performance_Biocatalysts?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/5662071_Simple_Synthesis_of_Functionalized_Superparamagnetic_MagnetiteSilica_CoreShell_Nanoparticles_and_their_Application_as_Magnetically_Separable_High-Performance_Biocatalysts?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/263476678_Characterization_of_Modified_Magnetite_Nanoparticles_for_Albumin_Immobilization?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/263476678_Characterization_of_Modified_Magnetite_Nanoparticles_for_Albumin_Immobilization?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/263476678_Characterization_of_Modified_Magnetite_Nanoparticles_for_Albumin_Immobilization?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/263476678_Characterization_of_Modified_Magnetite_Nanoparticles_for_Albumin_Immobilization?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/250981973_Synthesis_and_characterization_of_magnetic_nanoparticles_coated_with_silica_through_a_sol-gel_approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/250981973_Synthesis_and_characterization_of_magnetic_nanoparticles_coated_with_silica_through_a_sol-gel_approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/250981973_Synthesis_and_characterization_of_magnetic_nanoparticles_coated_with_silica_through_a_sol-gel_approach?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/231652963_Evolution_of_Morphology_and_Magnetic_Properties_in_SilicaMaghemite_Nanocomposites?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/231652963_Evolution_of_Morphology_and_Magnetic_Properties_in_SilicaMaghemite_Nanocomposites?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/231652963_Evolution_of_Morphology_and_Magnetic_Properties_in_SilicaMaghemite_Nanocomposites?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/231652963_Evolution_of_Morphology_and_Magnetic_Properties_in_SilicaMaghemite_Nanocomposites?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/262109821_Monodisperse_sodium_oleate_coated_magnetite_high_susceptibility_nanoparticles_for_hyperthermia_applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/262109821_Monodisperse_sodium_oleate_coated_magnetite_high_susceptibility_nanoparticles_for_hyperthermia_applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/262109821_Monodisperse_sodium_oleate_coated_magnetite_high_susceptibility_nanoparticles_for_hyperthermia_applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/262109821_Monodisperse_sodium_oleate_coated_magnetite_high_susceptibility_nanoparticles_for_hyperthermia_applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/262109821_Monodisperse_sodium_oleate_coated_magnetite_high_susceptibility_nanoparticles_for_hyperthermia_applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/262109821_Monodisperse_sodium_oleate_coated_magnetite_high_susceptibility_nanoparticles_for_hyperthermia_applications?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225157271_Horizontal_low_gradient_magnetophoresis_behaviour_of_iron_oxide_nanoclusters_at_the_different_steps_of_the_synthesis_route?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225157271_Horizontal_low_gradient_magnetophoresis_behaviour_of_iron_oxide_nanoclusters_at_the_different_steps_of_the_synthesis_route?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225157271_Horizontal_low_gradient_magnetophoresis_behaviour_of_iron_oxide_nanoclusters_at_the_different_steps_of_the_synthesis_route?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225157271_Horizontal_low_gradient_magnetophoresis_behaviour_of_iron_oxide_nanoclusters_at_the_different_steps_of_the_synthesis_route?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/225157271_Horizontal_low_gradient_magnetophoresis_behaviour_of_iron_oxide_nanoclusters_at_the_different_steps_of_the_synthesis_route?el=1_x_8&enrichId=rgreq-157e0a2eadf0ae6c69381f2b95c7cbb2-XXX&enrichSource=Y292ZXJQYWdlOzI5Nzc1NjM4NDtBUzozNDIwNTYxMzc0NDUzNzZAMTQ1ODU2Mzk0NjMzMA==https://www.researchgate.net/publication/240610807_Magnetic_nanofluids_stabilized_with_various_chain_length_surfactants?el=1_x_8&enrichId