ivm institute for environmental studies · ivm institute for environmental studies !!! ! 7! ......

63
IVM Institute for Environmental Studies 7 THE ECONOMICS OF SWISS HYDROPOWER PRODUCTION A costbenefit analysis of hydropower production in Switzerland Author: Charlotta Canzler This report was supervised by: Prof. Dr. Roy Brouwer and Dr. Ivana Logar 16 July 2012

Upload: buidat

Post on 05-Jul-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

 

 

   

7  

THE  ECONOMICS  OF  SWISS  HYDROPOWER  PRODUCTION  

A  cost-­‐benefit  analysis  of  hydropower  production  in  Switzerland  

 

 

 

Author:  Charlotta  Canzler    

 

This  report  was  supervised  by:  Prof.  Dr.  Roy  Brouwer  and  Dr.  Ivana  Logar  16  July  2012    

Page 2: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

   

   

IVM  Institute  for  Environmental  Studies  VU  University  Amsterdam  De  Boelelaan  1087  1081  HV    AMSTERDAM  The  Netherlands  T   +31-­‐20-­‐598  9555  F     +31-­‐20-­‐598  9553  E     [email protected]    

       

Copyright  ©  2012,  Institute  for  Environmental  Studies  All  rights  reserved.  No  part  of  this  publication  may  be  reproduced,  stored  in  a  retrieval  system  or  transmitted  in  any  form  or  by  any  means,  electronic,  mechanical,  photo-­‐copying,  recording  or  otherwise  without  the  prior  written  permission  of  the  copyright  holder  

Page 3: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland

Contents  

Acknowledgements 5  

Summary 6  

List  Of  Abbreviations 7  

1   Introduction 9  1.1   Setting  The  Scene 9  1.2   Research  Objectives  And  Questions 10  1.3   Paper  Outline 10  

2   Conceptual  Framework 11  2.1   Economic  Value  Theory 11  2.2   External  Costs  And  Benefits 12  2.3   Environmental  Value  Transfer 13  2.4   Stages  Of  A  Cost-­‐Benefit  Analysis 14  2.5   Literature  Review 15  

3   Hydropower  In  Switzerland 21  3.1   Hydropower  Essentials 21  3.2   Types  of  Hydropower  Plants 21  3.3   Swiss  Hydropower  History 23  3.4   The  Swiss  Hydropower  Sector  Today 24  3.5   Swiss  Energy  Policy  And  Perspectives 28  3.6   Hydropower  And  The  Environment 30  

4   Cost-­‐Benefit  Analysis 33  4.1   Defining  The  Project  And  Scenarios 33  4.2   Identifying  Impacts  That  Are  Economically  Relevant 34  4.3   Physically  Quantifying  The  Impacts 35  4.4   Calculating  A  Monetary  Value 36  4.5   Discounting  And  Weighting  The  Results 39  4.6   Conducting  A  Sensitivity  Analysis 40  

5   Conclusion  And  Discussion 45  5.1   Conclusion 45  5.2   Limitations  Of  This  Study 46  

References 49  

Annex  A 53  

Annex  B 63    

 

Page 4: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$
Page 5: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 5

Acknowledgements  

The  financial  and  administrative  support  provided  by  Eawag,  Swiss  Federal  Institute  of  Aquatic  Science   and   Technology,   are   gratefully   acknowledged   with   many   thanks   in   order   to   Peter  Reichert  (Eawag)  and  Bernhard  Truffer  (Eawag).  

Special   thanks   are   furthermore   expressed   to   Prof.   Dr.   Roy   Brouwer   (IVM),   Dr.   Ivana   Logar  (Eawag),  Stefan  Vollenweider  (Wasser-­‐Agenda  21),  Thomas  Geissmann  (Centre  for  Energy  Policy  and  Economics)  and  Dr.  Urs  Meister  (Avenir  Suisse).    

The  author  gratefully  thanks  her  parents  who  have  made  possible  and  have  always  supported  her  educational  career.  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 6: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

6 Summary

Summary  

This  research  project  was  made  possible  due  to  a  cooperation  of  Eawag,  Swiss  Federal  Institute  of   Aquatic   Science   and   Technology,   and   IVM,   Institute   for   Environmental   Studies.   The  underlying   analysis   is   the   result   of   my   final   research   project   for   the   Master   of   Science  Environment  and  Resource  Management  at  VU  University  Amsterdam.    

The  motivation  for  this  investigation  was  based  on  the  decision  of  the  Swiss  Federal  Council  that  nuclear  power  production  will  no  longer  be  part  of  the  Swiss  electricity  supply  mix  and  shall  be  phased  out  until  2034.  Switzerland  has  decided  to  pursue  a   large  expansion  of   its  already   existing   hydropower   sector   as   well   as   other   renewable   energy   sources.   For   this  purpose,   an   extended   CBA   has   been   performed   in   order   to   estimate   the   total   economic  value   added   of   hydropower   production   in   Switzerland   under   the   current   conditions,   i.e.  under  the  status  quo  scenario,  and  under  the  expansion  scenario  as  projected  by  the  Swiss  Federal  Council.  The  CBA  was  conducted  for  a  time  period  of  23  years  from  2012  until  2034,  as  Swiss  nuclear  power  production  will  be  phased  out  by  then.  Two  calculations  have  been  conducted   for   both   the   pure   financial   costs   and   benefits,   and   the   economic   costs   and  benefits  arising  from  an  expansion  of  hydropower.    

The  results  show  that  when  looking  only  at  the  financials,  the  expansion  of  hydropower  as  compared  to  the  baseline  scenario  would  not  be  profitable  as  the  calculated  NPV  revealed  a  negative   value   of   -­‐   CHF   42.2   million.   However,   when   including   the   external   costs   and  benefits  associated  with  hydropower  production,  it  was  found  that  the  projected  expansion  does   indeed   reflect   an   efficient   allocation   of   resources.   The   NPV   of   the   economic   CBA  resulted   in   CHF   99.8   million.   The   large   difference   in   the   results   of   the   CBAs   shows   the  significance  of  including  the  wider,  external  costs  and  benefits  in  decision-­‐making  processes  of  policy  evaluations.  It  is  suggested  that  more  research  is  conducted  for  this  topic  with  in-­‐depth  analyses  of  the  specific  external  costs  and  benefits,  and  their  affects  on  Swiss  policy  and  society  as  a  whole.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 7: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 7

List  Of  Abbreviations  

B/C     Benefit-­‐Cost  Ratio  

BC       Before  Christ  

BAFU     Bundesamt  für  Umwelt  (Federal  Office  for  the  Environment)  

BFE     Bundesamt  für  Energie  (Federal  Office  for  Energy)  

CBA     Cost-­‐benefit  analysis  

CE       Choice  Experiment  

CH4     Methane  

CHA     Canadian  Hydropower  Association  

CHF     Swiss  franc  

CO2     Carbon  dioxide  

EC       European  Commission  

EIA     U.S.  Energy  Information  Administration  

EUR     Euro  

GCC     Gas-­‐fired  combined  cycle  power  plant  

GHG     Greenhouse  gas  

GW     gigawatt  

GWh     gigawatt  hour  (1,000,000,000  kWh)  

ICOLD   International  Commission  on  Large  Dams  

IHA     International  Hydropower  Association  

IEA     International  Energy  Agency  

IRR     Internal  Rate  of  Return  

IVM     Instituut  voor  Milieuvraagstukken  (Institute  for  Environmental  Studies)  

kW     kilowatt  (1,000  Watt)  

kWh     kilowatt  hour  

m       meter  

Page 8: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

8 List Of Abbreviations

MW     megawatt  (1,000,000  Watt)  

N2O     Nitrous  Oxide  

NPV     Net  Present  Value  

OECD     Organisation  for  Economic  Cooperation  and  Development  

ROR     Run-­‐off-­‐the-­‐river  

Rp.     Swiss  Rappen  (100  Rp.  =  1  CHF)      

t       tonne  (1,000  kilograms)  

TWh     terawatt  hour  (1,000,000,000,000  kWh)  

WACC   Weighted  Average  Cost  of  Capital  

WTP   Willingness  to  Pay

Page 9: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 9

1 Introduction  

1.1 Setting  The  Scene  As   we   move   forward   in   the   21st   century,   global   energy   consumption   is   rising   to   record  levels  never  anticipated  in  the  past.  Economic  development  in  emerging  countries  and  the  worldwide   increased   dependency   on   electric   devices   drives   this   energy   consumption  further  to  an  ever-­‐increasing  scale.  Yet,  the  majority  of  our  energy  comes  from  fossil  fuels,  i.e.  oil,  gas  and  coal  that  are  finite  (i.e.  non-­‐renewable)  resources  on  our  planet.  Thus,  there  is   a   great   emphasis   in   today’s   energy   and   technology   research   to   increase   and   improve  sustainable  energy  options.  Many  people  think  of  renewable  energy  as  solely  solar  or  wind  energy,  however  more  than  90  per  cent  of  all  renewable  energy  worldwide  actually  comes  from   hydropower   production   (International   Hydropower   Association   [IHA],   International  Commission   on   Large   Dams   [ICOLD],   International   Energy   Agency   [IEA]   &   Canadian  Hydropower   Association   [CHA],   2000).   Hydropower   is   considered   a   renewable   energy  because  it  is  based  on  the  energy  provided  by  the  Sun  that  drives  the  hydrological  cycle.    

Many   countries   produce   large   shares  of   their   total   electricity   generation  with   the  energy  derived   from   water.   For   example,   Norway,   Brazil   and   Venezuela   produce   95.7   per   cent,  83.8  per  cent  and  72.8  per  cent,  respectively,  of  their  domestic  electricity  with  hydropower  (IEA,   2011).   So   too   does   Switzerland,   with   approximately   54   per   cent   of   its   electricity  production   coming   from   more   than   550   large   hydropower   installations   (Bundesamt   für  Energie   [BFE],   2012a).   The   remaining   share   is   largely   produced   by   nuclear   power   with  approximately  41  per  cent  and  other  electricity  sources  with  5  per  cent.  However,  due  to  the  dramatic  events  of  the  nuclear  disaster   in  Fukushima,  Japan   in  March  2011,  the  Swiss  energy  policy  has   radically   changed   its   course.  After   the  event,   the   Swiss   Federal   Council  decided  that  nuclear  power  production  will  no  longer  be  part  of  the  Swiss  electricity  supply  mix  and  shall  be  phased  out  until  2034.  Naturally,  this  means  a  great  change  for  the  Swiss  electricity   industry   and   it   raises   the   issue   of   how   to   replace   the   base   electricity   supply,  which  is  currently  provided  by  nuclear  power  plants.    

With  the  new  Energy  Perspectives  2050,   the  Swiss  Federal  Council   recently  announced   its  solution  to  this  problem,  namely  increasing  the  share  of  renewable  energy  production  and  enhancing   energy   efficiency   (Previdoli,   2012).   According   to   the   new   energy   strategy,  renewable  energy  production  will  be  particularly  increased  with  solar  and  wind  energy,  but  also   with   hydropower   production.   The   strategy   proposes   an   increase   in   hydropower  efficiency  and  new  production  of  3.2  TWh,  which  roughly  amounts  to  9  per  cent  of  current  hydropower   production   (BFE,   2012a).   In   addition,   another   7.5   TWh  will   be   derived   from  newly   constructed   pumped-­‐storage   plants,   with   three   plants   already   being   under  construction   (namely,   Hongrin-­‐Léman/Veytaux   2,   Linth-­‐Limmern/Muttsee,   and   Nant   de  Drance/Emosson).   These   numbers   represent   the   maximum   possible   increase   of  hydropower   production   in   Switzerland,   as   the   technical   boundaries   of   the   national  hydropower  potential  have  almost  been  reached,  whereas  the  economic  boundaries  will  be  subject  to  this  study.  Yet,  the  use  of  hydropower  has  always  been  subject  to  considerable  conflict  within  the  Swiss  population  and  so  does  its  expansion.  More  specifically,  there  is  a  so-­‐called  water-­‐energy   nexus   conflict   between   the   positive   and   negative   external   effects  associated   with   hydropower   production.   These   are   on   the   one   hand   the   benefits   from  electricity   production   with   very   low   amounts   of   greenhouse   gas   (GHG)   emissions   as  compared  to  conventional  electricity  production.  On  the  other  hand  there  are  the  negative  impacts   on   nature   and   landscape   due   to   the   construction   of   hydropower   facilities   and  reservoirs.

Page 10: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

10 Introduction

1.2 Research  Objectives  And  Questions  This   on-­‐going   debate   shows   that   there   is   much   uncertainty   about   the   true   benefits   and  costs  associated  with  hydropower  production   in  Switzerland,  as  well  as   its  total  economic  value  added  for  the  Swiss  electricity  industry  and  the  country  in  general.  For  this  reason  it  seems   important   to   conduct   a   study   that   would   compare   the   costs   and   benefits   of   the  existing   hydropower   production   in   the   country   with   those   of   the   projected   expansion.  Therefore,  the  aim  of  this  research  paper  is  to  estimate  the  total  economic  value  added  of  hydropower  production   in  Switzerland  under   the  current   conditions,   i.e.  under   the   status  quo   scenario,  and  under   the  expansion   scenario.  This   is  done  by   conducting  an  extended  cost-­‐benefit   analysis   (CBA)   that   takes   into   account   not   only   financial   impacts   but   also  external   effects   such   as   environmental   and   societal   gains   or   losses.   Thus,   this   research  assesses   the   current   and   projected   costs   and   benefits   of   hydropower   installations   in  Switzerland.

For  this  purpose,  the  research  paper  addresses  the  following  two  research  questions:  

 

1. What   is   the   financial   value   of   hydropower   production   when   comparing   the  projected  expansion  scenario  to  the  current  situation?  

 

2.        What  is  the  economic  value  when  comparing  the  projected  expansion  scenario  to  the  current  situation?  

 

For  this  purpose,  economic  value  is  defined  as  the  sum  of  private  value  and  external  value.  A  detailed  explanation  of  economic  value  theory  follows  in  section  2.1.

1.3 Paper  Outline  The   following   research   is   structured   as   follows.   Chapter   2   discusses   the   conceptual  framework  of   the   study  and  explains   the  methodological   techniques  used   in   the  analysis.  The  subsequent  chapter,  Chapter  3,  gives  a  detailed  description  of  hydropower  production  in   general   and   in   Switzerland,   and   discusses   the   environmental   effects   associated   with  hydropower   production.   Chapter   4   presents   the   results   of   the   CBA   and   discusses   the  various  steps  taken  in  the  analysis.  Lastly,  Chapter  5  concludes  the  study  with  a  discussion  of  the  CBA  findings  and  limitations  to  the  research.    

 

 

 

Page 11: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 11

2 Conceptual  Framework  

The  moment  we  ask  ourselves  whether  or  not  something  is  worth  the  effort,  we  are  using  a  cost-­‐benefit  analysis.  Consciously,  or  not,  we  often  use  CBA  when  making  decisions  in  our  daily  life.  Having  set  a  particular  course  of  action  or  a  project,  we  intuitively  assess  the  costs  of   that   action   and   compare   them   with   the   benefits   we   gain   from   it   in   order   to   decide  whether  the  action  ‘is  worth  it’.  “CBA  is  above  all  a  set  of  tools  for  guiding  decisions”  (Snell,  1997,  p.3).  As  this,  CBA  provides  a  structured  overview  of  all  relevant  positive  and  negative  effects   of   alternative   policy   actions.   Before   going   deeper   into   the   essentials   of   CBA,   it   is  necessary  at  this  point  to  first  explain  the  concept  of  economic  value.  This  will  be  done  in  the   following   subsection.   Subsection   2.2   explains   external   costs   and   benefits,   and  subsection   2.3   discusses   the   technique   of   environmental   value   transfer.   Subsequently,  subsection  2.4  presents  the  different  stages  of  the  CBA  and,  lastly,  subsection  2.5  discusses  the   most   important   CBA   studies   in   the   field   of   hydropower   that   have   been   conducted  previously.    

2.1 Economic  Value  Theory  Whenever   one   assesses   the   costs   or   benefits   of   a   particular   action,   a   value   is   needed   in  order   to   calculate   them.   Put   simply,   a   value   is   defined   as   the   benefit   or   cost   that   an  individual   or   a   society   obtains   from   a   good   or   service.   It   forms   the   basis   of   economic  efficiency,  which  seeks   to  maximize  social  welfare  as  measured  by   this  notion  of  value  as  the  net  benefits  to  individuals  or  communities  of  individuals  (Kahn,  2005).  Economic  value  theory   explains   the   concept   of   value   with   two   characteristics.   First,   economic   value   is  anthropocentric,  which  means  that  it  is  determined  by  people  themselves  and  not  by  law  or  the   government.   Second,   economic   value   is   determined   by   people’s   willingness   to  make  trade-­‐offs  between,  for  example,  buying  one  good  instead  of  another.  This  is  best  explained  by  the  notion  of  budget  constraint,  namely,  when  an  individual  spends  money  on  one  good  or   service,   there  will   be   less  money   available   to   buy   other   goods   (Kahn,   2005).   Thus   the  individual  needs  to  make  a  trade-­‐off  between  different  goods  and  is  expected  to  choose  the  good,  which  provides  the  highest  benefit.  

When   assigning   values   to   a   certain   course   of   action   or   project,   one   has   to   distinguish  between  use  and  non-­‐use  values.  Use  value  is  defined  as  the  value  that  humans  derive  from  directly  using  goods  or  services.  Use  values  can  be  used  either  directly,  when  for  example  resources   are   extracted   from   the   soil,   or   indirectly   like   in   the   case   of   erosion   and   flood  protection  provided  by  ecosystems   (Pearce  &  Turner,  1990).   In   contrast,  non-­‐use  value   is  the  value  derived   from  non-­‐use  benefits  of   a   good  or   service   to  humans.  Non-­‐use  values  have  been  divided  into  three  different  categories.  First,  there  are  option  values,  which  are  derived   from   retaining   options   that  may   become   beneficial   in   the   future,   such   as   future  medical  discoveries.  The  second  category   is   called  bequest  values,  which  are   the  benefits  derived  from  preserving  nature  or  making  sacrifices  today  for  future  generations.  The  third  group   are   existence   values,   which   are   the   values   derived   from   simply   knowing   that   a  species  or  an  ecosystem  service  exists  (Kahn,  2005).

The  economic  value  of  hydropower  production  Q  is  determined  by  three  production  factors,  F.  These  are  the  cost  of  labour  L,  the  cost  of  capital  C  and  energy  H.  The  water  required  for  the  electricity  production  can  be  counted  as  the  required  energy,  H  (Geissmann,  2012).  This  can  be  shown  as  follows,  

Page 12: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

12 Conceptual Framework

  Q  =  F  (L,  C,  H).  

Thus  this  research  project  aims  at  exploring  the  added  value  of  Q.

2.2 External  Costs  And  Benefits  When  using  CBA,   it   is  crucial   to  understand  the  concept  of  external  value  or  externalities.  According   to   Owen   (2004),   externalities   are   the   “benefits   and   costs   generated   as   an  unintended  by-­‐product  of  an  economic  activity  that  do  not  accrue  to  the  parties  involved  in  the  activity  and  where  no  compensation   takes  place”   (Owen,  2004,  p.  3).   In  other  words,  external   values   occur   when   a   decision   causes   benefits   or   costs   to   individuals   or   groups  other   than   the   one   making   the   decision.   Thus,   externalities   can   be   either   positive   or  negative,   depending   on   the   circumstances   of   the   action.   The   concepts   of   external   and  internal  value  as  well  as  private  and  social  value  are  best  explained  by  Figure  2  -­‐1.  

Figure 2-1 Distinction between internal and external values

Source:  Beukering,  van  &  Botzen,  2012  

Let  us  assume  there  is  a  privately  owned  coal  fired  power  plant.  This  power  plant  leads  to  internal   and   external   costs   and   benefits.   Internal   benefits   are   the   revenues   gained   from  electricity  production,  whereas  an  example  of  an  internal  cost  is  the  work  or  coal  needed  to  generate  electricity.  Together,  they  form  a  private  value  arising  from  this  economic  activity.  External   benefits   include   gains   due   to   the   employment   of   people   at   the   power   plant,  whereas  external  costs  are  air  pollution  and  acid  rain  resulting  from  burning  the  coal.  These  external   effects   form   the   social   value.   Together,   the   private   and   social   value   of   a   good  represent  the  economic  value  of  that  good:  

Economic  Value  =  Private  (Financial)  Value  +  Social  (External)  Value.  

External  costs  such  as  environmental  damages  are  difficult  to  determine,  as  for  these  types  of  values  often  no  market,  and   thus  no  market  price,  exist.  This  means   that  most  market  prices  do  not   reflect   the   “true”  economic   value  of   a  product.   This   is   also   called   a  market  

!"!#"!$%!

&

9

Private value // financial value

Social value // economic value

Externalities

10

Reasons for economic valuation of externalities

a) Advocacy/awareness

b) Decision and policy making

c) Damage assessment

d) Extract revenues

Page 13: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 13

failure.   For   example,   many   goods   are   traded   at   prices   that   do   not   account   for   the  environmental   damages   occurring   during   the   good’s   manufacturing   or   use,   and   are  therefore   traded   at   a   too   low   price.   If   the   external   cost   would   be   internalized,   i.e.  accounted   for   in   the   market   price,   the   good   would   be   more   expensive.   This   is   further  explained   by   Pearce   and  Nash   (1981)  who   state   that   a   Pareto   optimum   exists  when   the  marginal  external  cost  (MEC)  equals  the  marginal  net  private  benefits  (MNPB).      

MNPB  for  a  firm  is  defined  as    

  MNPB  =  P  –  MC,    

where    P  is  the  product  price  and  MC  is  the  marginal  private  cost.  If  MNPB  =  MEC,  then  the  first  equation  can  be  re-­‐written  as    

  MEC  =  P  –  MC     or  further     MEC  +  MC  =  P  =  MSC,  

where  MSC   is   the  marginal   social   cost   (Pearce   &   Nash,   1981).   Under   this   condition,   the  product  price  equals  the  marginal  social  cost.  However,  this  condition  rarely  holds  in  reality  and   thus   product   prices   rarely   reflect   the   marginal   social   value   (i.e.   external   costs   or  benefits).    

2.3 Environmental  Value  Transfer  The   analysis   conducted   in   this   thesis   will   mainly   be   based   on   a   desk   study   that   uses  environmental  value  transfers  in  order  to  obtain  the  estimates  used  in  the  conducted  CBA.  Environmental   value   transfer   is   defined   as   the   “transposition  of  monetary   environmental  values   estimated   at   one   site   (study   site)   through   market-­‐based   or   non-­‐market-­‐based  economic   valuation   techniques   to   another   site   (policy   site)”   (Brouwer,   2000,   p.   2).   The  reasons  for  using  the  results  of  previous  studies  here  and  also  in  other  papers  are,  first  of  all,  cost-­‐effectiveness  and  time  effectiveness,  which  makes  this  technique  a  very  attractive  alternative   to  more   time-­‐consuming   research   studies.   This   is   especially   relevant   in   cases  where  information  is  required  for  quick  policy  decisions.  Therefore,  this  technique  has  been  used  extensively  in  various  natural  resource  policy  situations  with  the  study  by  Constanza  et  al.  (1997),  about  the  value  of  the  world’s  ecosystem  services  and  natural  capital,  probably  being   one   of   the  most   influential   and   evocative   in   terms   of   the   validity   and   reliability   of  environmental  value  transfer.    

This   is   because   the   technique  of   environmental   value   transfer   remains   very   controversial  and  even  testing   it  could  not  yet  help  to  validate  the  practice.  Especially  due  to  academic  and   political   uncertainties   over   the   usefulness   and   technical   feasibility   of   economic  valuation   tools   to   express   the   significance   of   environmental   values   in   policy   decisions,  proponents   and   users   of   the   technique   have   induced   widespread   indignation   (Brouwer,  2000).   A   review   by   Bateman,   Jones,   Nishikawa   and   Brouwer   (2000)   recommends   that   in  order  to  improve  the  technique  of  environmental  value  transfer  improvements  need  to  be  made   especially   in   the   original   studies   such   as   the   use   of   a  minimum   set   of   variables,   a  standard   treatment   of   common   variables   and   a   sensitivity   analysis   to   minimise   the  uncertainties.  Furthermore,  when  applying  environmental  value  transfers  researchers  need  to   be   aware   of   the   limitations   of   using   previous   estimates   and   need   to   account   for  uncertainties  (Bateman  et  al.,  2000).      

For  this  study,  the  choice  of  using  environmental  value  transfer  was  explicitly  done  due  to  considerable   time   constraints.   Nevertheless,   the   author   is   aware   of   the   limitations   and  controversy  of  the  technique.  Thus,  a  sensitivity  analysis  will  be  included  in  the  CBA  in  order  

Page 14: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

14 Conceptual Framework

to   address   some   of   the   uncertainties   regarding   the   used   estimates   and,   lastly,   a   more  detailed  discussion  of  the  data  limitations  will  be  provided  in  the  conclusion.  

2.4 Stages  Of  A  Cost-­‐Benefit  Analysis  The  CBA  conducted  in  this  study  will  be  structured  as  depicted  by  Hanley  and  Spash  (1993),  who  defined  seven  stages  for  conducting  a  CBA.  These  include  (1)  defining  the  project  and  scenarios,   (2)   identifying   impacts  that  are  economically  relevant,  (3)  physically  quantifying  impacts,   (4)   calculating   a   monetary   valuation,   (5)   discounting,   (6)   weighting,   and   (7)  conducting  a  sensitivity  analysis.    

Stage  one  is  the  definitional  step,  which  explains  the  proposed  project  or  scenarios  used  in  the   analysis.   It   defines   the   reallocation   of   resources   being   required   for   the   project   and  which  are   the  potential  populations  of  gainers  and   losers.   Limitations  are  sometimes  also  explained  in  this  step,  but  this  can  also  be  done  at  the  end  of  the  analysis.  

The   second   stage  has   two  purposes.   First,   it   identifies  all   negative  and  positive  effects  or  impacts   resulting   from   the   project   implementation.   Second,   it   determines   those   impacts  that  are  economically  relevant  and  that  should  be  considered  in  the  analysis.  Regardless  of  whether  impacts  have  a  market  price  or  not,  they  can  be  regarded  as  economically  relevant  as   long   as   they   affect   the   costs,   benefits   or   utility   of   a   project.   For   environmental  externalities  to  be  accounted  for  as  impacts,  one  out  of  two  conditions  should  be  satisfied.  These  conditions  are:  (1)  that  at  least  one  person  in  the  relevant  population  becomes  more  or   less  affected   in  his  or  her  utility,  and/or   (2)   that  the   level  of  a  positively  valued  output  changes.    

Stage  three  involves  the  physical  quantification  of  the  relevant  impacts.  This  means  that  the  formerly  identified  costs  and  benefits  are  explained  in  terms  of  their  flows,  their  occurrence  in  time  or,  if  applicable,  their  probability  of  occurrence.  All  calculations  in  this  stage  can  be  performed  with  different  degrees  of  uncertainty.    

In  the  next  stage,  stage  four,  the  impacts  are  converted  into  one  common  unit  of  value  in  order  to  be  co-­‐measurable.  The  most  common  unit  for  a  CBA  is  a  monetary  value  because  prices   carry   important   information   about   people   and   their   behaviour.   This   is   because  markets   create   relative   values   for   all   traded   goods   and   services,   which   are   expressed   in  prices.  In  this  stage,  the  task  of  the  researcher  is  to  adjust  market  prices  where  necessary  or  create   prices   where   they   do   not   exist.   Adjusting  market   prices  might   be   required   under  certain   circumstances,   for   example,   in   the   case   of   imperfect   competition   or   government  intervention   in   the  market   that  distorts  prices.  When  a  market  does  not  exist   (e.g.   in   the  case  of  landscape  quality  change),  monetary  values  can  be  created  by  using  shadow  prices  or   stated   or   revealed   preference   prices   that   reflect   the   non-­‐market   scarcity   value   of   an  environmental  impact  as  experienced  by  those  affected.    

After  the  monetary  valuation  of  the  relevant  impacts,  all  values  need  to  be  converted  into  their   present   value   terms.   This   is   done   in   stage   five,  which   is   the  discounting   step  of   the  analysis.   Discounting   is   an   important   tool   in   CBA   and   it   arises   due   to   the   time   value   of  money,  or  time  preference.  This  means  that  most  people  prefer  receiving  100€  today  than  in  one  year,  because  they  prefer  investing  the  money  today  in  a  bank  at  an  interest  rate  of  10  per  cent,  for  example.  This  would  give  them  110  EUR  after  one  year  (100  EUR  +  0.1  *  100  =   110   EUR).   During   the   lifetime   of   a   project,   costs   and   benefits   can   occur   throughout  different   years   and   periods.   Therefore,   they   need   to   be  made   comparable   regardless   of  when   they   occur   which   is   done   by   calculating   their   present   values.   The   discount   factor,  usually   referred   to   as   the   discount   rate,   can   vary   considerably   between   studies   and   is  

Page 15: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 15

subject  to  a  person’s  preference  for  things  now  rather  than  later.  For  example,  the  higher  the   discount   rate,   the   higher   one   values   present   benefits   as   opposed   to   the   benefits  occurring   in   the   future.   The   procedure   of   discounting   is   usually   done   by   calculating   the  present  values  for  each  element  of  the  project  and  then  summing  up  all  discounted  values.    

Subsequently,   in   stage   six,   the   discounted   costs   (C)   and   discounted   benefits   (B)   are  weighted  against  each  other,  using  a  discount   rate   (i).  This   is  done  by  calculating   the  Net  Present  Value  (NPV)  of  the  project  or  scenarios.  If  the  sum  of  discounted  benefits  exceeds  the   sum   of   discounted   costs,   then   the   project   represents   an   efficient   allocation   of  resources.  Thus,  if  

  NPV  =  ∑B1(1+i)-­‐1  -­‐  ∑Ct(1+i)-­‐t      >  0,  

where  the  summation  runs  from  time  t  =  0  (first  year  of  the  project)  to  t  =  T  (last  year  of  the  project),  then  the  project  should  be  accepted.  Two  other  most  commonly  used  indicators  in  CBA  are  the  benefit-­‐cost  ratio  (B/C  ratio)  and  the  Internal  Rate  of  Return  (IRR).  The  former  is  another  way  of  presenting  the  NPV  and   is  calculated  by  dividing  the  sum  of  discounted  benefits   by   the   sum   of   discounted   costs.   If   the   ratio   exceeds   unity,   the   project   should  proceed.  The  IRR  is  the  rate  of  interest  at  which  the  NPV  equals  zero  or  the  rate  of  return  on  the  resources  used  in  the  project.  All  three  indicators,  the  NPV,  B/C  ratio  and  IRR  will  be  used  in  the  analysis  presented  here.    

The  final  stage  involves  the  sensitivity  or  uncertainty  analysis   in  order  to  identify  to  which  parameters  the  NPV  results  are  most  sensitive.  This  is  an  important  step  because  during  the  CBA   calculations,  many   assumptions  need   to  be  made   concerning  physical   and  monetary  flows   that   can   introduce   uncertainty   into   the   analysis.   Therefore,   it   is   essential   to  recalculate   the   decision   criteria   with   a   changed   set   of   parameters,   for   example,   the  discount  rate,  changed  physical  quantities  or  the  project  life  span.

2.5 Literature  Review  Prior   to   the   analysis,   it   is   useful   to   explore   the   CBA   studies   that   have   already   been  conducted   in   the   field   of   hydropower   production.   Therefore,   a   literature   review   will   be  presented   in   order   to   discuss   the   available   findings   and   to   explore   the   missing   gaps   in  estimating  the  economic  value  of  hydropower  generation.  The  review  has  shown  that  only  a   limited   number   of   studies   exist   that   calculate   the   financial   costs   and   benefits   of   Swiss  hydropower  production.  Even  fewer  studies  could  be  found  that  also  take  into  account  the  external   effects   of   hydropower   production.   This   section   presents   an   overview   of   these  studies.  

2.5.1 Studies  for  Switzerland  

An   investigation  conducted  by  Filippini,  Banfi,   Luchsinger  and  Wild   (2001)  provides  a   first  overview   of   the   economic   perspectives   of   hydropower   production   in   Switzerland   with  regard   to   its   competitiveness   in   a  more   liberalised   energy  market.   It  was   found   that   the  competitiveness   of   hydropower   production   is   mainly   determined   by   both   European  electricity   prices   and   the   frontier   technologies   for   base   and   peak   load   electricity  production.  According  to  this  study,  base  load  electricity  prices  are  determined  by  gas-­‐fired  combined   cycle   power   plants   and   nuclear   power   plants,   whereas   peak   load   electricity  prices   are   determined   by   gas   turbine   power   plants.   The   authors   estimated   an   average  electricity  price  at  5.6  Rp./kWh.  The  results  show  that  especially  for  those  plants  producing  peak  load  electricity  the  average  costs  of  production  (e.g.  7.8  Rp./kWh  for  pumped-­‐storage  plants)  exceed  the  average  market  price  for  electricity.  Thus,  in  order  to  stay  competitive  in  

Page 16: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

16 Conceptual Framework

a  more  liberalised  market,  these  plants  need  to  introduce  measures  that  would  help  them  decrease   their   costs   of   production.   For   example,   this   could  be   achieved  by   a   decrease   in  operating   costs   such   as   technical   improvements   raising   the   level   of   efficiency   of   the  machinery  or  a  more  diversified  financing  portfolio.  Furthermore,  the  study  concludes  that  the  degree  of  competiveness  varies  greatly  between  different  types  of  hydropower  plants  and   in   some   cases   even  within   one   plant   category.   Therefore,   it   is   difficult   to   provide   a  general   judgement   about   the   situation   of   Swiss   hydropower   production,   as   the  heterogeneity  with  regard  to  cost  and  price  structure  of  the  plants  is  very  high.  Finally,  the  study  concludes  that  economic  measures  that  focus  on  the  internalization  of  external  costs  of  the  electricity  sector  are  needed  in  order  to  increase  the  competitiveness  of  hydropower  production  in  the  long-­‐run.    

In  2008,  a  report  by  Ott,  Bade,  Hürlimann  and  Leimbacher  (2008)  on  behalf  of  the  BFE  was  released.   It   represents   the   evaluation   of   nature   protection,   repair   and   replacement  measures   due   to   Swiss   hydropower   plants.   The   goal   of   the   study   was   to   elaborate  methodological  techniques  for  the  assessment  and  evaluation  of  adverse  ecological  effects  from   hydropower   plants   on   particular   ecosystems   and   on   the   environment   in   general.  Furthermore,   the   study   discusses  methods   and   techniques   for   the  monetization   of   costs  and   benefits   of   nature   protection,   repair   and   replacement   measures   that   need   to   be  undertaken  due  to  the  ecological  effects  of  hydropower  plants.  One  section  of   the  report  deals   with   direct   and   indirect   benefits   of   hydropower   production   in   monetary   terms.   In  contrast,  for  the  cost  side  the  effects  are  only  discussed  qualitatively  and  methods  for  the  quantification   of   these   effects   are   proposed.   As   for   the   direct   or   financial   benefits,   it   is  concluded   that   the   real   market   prices   of   electricity   reflect   the   gains   generated   by  hydropower   production.   A   comparison   of   different   studies   is   presented,   which   revealed  that   the  mean  prices   for  peak   load  and  base   load  electricity   as  of   2007  amounted   to  9.2  Rp./kWh  and  6.7  Rp./kWh,  respectively.  Furthermore,  the  report  states  that  large  benefits  are  generated  due  to  the  possibility  of  creating  balancing  energy  (energy  that  balances  the  peak  demands  for  electricity)  with  storage  and  pumped-­‐storage  plants  for  peak  demands.  These  benefits  are  expected  to  increase  further  in  the  future  when  more  balancing  energy  is  needed  to  regulate  the  production  volatilities  of  other  renewable  energy  sources,  such  as  solar   and   wind   power.   With   regard   to   the   so-­‐called   indirect   benefits,   it   is   stated   that  electricity  production   in  general   leads   to  many  negative  effects  or  external   costs,   such  as  loss   of   biodiversity,   GHG   emissions   due   to   fossil   fuels,   or   radioactive  waste   from  nuclear  power  plants.  However,   it   is  argued  (and  quantified  empirically)  that  the  external  costs  of  electricity   production   other   than   hydropower   production   exceed   the   external   costs   from  hydropower   production.   Therefore,   hydropower   production   creates   net   external   benefits  or   avoided   external   costs.   The   study   compares   the   net   external   benefits   of   hydropower  production   to   six   other   types   of   electricity   production,   namely   nuclear,   oil,   gas,   wind,  biomass,  and  solar  powered  electricity  production.  It  is  shown  that  hydropower  production  has  a  net  external  benefit  as  compared  to  the  other  types  of  electricity  production  (except  for  wind  power  with  a  net  external  benefit  of  -­‐0.4  Rp./kWh).  

A  recent  study  conducted  by  Geissmann  (2012)  reveals  an  economic  analysis  of   the  Swiss  water  tax  system  with  regard  to  an  alternative  tax  system.  Financial  costs  and  benefits  of  66  Swiss  hydropower  production  companies  are  investigated  for  the  years  2000  to  2009.  The  study  distinguishes  between  three  types  of  hydropower  plants,  namely  ROR  plants,  storage  plants,  and  pumped-­‐storage  plants.  The  total  financial  revenues  are  defined  as  the  sum  of  the   revenues   from   electricity   sales,   capitalized   own   work,   other   operating   incomes,  financial   earnings,   non-­‐operating   revenues,   and   net   extraordinary   revenues.   The   study  found   that   the   mean   financial   revenue   for   all   hydropower   companies   in   year   2009  amounted   to  5.58  Rp./kWh.  The  mean   revenues   from  all   companies   in   year  2009   for   the  

Page 17: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 17

three   plant   types  were   found   to   be   as   follows.   For   ROR   plants   4.3   Rp./kWh,   for   storage  plants  5.5  Rp./kWh  and  for  pumped-­‐storage  plants  6.1  Rp./kWh.  As  for  the  financial  costs,  the   study   estimates   the   mean   costs   of   production   for   the   three   different   plant   types,  including  various  cost  criteria.  These  are  the  costs  of  water  rates,  amortisation,  materials,  financing,  personnel,  energy  and  grid  usage,  dividends,  and  other  taxes  and  costs.  For  ROR  plants,  the  mean  costs  of  production  in  2009  were  calculated  with  lower  and  upper  bounds  at   4.9   Rp./kWh   and   5.6   Rp./kWh,   respectively.   For   storage   plants   the   mean   costs   of  production  in  2009  amounted  to  5.7  Rp./kWh  and  for  pumped-­‐storage  plants  6.3  Rp./kWh.  Comparing  the  mean  financial  revenues  with  the  mean  financial  costs  of  production  for  the  three  plant  types,  it  was  concluded  that  the  costs  of  production  exceed  the  revenues  for  all  plant  types.  

2.5.2 Studies  for  other  countries  

Kataria   (2008)   conducted   a   choice   experiment   in   Sweden   in   order   to   evaluate   people’s  willingness   to   pay   (WTP)   for   ecological   improvements   of   rivers   that   are   regulated   by  hydropower   plants.   The   analysis   considers   four   attributes,   namely   increased   fish   stock,  improved   conditions   for   bird   life,   species   richness   for   benthic   invertebrates,   and   erosion  and   vegetation.   The   findings   reveal   that   Swedish   people   are   indeed   willing   to   pay   for  environmental  amendments  of  hydropower   regulated   rivers.  The   results   showed   that   the  WTP  values  were  ranging  between  1100  and  1400  Swedish  Krona  (SEK)  per  household  per  year  (i.e.  approximately  150  –  191  CHF  per  household/year1).      

In   a   recent   report   by   Klinglmair,   Bliem,   Brouwer   and   Graser   (2012)   an   evaluation   of   the  hydropower   energy   development   in   Austria   is   presented.   It   explored   the   energy-­‐water  nexus  using  public  choice  models.  The  goal  of   the  study  was   to  analyse  various  costs  and  benefits  arising  from  hydropower  production  with  regard  to  the  future  hydropower  energy  development   in   Austria.   The   focus   was   given   particularly   to   the   trade-­‐offs   between  important  positive  and  negative  external  effects  of  hydropower  production.  The  study  was  conducted   by   applying   a   public   choice   experiment  with   the   purpose   of   eliciting   people’s  WTP   for   the   expansion   of   hydropower.   For   the   choice   experiment,   four   attributes   were  considered,   namely   creation   of   jobs,   reduction   of   CO2   emissions,   impact   on   nature   and  landscape  and  distance   to   the  hydropower  plants.   It  was   found   that   for  100   jobs   created  people   are   willing   to   pay   €   0.2   per   month   per   household   in   addition   to   their   current  electricity   bill   and   €   1.3   per   month   per   household   for   an   expansion   of   hydropower.  Furthermore,  if  a  hydropower  plant  is  built  at  least  5  km  away  from  their  house,  people  are  willing   to   pay   €   0.3   per   month   per   household   in   addition   to   their   current   electricity  expenses.  However,  the  WTP  for  the   impact  on  nature  and  landscape  is  valued  negatively  with   €   -­‐13.5   per  month  per   household,  which  means   that   people   value   the   expansion  of  hydropower  production  negatively  when  a  strong  impact  on  nature  and  landscape  occurs.    

2.5.3 Comparing  the  findings  

Table  2-­‐1  summarizes  the  previously  discussed  studies  based  on  the  authors,  year  of  study,  country,   data   collection  method,  main   objective   and   results.   Below   a   comparison   of   the  studies  is  presented.    

1 Currency conversion rate: 1 SEK = 0.137 CHF as of June 30, 2012. Retrieved from

http://www.exchangerates.org.uk/SEK-CHF-exchange-rate-history.html.

Page 18: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

18 Conceptual Framework

Table 2-1 Summary literature review

Authors   Study-­‐  Year  

Country   Type  of  Analysis   Main  Objective   Results  

Filippini  et  al.  

2001   Switzerland   Financial  CBA   Evaluating  the  competitiveness  of  Swiss  hydropower    

Average  Revenues:    5.6  Rp./kWh  Average  Costs:  5.8  Rp./kWh  

Ott  et  al.   2008   Switzerland   Qualitative  and  quantitative  evaluation  

Elaborating  methods  for  assessing  adverse  ecological  effects  from  hydropower  plants  

Average  revenues  peak:  9.2  Rp./kWh  Average  revenues  base:  6.7  Rp./kWh  Net  external  benefits:    4.8  Rp./kWh  

Geissmann   2012   Switzerland   Financial  CBA   Evaluating  an  alternative  tax  system  for  the  current  water  rate  system  

Average  Revenues:  5.58  Rp./kWh  Average  Costs:  5.6  Rp./kWh  

Kataria   2008   Sweden   Choice  Experiment  

Estimating  WTP  for  environmental  improvements  of  hydropower  regulated  rivers  

CHF  150  –  191  per  household  per  year  

Klinglmair  et  al.  

2012   Austria   Choice  Experiment  

Analysing  various  costs  and  benefits  arising  from  hydropower  production  

Jobs:  €  0.2  CO2:  €  1.3  Nature:  €  -­‐13.5  Distance:  €  0.3  (all  per  month/  household)  

 

When  comparing  the  results  from  Filippini  et  al.  (2001)  and  Geissmann  (2012)  one  can  see  that   they   show   similar   patterns.   The   study   by   Filippini   et   al.   (2001)   was   conducted  approximately  10  years  earlier  than  the  one  of  Geissmann  (2012).  Even  though  the  average  results   from   the   latter   study   show   almost   the   same   estimates   for   the   revenues   and  production   costs   per   kWh,   the   specific   values   for   the   three   types   of   hydropower   plants  show   that   all   values   for   revenues   are   lower   than   those   of   the   production   costs.   These  results   reveal   that   the   Swiss   hydropower   production   industry   has   not   yet   achieved   a  sufficient  degree  of   competitiveness  and   its   financial  profitability.   This   is   surprising   if  one  takes  into  account  the  much  higher  degree  of  liberalisation  of  the  Swiss  energy  market  for  the   time  period  of   the   study   conducted  by  Geissmann   (2012),   since   in   a  more   liberalized  market  profitability  is  a  crucial  survival  criteria  for  any  company.      

According  to  the  study  conducted  by  Ott  et  al.   (2008)  hydropower  production  creates  net  benefits  from  the  perspective  of  a  society.  This  is  because  the  external  costs  created  from  hydropower   production   are   lower   than   those   generated   by   other   forms   of   electricity  

Page 19: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 19

production.  The  average  net  external  benefit  of  hydropower  production  was  calculated   in  comparison   to   six   other   forms   of   electricity   production,   and   amounts   to   4.8   Rp./kWh.  Therefore,  the  costs  of  production  of  hydropower  would  have  to  be  at  least  this  amount  in  order  for  hydropower  to  produce  a  net  cost  to  society.    

The  two  choice  experiments  conducted  by  Kataria  (2008)  and  Kinglmair  et  al.  (2012)  show  very  similar  results  in  terms  of  the  mean  WTP  of  respondents  for  improvements  of  natural  amenities   affected   by   hydropower.   In   the   study   conducted   by   Kataria   (2008)   in   Sweden  people   are   on   average   willing   to   pay   CHF   150   –   191   per   household   per   year   for  environmental   improvements   of   rivers   affected   by   hydropower   production.   Similarly,   the  choice  experiment  conducted  by  Kinglmair  et  al.  (2012)  in  Austria  found  that  people  value  the  impacts  of  nature  and  landscape  with  CHF  194  per  household  per  year  (CHF  16.2  x  12  =  CHF  1942).  The  similarity  of  the  results  is  surprising  since  the  studies  have  been  conducted  in  two  different  countries  and  at  different  points  in  time.      

The  review  of  previous  studies  has  shown  that  there  is  a  lack  of  a  comprehensive  CBA  that  takes   into   account   both   pure   financial   costs   and   benefits   associated   with   hydropower  production  and  the  wider,  external  costs  and  benefits  arising  from  hydropower.  Therefore,  the   following   analysis   attempts   to   fill   in   this   gap   by  merging   the   findings   of   some  of   the  previously   discussed   studies   and   conducting   an   extended   (economic)   CBA  of   hydropower  production  in  Switzerland.  Since  the  analyses  conducted  by  both  Filippini  et  al.  (2001)  and  Geissmann  (2012)  show  that  there  is  a  negative  net  financial  benefit  of  current  hydropower  production  in  Switzerland,  it  is  interesting  to  investigate  whether  this  result  would  change  if  external  costs  and  benefits  of  hydroelectricity  production  are  included  into  the  analysis.      

2 Currency conversion rate: 1 € = 1.2008 CHF. Retrieved from

http://www.ecb.int/stats/exchange/eurofxref/html/eurofxref-graph-chf.en.html.

Page 20: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$
Page 21: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 21

3 Hydropower  In  Switzerland  

3.1 Hydropower  Essentials  Hydraulic  power   is  based  on   the  energy  provided  by   the   sun  as   it  drives   the  hydrological  cycle  on  our  planet  (Energy  Information  Administration  [EIA],  2012).  Solar  energy  heats  the  water  on  the  Earth’s  surface,  which  subsequently  evaporates  to  the  atmosphere  due  to  the  thermal  lift.  There  the  water  vapour  condenses  and  thereinafter  redounds  upon  the  Earth  in  the  form  of  precipitation.  Due  to  the  Earth’s  gravitational  force,  surface  water  will  always  flow   to   lower   lying   regions.   The   energy   that   is   created   by   this   flowing   or   falling  water   is  called  hydraulic  power.  As  the  solar  energy  continuously  supplies  water  to  the  Earth  in  the  form  of  precipitation,  hydraulic  power  is  classified  a  renewable  energy.    

The   energy   from  water   has   been   used   for   centuries   dating   back   to   300   BC,   when  water  wheels   in   China   were   installed   to   help   farmers   grinding   their   grains   (Deutsche   Energie-­‐Agentur,   2012).   In   this   process,   the   kinetic   energy   of  water   is   converted   into  mechanical  energy  by  means  of  a  rotation  of  a  waterwheel.  Even  in  medieval  times,  the  use  of  water  as  an  energy  source  has  had  a  relatively  high  efficiency  of  more  than  70  per  cent  whereas  the  steam  engine  in  the  beginning  of  the  industrialisation  only  achieved  an  efficiency  of  about  10  per  cent  (Hairer,  2005).  Although  waterwheels  are  still  in  use  in  some  parts  of  the  world,  nowadays,  hydraulic  turbines  with  a  much  higher  efficiency  rate  have  mainly  replaced  the  waterwheel.   In   modern   installations,   water   is   channelled   through   a   so-­‐called   penstock  (pipeline)  and  pushes  the  blades  of  a  turbine,  which  in  turn  spins  a  generator    (EIA,  2012).  The   speed   of   the   rotation   depends   on   the   pressure   of   the   water   flow   and   the   vertical  distance  (head)  with  which  the  water  falls  through  the  penstock  (IEA,  2010).  The  higher  the  speed   of   the   turbine,   the   more   power   is   created.   The   electricity   that   is   created   by   the  generator  is  called  hydroelectric  power,  or  hydropower.  

3.2 Types  of  Hydropower  Plants  Despite   many   similarities   of   hydropower   installations   as,   for   example,   the   energy  conversion  from  potential  to  electrical  waterpower,  hydropower  plants  can  vary  in  different  aspects   such   as   the   storage   or   feeding   of   water.   These   technical   differences   allow   for   a  categorisation   of   hydropower   plants   into   different   types.   Various   aspects   of   the  installations  can  be  taken   into  consideration  when  categorizing  the  plants,  which  has   lead  to  a  multitude  of  typologies  often  depending  on  individual  definitions.  For  example,  some  typologies  use   the  differences   in   the  water  head,  namely   low,  medium  and  high  head,   to  differentiate   between   hydropower   plants   (Geissmann,   2012).   Others   use   the   maximum  power  potential  of  the  plants  for  a  classification,  namely  small  hydropower  plants  with  ≤  1  MW,  medium-­‐sized  hydropower  plants  with  1-­‐100  MW,  and  large  hydropower  plants  with  ≥  100  MW  (Geissmann,  2012).  The  most  frequently  used  categorisation,  however,  looks  at  the   available   quantity   of   water   and   generally   has   three   different   types   of   installations,  namely  run-­‐off-­‐the-­‐river,  storage  and  pumped-­‐storage  plants  (IEA,  2010).  For  this  study,  the  latter   categorisation   of   hydropower   plants   will   be   used,   as   this   is   the   typology   most  frequently   used   in   official   data   and   information   underlying   this   thesis.   They   are   further  explained  in  more  detail  in  the  following.    

 

Page 22: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

22 Hydropower In Switzerland

• Run-­‐Off-­‐The-­‐River  (ROR)  plants:    These   hydropower   plants   use   the   constant   flow   of   water   in   a   river   or   stream   to  generate  energy.  In  this  process,  the  force  of  the  water  current  is  the  energy  source  that  drives   the   rotation  of  a   turbine.  Thus,   the  amount  of  electricity  generated   in  ROR  plants  depends  on  the  amount  of  water  flowing  through  the  penstock.  This  is  also  called  flow  volume.  Usually,  ROR  plants  have  a   low  head,  40m  or   lower,  with  which  the  water  falls  through  the  penstock.  As  water  is  constantly  flowing  through  and   driving   the   turbines,   ROR   plants   are   most   suitable   for   providing   the   electric  base  load  to  the  respective  region  or  nation.  This  also  means  that  their  production  is   independent   from   changes   in   the   electricity   market   prices,   as   electricity   is  generated  constantly  (Geissmann,  2012).    

• Storage  plants:  Hydroelectric  storage  plants,  also  called  impoundment  or  reservoir  facilities,  are  the  most   common   type   of   hydropower   installations   (IEA,   2010).   Contrary   to   ROR  schemes,  storage  plants  have  the  capacity  to  store  large  quantities  of  water  behind  a  dam  and,  when  needed,  use  parts  of  the  stored  water  for  electricity  generation.  This   technology   allows   electricity   to   be   generated   at   peak   demands   within   an  almost   immediate   response   time,   which   is   the   most   efficient   form   of   peak   load  energy  production  (Pfammatter,  2012).  Storage  plants  are  usually  medium-­‐  to  high-­‐head  installations.    

• Pumped-­‐storage  plants:  A  pumped-­‐storage  plant   is   a   type  of   storage  plant   that  has   the   capacity   to  pump  water   back   from   a   lower   reservoir   into   the   upper,   main   reservoir,   if   the   natural  water   feeding   into   the  main   reservoir   is   too   low.   The   process   of   pumping   occurs  when  base  load  electricity  prices  are  low,  which  is  usually  the  case  during  nights  or  during   those   hours   of   the   day  when   electricity   demand   is   low.  Modern   pumped-­‐storage  plants  have  an  efficiency  rate  of  0.8,  which  means  that  20  per  cent  of  the  generated   electricity   is   lost   due   to   the   process   of   pumping   back   the   water.  Nevertheless,  pumped-­‐storage  plants  still  are  the  most  efficient  and  ecological  form  of   indirectly   storing   energy   (Pfammatter,   2012).   The   head   of   pumped-­‐storage  plants  is  usually  high  and  they  are  also  used  for  peak  energy  demand.  As  electricity  is  required  to  pump  the  water  into  the  higher  reservoir,  this  type  of  hydropower  is  not  classified  as  renewable  energy  (IEA,  2010).    

Furthermore,   in   Switzerland,   another   type   of   hydropower   plants   exists,   the   so-­‐called  Umwälzwerk  [no  official  translation  found],  which  can  be  best  described  as  a  re-­‐circulation  plant.   It   uses   two  water   reservoirs  with  a  different   geographical   altitude,   and   it   does  not  have   natural   water   feeding,   which   makes   it   different   to   a   pumped-­‐storage   plant.   When  electricity   is  demanded  at  peak  times,  water   is  released  from  the  upper  reservoir   into  the  lower   reservoir   thereby   producing   electricity.   When   electricity   prices   are   low   again,   the  water  is  pumped  back  into  the  upper  reservoir.  Thus,  the  water  that  is  used  for  electricity  production   at   one   time   can   be   re-­‐used   for   electricity   production   over   and   over   again.  Naturally,   this   type   of   hydropower   plant   cannot   be   classified   a   renewable   energy,   as  electricity  is  needed  to  re-­‐circulate  the  water  between  the  reservoirs.    

The   following   figure   (Figure   3-­‐1)   represents   the   former   discussed   classification   of  hydropower   plants   in   a   graphical   manner.   As   shown,   this   classification   distinguishes  between  plants  that  are  based  on  natural  water  feeding  only,  and  pumped-­‐storage  plants  

Page 23: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 23

with  or  without  natural  water  feeding.  The  former  group  includes  ROR  plants  and  storage  plants,  whereas   the   latter   group   consists   of   pumped-­‐storage   plants  with   a   natural  water  feeding  and  Umwälzwerke,  without  natural  water  feeding.

Figure 3-1 Classification of hydropower plants

 

3.3 Swiss  Hydropower  History  Hydropower   generation   has   been   a   long   established   source   of   renewable   energy   in  Switzerland.  Around  10,000  small  hydropower  plants  have  been  counted  at  the  end  of  the  19th   century   and   approximately   50   years   later   a  massive   expansion   of   large   hydropower  schemes  followed.  This  expansion  was  largely  due  to  the  increasing  electricity  demand  and  newly   invented   technologies   after   World   War   II,   and   was   also   observed   in   many   other  European   countries,   such   as   Austria   and  Germany   (Hairer,   2005).   Furthermore,   the   rapid  economic  expansion  since   the  mid  20th  century   required  secure  electricity   supply   for   the  growing   industries   and   households.   Figure   3-­‐2   shows   the   electricity   generation   and  electricity  consumption  in  Switzerland  in  GWh  from  1950  until  2010  (BFE,  2012a).    

Page 24: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

24 Hydropower In Switzerland

Figure 3-2 Development of Swiss energy production and consumption between 1950 and 2010

Source:  BFE,  2012a  

The   Swiss   electricity   production  was   almost   entirely   based   on   hydropower   until   the   late  1960s,   when   electricity   supply   could   just   fulfil   the   national-­‐wide   electricity   demand.  Furthermore,   the   development   of   hydropower   production   and   electricity   demand   were  growing  almost  parallel  until  the  1960s,  where  after  hydropower  production  levelled  off  as  most   economically   efficient   sites   had   been   discovered   already.   However,   electricity  demand   kept   increasing   resulting   in   the   construction   of   the   first   nuclear   power   plant,  Beznau,   which   became   operational   in   1969.   Since   then   four   more   nuclear   power   plants  have   been   constructed   to   secure   Swiss   base   load   electricity   supply.   Nowadays,   activities  within  the  hydropower   industry  are  mostly  constrained  to  the  optimisation  and  efficiency  increase  of  installed  plants,  whereas  new  constructions  of  hydroelectric  power  plants  have  become  relatively  rare  (Geissmann,  2012).  

3.4 The  Swiss  Hydropower  Sector  Today  In   2011,   the   Swiss   electricity   production   amounted   to   62.9   TWh,   out   of   which  approximately  34.0  TWh  were  produced  by  Swiss  hydropower  plants  (BFE,  2012a).  As  can  be  seen   in  Figure  3-­‐3,  hydropower   forms   the  backbone   for  Swiss  electricity   supply  with  a  share   of   54   per   cent,   followed   by   nuclear   power   production  with   41   per   cent   and   other  electricity   sources   with   a   share   of   5   per   cent.   This   is   important   as   it   explains   the   high  economic  as  well  as  political  significance  of  hydropower  production  in  Switzerland.    

13

3. Erzeugung elektrischer Energie3.1 Entwicklung der Landeserzeugung

Der schweizerische Kraftwerkpark erreichte 2010 mit 66 252 GWh ein gegenüber dem Vorjahr um 0,4% verringertes Produktionsergeb-nis. Dies entspricht dem fünfthöchsten jemals erzielten Produktions-ergebnis. Die zeitliche Entwicklung der verschiedenen Erzeugungs-arten und deren anteilsmässiger Beitrag an die Landeserzeugung gehen aus Tabelle 8 und Figur 9 hervor. In Tabelle 11 ist die saisonale Aufteilung der hydraulischen Produktion dargestellt.

Der hohe Ausbaugrad der Wasserkraft hat zur Folge, dass sich das Angebot an hydraulischem Strom von der technischen Seite her nur noch begrenzt steigern lässt. Schwankungen in der effektiven Wasserkrafterzeugung rühren deshalb hauptsächlich von der unterschiedlichen Wasserführung der Flüsse und von den Speichermöglichkeiten in den Stauseen her. Die Wasserkraftwerke erzeugten im hydrologischen Jahr 2009/2010 7,3% weniger als im Vorjahr und 2,9% weniger als im Mittel der letzten zehn Jahre.

3. Production d’énergie électrique3.1 Evolution de la production nationale

La production du parc suisse des centrales électriques a reculé de 0,4% en 2010 par rapport à 2009, atteignant 66 252 GWh. C’est le cinquième meilleur résultat enregistré à ce jour. Le tableau 8 et la figure 9 montrent comment les différents modes de production ont évolué dans le temps, ainsi que leur contribution respective à la pro-duction nationale. Le tableau 11 présente la répartition saisonnière de la production hydraulique.

Techniquement, l’offre d’électricité d’origine hydraulique ne peut être accrue que de façon limitée, du fait du haut degré d’utilisation de cette ressource. Les fluctuations de production que l’on observe sont dues surtout aux variations du débit des cours d’eau ainsi qu’aux possibilités de stockage dans les lacs d’accumulation. Les centrales hydrauliques ont produit, durant l’année hydrologique 2009/2010, 7,3% de moins que l’année précédente et 2,9% de moins que la moyenne des dix années écoulées.

Fig. 9Entwicklung der einzelnenErzeuger -kategorien seit 1950

Fig. 9Evolution desdifférentes catégories de production depuis 1950

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 20100

10000

20000

30000

40000

50000

60000

70000

80000

Konventionell-thermische und andere Kraftwerke-Centrales thermiques classiques et divers

Kernkraftwerke-Centrales nucléaires

Laufkraftwerke-Centrales au fil de l'eau

Speicherkraftwerke-Centrales à accumulation

GWh

Landesverbrauch/Consommation du pays

SpeicherkraftwerkeCentrales à accumulation

LaufkraftwerkeCentrales au fil de l’eau

KernkraftwerkeCentrales nucléaires

Konventionell thermische und andere KraftwerkeCentrales thermiques classiques et divers

Erzeugung elektrischer Energie

Tabelle 8Tableau 8

Anteile der einzelnen Kraftwerktypen an der LandeserzeugungParts des différents types de centrales électriques à la production nationale

24 51018 88821 04719 07817 761

16 73819 82620 87321 02621 420

34,929,132,330,030,7

26,930,131,231,632,3

25 29325 69225 93125 43222 020

26 24426 34426 13226 11925 205

60,256,255,955,356,6

52,455,256,155,856,5

36,139,539,740,038,0

42,240,039,039,338,1

2 6202 8062 8902 9743 139

3 3403 1993 2763 2393 597

Wasserkraftwerke – Centrales hydrauliques*Kalenderjahr

Année civile

Kernkraftwerke

Centrales nucléaires

Konventionell-thermischeKraftwerke und andere

Centrales thermiquesclassiques et divers

Total (= 100%)

Laufwerke

Centrales au fil de l’eau

Speicherwerke

Centrales à accumulation

Total

GWh % GWh % GWh GWh% % GWh % GWh

17 75117 62515 39816 03914 998

15 81916 54716 68616 11016 030

20012002200320042005

20062007200820092010

42 26136 51336 44535 11732 759

32 55736 37337 55937 13637 450

25,327,123,625,325,9

25,525,124,924,224,2

* siehe auch Tabelle 11/voir aussi tableau 11

3,74,34,44,75,4

5,44,84,94,95,4

70 17465 01165 26663 52357 918

62 14165 91666 96766 49466 252

!!"#$$%&'&()*#(#)+%(,-$./01,-%2"3%%24./0&563%!),*78&%4'7-)$%%9:9%4'7-)$%%;.('&7*%4,"&*%4'7-)$%%<,-=&-1,-7'%>?&*/#(7'%7-5%:)?&*%4,"&*%4'7-)$%

Page 25: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 25

Figure 3-3 Shares of Swiss electricity production, 2011

 

Data  source:  BFE,  2012a  

As  of   January  1st,   2012,   there  were  566   Swiss  hydropower   installations  with   a  maximum  power   above   300   kW,   out   of   which   nine   installations   are   located   outside   Switzerland,    mainly  in  France,  Germany  and  Italy  (BFE,  2012b).  Of  the  plants  located  domestically,  ROR  plants   have   a   share   of   47   per   cent   (455   plants)   in   the   average   hydropower   production,  storage  plants  account  for  48  per  cent  (85  pants),  and  pumped-­‐storage  plants  have  a  share  of  5  per  cent  (14  plants)  (BFE,  2012b).  This  is  shown  in  Table  3-­‐1.  

Table 3-1 Electricity production by power plant type

Power  Plant  Type   Number   Production  in  GWh   in  per  cent  ROR  plants   455   16,938   47  %  Storage  plants   85   17,286   48  %  Pumped-­‐storage  plants   14   1,594   5  %  Total   554   35,818   100  %  

Data  source:  BFE,  2012b  

Furthermore,   there  are  about  700  small  hydropower   installations  with  a  maximum  power  below  300  kW.  However,  these  plants  will  not  be  taken  into  consideration  in  the  analysis  of  this  study  because  their  relative  importance  for  national  electricity  production  is  very  small  compared  to  the  larger  plants.  This  is  shown  in  Figure 3-4,  which  illustrates  the  percentage  of   hydropower   plants   (orange)   divided   into   three   categories   by   production   capacity   and  their  relative  share  in  total  electricity  production  (green).  The  left  axis  shows  the  number  of  plants,  whereas  the  right  axis  shows  the  electricity  production  in  TWh.  It  can  be  seen  that  the   number   of   small   hydropower   plants   with   a   maximum   capacity   below   300   kW   has   a  share  of  57  per  cent  out  of  all  operating  hydropower  plants  in  Switzerland.  However,  their  total  contribution  to  gross  hydropower  production  accounts  only  for  1  per  cent.    

Page 26: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

26 Hydropower In Switzerland

Figure 3-4 Relative share and percentage of hydropower plants in total electricity production

Source:  Bryner,  2011  

The  high   share  of   renewable  energy  and   its  dominance   in   the   country’s  electricity   supply  are   largely   facilitated   by   the   natural,   mountainous   topography   of   Switzerland   and   the  numerous  water   sources   stemming   from   the   Swiss   glaciers.   It   is   not   surprising   thus,   that  two-­‐thirds  of  the  electricity  produced  from  hydropower  are  generated   in  the  Swiss  alpine  cantons   Uri,   Graubünden,   Tessin   and  Wallis   with   22,   95,   30,   and   95   hydropower   plants,  respectively.  Other   important   regions  of  hydropower  generation  are   the  cantons  of  Bern,  Glarus   and   Aargau.   The   geographical   distribution   of   large   hydropower   installations   in  Switzerland  is  illustrated  in  Figure  3-­‐5.    

Figure 3-5 Map of hydropower facilities with a maximum capacity above 10 MW

 

Source:  BFE,  2011a  

Eawag: Das Wasserforschungs-Institut des ETH-Bereichs

Wasserkraft und Ökologie – Faktenblatt Mit 20% Anteil (rund 3400 TWh) an der weltweiten Stromproduktion kommt der Wasserkraft eine Schlüssel-rolle zu, auch wenn ihr Anteil am Endverbrauch aller Energieträger nur rund 2% beträgt. Dies vor allem des-halb, weil sie kurzfristig regulierbar ist und in den Talsperren grosse Reserven gespeichert werden können. In der Schweiz stammen rund 56% des Stroms aus Wasserkraft. Weltweit existieren mindestens 47‘655 grosse Staudämme und Schätzungen gehen von 800‘000 kleineren aus.1,2 Seit 2000 wird wieder mehr in Wasserkraftprojekte investiert. Die Weltbank und die Welt-Damm-Kommission rechnen mit einer weiteren starken Zunahme3. In der Schweiz existieren:

576 Zentralen (>300kW Leistung) und zusätzlich rund 700 Kleinstwasserkraftwerke (<300kW). Rund 1400 Entnahmestellen4 und 102 Stauseen >0.1km2 5 Landeserzeugung Strom (2010): 66.3 TWh/a; davon Wasserkraft 37.5 TWh/a (56%)6 Speziell an der Wasserkraft in der Schweiz ist der hohe Anteil (57%) an Spitzenproduktion aus alpi-

nen Speicherseen. 43% stammen aus Laufkraftwerken. Verbrauch der Speicherpumpen (2010): 2.5 TWh/a

Zubau Wasserkraft 1950-2010 (nur Werke >300kW) 7 Verhältnis Anzahl Anlagen zur Produktion8 Die Nutzung der Wasserkraft bringt vielerorts Gewinne für die Wasserversorgung und für die Bewässerung in der Landwirtschaft, doch sie hat Folgen für die Gewässerökosysteme. Dabei ist zu berücksichtigen, dass die Artenvielfalt in aquatischen Ökosystemen durch chemische Belastungen, Überdüngung und den Struk-turwandel (Verlust von Feuchtgebieten, Abholzung, Wasserentnahmen, Verbauung und Stau von Flüssen) überproportional betroffen ist.9 Die Süsswasserfauna weist einen fünffach höheren Artenrückgang auf als terrestrische Lebensräume.10 Von den ehemaligen Auen der Schweiz sind 91% verschwunden.11 Von total 65‘000 km Fliessgewässern sind 22% in einem schlechten ökologischen Zustand: 40% im Mittelland, 80% im Siedlungsgebiet; 4000 km sind eingedolt. Unterbrechung des Fluss-Kontinuums

Talsperren und Wehre unterbrechen den Fluss als Längskontinuum. Die Verinselung der Lebensräume gefährdet vor allem Arten, die in ihrem Lebenszyklus lange Wanderungen durchführen (z.B. Lachs, Nase, Aal). Arten, die auf strömendes Wasser angewiesen sind, verlieren in den Stauräumen ihren Lebensraum. Wie stark künstliche Barrieren den Fischen zu schaffen machen, wiesen Eawag-Fischbiologen an der untersten Töss (ZH) nach: Unterhalb eines sechs Meter hohen Wehrs zählten sie 23 Fischarten, oberhalb noch 12. An der Sitter (SG/AR/AI) waren 46 der 54 untersuchten Zuflüsse für die Groppe nicht erreichbar. Umgekehrt stieg die Zahl der Fisch-arten im Lichtensteiner Binnenkanal innert nur vier Jahren von 6 auf

16 an, nachdem ein Absturz an der Mündung in den Alpenrhein fischgängig umgestaltet worden war. Die Aufwärtswanderung der Fische wird an den Kraftwerken mit Fischaufstiegshilfen ermöglicht. Nicht alle Fischpässe weisen jedoch einen guten Standard auf, und für einige Fischarten sind die bestehenden Fisch-pässe nicht geeignet. Für die Abwanderung an den Kraftwerken existieren in der Schweiz keine Abstiegshil-fen. Beim Abstieg über die Turbinen werden viele Fische verletzt oder sterben.

SCHIFFENEN

HAGNECKAARBERG

NIEDERRIED MÜHLEBERGFELSENAU

REFRAIN

LE CHÂTELOT

VEYTAUX

CHÂTELARD-BARBERINE 1+2

CHÂTELARD-VALLORCINE

MARTIGNY-BOURGLA BÂTIAZ

VERNAYAZ (CFF)MIÉVILLE

LAVEY

LA PEUFFEYREMONTHEY (VIÈZE)

ORSIÈRES

PALLAZUIT CHANRION

FIONNAY (DIXENCE)FIONNAY (MAUVOISIN)

ARDON

BIEUDRONNENDAZ

RIDDESCHANDOLINE

BRAMOIS

CROIXST. LÉONARD

MOTEC

VISSOIE

CHIPPIS(RHONEWERK)

NAVISENCE

CHANCY-POUGNY

VERBOIS

INNERGSTEIG

TURTMANN

STEG

STALDEN (KWM)

ACKERSAND 1ACKERSAND 2

ZERMEIGGERN

GONDO

GABI

BITSCH (BIEL) MÖREL

ALETSCH

HEILIGKREUZ

FIESCHERTAL

NEUBRIGGERNEN

LA DERNIERLES CLÉES

MONTCHERAND

OELBERG

HAUTERIVE

BROC

MONTBOVON

SPIEZERLENBACH

KANDERGRUND

AARAU-STADT RUPPERSWIL

GÖSGEN

RUPPOLDINGENWYNAU

BANNWIL

FLUMENTHAL

WILDEGG-BRUGG WETTINGENWETTINGEN

BREMGARTEN-ZUFIKON

KEMBS

BIRSFELDENAUGST

WYHLEN

RHEINFELDEN

RYBURG-SCHWÖRSTADT

SÄCKINGEN

LAUFENBURG

ALBBRUCK KLINGNAU

BEZNAU

RECKINGEN EGLISAU

RHEINAU

SCHAFFHAUSEN

KUBEL

ETZELWERKALTENDORF

SIEBNENREMPEN

AM LÖNTSCH

SCHWANDEN(NIEDERENBACH)

SCHWANDEN(SERNF)

SARELLI

KLOSTERS

KÜBLISMARTINA

PRADELLA

OVA SPIN

CAMPOCOLOGNO 1

ROBBIA

PALÜ

CASTASEGNA

LÖBBIA (ALBIGNA)

FERRERA 1

BÄRENBURG

SILS (KHR)SILS (EWZ)

TIEFENCASTEL (ALK)FILISUR

TIEFENCASTEL WEST

TIEFENCASTEL OST

TINIZONG

REALTA

ROTHENBRUNNEN (EWZ)ROTHENBRUNNEN (KWZ)

REICHENAU

MAPRAGG

ZERVREILA

SAFIEN PLATZ

ILANZ 2ILANZ 1

MUTTEINS

TAVANASA (KVR)

SEDRUN 1

RUSSEIN

LINTHAL (LIMMERN)FÄTSCHBACH

TIERFEHD (LIMMERN)TIERFEHD (HINTERSAND)

WERNISBERG

BISISTHAL

BOLZBACH BÜRGLEN (UNTERSCH.)

ARNIBERG AMSTEG

PFAFFENSPRUNG

GÖSCHENEN 1+2

DALLENWIL

OBERMATT

HUGSCHWENDIUNTERAA (LUNGERERSEE)

INNERTKIRCHEN 1HOPFLAUENEN (TRIFT)

HANDECK 3+2+1

GRIMSEL 1 (OBERAARSEE) GRIMSEL 2

MOROBBIASASSELLO

GRONO

LOSTALLOSOAZZA

SPINA (ISOLA)

VERBANO 1+2

GORDOLA

BIASCABIASCHINA

OLIVONELUZZONE

PIOTTINO

TREMORGIO

RITOM

STALVEDRO (AET)AIROLO

CAVERGNO

ROBIEI

BAVONA PECCIA (SAMBUCO)

MUTT

Zentralen von Wasserkraftanlagen der Schweiz,mit einer maximal möglichen Leistung ab

Generator von mindestens 10 MW

Centrales d’aménagements hydro-électriquessuisses d’une puissance maximale disponibleaux bornes des alternateurs d’au moins 10 MW

Centrali d’impianti idroelettrici svizzeri conuna potenza massima disponibile ai

morsetti die generatori d’almeno 10 MW

10 - < 50 MW (103 Zentralen)

50 - < 200 MW ( 63 Zentralen)

200 MW ( 17 Zentralen)

Zentrale einer internationalen WasserkraftanlageCentrale d’un aménagement hydro-électrique internationalCentrale d’un impianto idroelettrico internationale

Legende / Légende / Leggenda

Stand / Etat / Stato: 1.1.2011

INNERTKIRCHEN 2

TIERFEHD (UMWÄLZWERK)

ALBBRUCK-WEHRKRAFTWERK

GRIMSEL 1 (GRIMSELSEE)

TASCHINAS

NANT DE DRANCE

UNTERAA (MELCHAA)

LIMMERN

Page 27: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 27

It  shows  183  hydropower  facilities  with  a  maximum  capacity  from  10  MW  as  of  January  1st,  2011  (BFE,  2011a).  As  can  be  seen  the   large  hydropower  plants  with  a  maximum  capacity  above  200  MW  are  particularly   located   in  the  Alpine  areas  of  southern  and  east-­‐southern  Switzerland.  

3.4.1 Swiss  hydropower  production  compared  to  the  world  

With   its   diverse   technical,   economical   and   ecological   advantages,   it   is   believed   that  hydropower  will  play  a  key  role  in  future  world  energy  provision,  particularly  in  developing  countries  (IHA,  ICOLD,  IEA  &  CHA,  2000).  Today,  hydropower  accounts  for  the  biggest  share  of   renewable   energies.   Namely,   in   2008,   world   electricity   production   from   hydropower  accounted   for  3,329  TWh   (IEA,  2011),  which  was  equivalent   to  more   than  16  per   cent  of  total   world   electricity   production   (20,181   TWh).   Since   1990,   China   has   had   the   largest  absolute  growth  in  hydropower  exploitation,  with  an  increase  of  50  per  cent  until  2010  in  terms  of  hydropower  production  and  it  still  has  large  potentials  for  further  expansion  (IHA,  ICOLD,   IEA   &   CHA,   2000).   Figure   3-­‐6   shows   the   global   distribution   of   hydropower  production   for   2008  of   the   ten   leading   countries   and   the   rest  of   the  world   (‘other’)   (IEA,  2010).   It   can   be   seen   that   China   holds   the   largest   share   with   18   per   cent   of   yearly  hydropower  generation.  It  is  followed  by  Canada  (12  per  cent),  Brazil  (11  per  cent)  and  the  United  States  (9  per  cent).  The  other  six  countries,  Russia,  Norway,  India,  Venezuela,  Japan,  and   Sweden,   hold   shares   equal   to   or   below   5   per   cent.   Lastly,   all   other   countries   not  specified   further   generate   30   per   cent   of   hydropower   production.   For   a   comparison,   the  share   of   Swiss   hydropower   production   lies   approximately   at   1.1   per   cent   of   total   world  hydropower  production  (IEA,  2011).    

Figure 3-6 Global shares of hydropower production

Source:  IEA,  2010  

The  share  of  hydropower  production  in  the  world  energy  provision  is  expected  to  increase  further  in  the  future,  as  the  IEA  estimated  that  the  worldwide  hydropower  potential  lies  at  about   16,400   TWh   per   year   (IEA,   2010),   which   means   an   increase   potential   of  approximately   500  per   cent.  However,   this   potential   is   quite  unevenly  distributed,   as   the  top   five   countries   with   the   largest   prospective,   namely   China,   the   Unites   States,   Russia,  

Page 28: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

28 Hydropower In Switzerland

Brazil  and  Canada,  could  generate  more  than  half  of  this  electricity  per  year   (8,360  TWh).  Together   with   the   bottom   five   countries,   these   nations   form   about   two-­‐thirds   of   the  worldwide,  unexploited  hydropower  potential  (IEA,  2010).  According  to  the  IHA,  most  OECD  countries  have  already  actively  developed   their  potential  hydropower  use,  except   for   the  US  and  Canada  (IHA,  ICOLD,  IEA  &  CHA,  2000).  This  holds  specifically  for  Switzerland,  whose  proportion  of  developed  hydropower  potential  amounts  to  88  per  cent  and  therefore  ranks  first  of  all   countries  with  developed  hydropower  production  above  30  TWh  per  year   (IEA,  2010).   This   can   be   seen   in   Figure   3-­‐7,   which   shows   the   countries   with   the   highest  developed  proportion  of  their  hydropower  potential.  As  one  can  observe,  Mexico  is  ranked  second   with   80   per   cent   developed   hydropower   potential,   followed   by   Norway   (70   per  cent),  Sweden  (69  per  cent)  and  France  (68  per  cent)  (IEA,  2010).    

Figure 3-7 Countries with the highest proportion of developed hydropower potential

Source:  IEA,  2010  

3.5 Swiss  Energy  Policy  And  Perspectives  

As   a   consequence   of   the   Fukushima   nuclear   disaster   that   took   place   in   Japan   in  March,  2011,   the   Swiss   government   has   decided   to   phase   out   nuclear   energy   production   in   the  long-­‐term   (Teuwsen,   2011).   Three   days   after   the   disaster,   D.   Leuthard,   a  member   of   the  Swiss  Federal  Council,  announced  the  abrupt  change  in  nuclear  energy  policy  to  the  Swiss  people  and,   in  addition,  notified  that   the  construction  of   three  new  nuclear  power  plants  had  not  been  approved.  Since  then,  it  has  been  decided  that  the  five  nuclear  power  plants  will  not  be  replaced  with  new  plants  after  the  end  of  their  technically  safe  operating  period,  which  is  expected  to  be  50  years  for  each  plant  (Zacharakis,  2011).  This  means  that  in  2019  the   first   Swiss   nuclear   power   plant   will   be   shut   down,   with   the   last   one   being   closed   in  2034.  In  May  2011,  the  Swiss  Federal  Council  has  released  the  new  Energy  Strategy  2050,  which   depicts   future   strategies   and   perspectives   for   the   Swiss   energy   industry  (Schweizerischer  Bundesrat,  2011).    

The   new   energy   strategy   is   based   on   the   four   pillars   of   energy   efficiency,   renewable  energies,   large   power   stations   and   active   foreign   energy   policy   (see   Figure   3-­‐8).  Furthermore,  it  is  grounded  on  the  concept  of  a  2000-­‐Watt-­‐society,  which  means  1  t  of  CO2  per  capita  per  year.  For  a  comparison,  current  CO2  emissions  per  capita  in  Switzerland  are  

Page 29: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 29

almost   seven   times   as  much,   namely   6.82   t   of   CO2   per   capita   (BAFU,   2012).   It   has   been  estimated  that  total  electricity  demand  in  2050  will  increase  to  61.86  TWh.  To  meet  these  demands,   the   increase   of   energy   efficiency   and   the   expansion   of   renewable   energies   in  particular  are  a  central  focal  point.  According  to  the  Council,  this  needs  to  be  accompanied  by  a  paradigm  change,  not  only  in  policy  but  also  in  society  as  a  whole,  which  will  lead  to  a  decrease  in  energy  intensity  per  capita  (Schweizerischer  Bundesrat,  2011).

Figure 3-8 The four pillars of the new Energy Strategy 2050

 

Due   to   the  planned  close-­‐down  of   the  nuclear  plants,   about  25.2  TWh,  or  38  per   cent  of  base  load  electricity  will  be  lost  in  the  electricity  supply  mix.  This  expected  shortfall  will  be  compensated  with  a  mixture  of  increased  hydropower,  new  renewable  energies,  electricity  imports,  cogeneration  plants  and  gas-­‐fired  combined  cycle  plants.  However,  the  degree  of  using   cogeneration   plants   and   gas-­‐fired   cycle   plants   has   not   yet   been   determined,   as   a  wide-­‐spread  use  of  these  plants  would  undermine  reaching  the  Swiss  CO2  emission  targets  (Schweizerischer   Bundesrat,   2011).   The   development   for   renewable   energy   technologies  will   particularly   focus   on   hydropower,   photovoltaic,   wind   and   geothermal   plants   (BFE,  2012).   The   potential   supply   of   electricity   from   the   renewable   energy   sector   by   2050   is  expected   to   amount   22.6   TWh,   where   about   10.4   TWh   will   come   from   photovoltaic  installations,   4.0   TWh   from   wind   energy,   4.4   TWh   from   geothermal   installations   and   an  additional   3.8   TWh   from   other   renewable   sources.   The  maximum  potential   expansion   of  hydropower   installations   is  estimated  to  be  around  10.7  TWh,  with  7.5  TWh  coming  from  an   increase   of   pumped-­‐storage   facilities   and   3.2   TWh   from   optimisation   and   new  constructions  of  other  hydropower  facilities  (Previdoli,  2012).    

The   abrupt   change   of   the   national   energy   strategy   and   especially   the   expansion   of  hydropower   facilities   are   associated   with   considerable   conflict   potential   and   opposition  from  the  Swiss  population  as  well  as  political  parties.  On  the  one  hand,  Switzerland  tries  to  reach  the  targets  regarding  its  climate  and  energy  policy  like  investing  in  renewable  energy  sources.  For  example,  the  Swiss  green  party  is  criticizing  the  long  operating  periods  of  the  nuclear   power   plants   and   has   been   fighting   for   a   close-­‐down   of   all   plants   by   2029  (Zacharakis,   2011).   Furthermore,   there   is   widespread   doubt   whether   Switzerland   will   be  able  to  keep  its  CO2  emissions  low,  when  gas  power  plants  have  to  be  used  as  intermediate  solution   for  peak  electricity  production  during   the  energy   transition  period.  On   the  other  hand,   there  are  many  nature   standards  and  water  protection  agreements   as   for   instance  

Page 30: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

30 Hydropower In Switzerland

the   Modular   Stepwise   Procedure   for   waterways   that   need   to   be   considered   when   new  hydropower  facilities  are  built  (Bundesamt  für  Umwelt  [BAFU],  2011).  Hence,  ecologists  and  biologists  have  for  long  been  calling  for  a  reduction  of  Swiss  hydropower  installations  as  it  can   also   lead   to   adverse   environmental   effects.   The   environmental   advantages   and  disadvantages  of  hydropower  production  will  be  explained   in  more  detail   in   the  following  section.

3.6 Hydropower  And  The  Environment  Needless  to  say,  there  is  no  such  thing  as  an  environmentally  neutral  electricity  generation.  However,   according   to  many   studies   hydropower   production   is   at   least   one   of   the  most  environmentally  friendly  ways  of  energy  production  (Pfammatter,  2012;  IHA,  ICOLD,  IEA  &  CHA,   2000).   Despite   much   debate   and   protest,   only   a   few   would   “disclaim   that   the   net  environmental  benefits  of  hydropower  are  far  superior  to  fossil-­‐based  [energy]  generation”  (IHA,   ICOLD,   IEA   &   CHA,   2000,   p.   5).   This   is   due   to   various,   positive   characteristics   of  hydropower  generation.    

First,  and  as  discussed  before,  water  occurs  in  high  volumes  around  the  world  and  there  is  still   a   large   share   of   its   real   potential   to   be   developed.   This   holds   particularly   for   many  developing   countries   that   can   benefit   from   the   positive   impacts   of   hydropower  development   such   as   continuous   irrigation   systems,   flood-­‐risk   prevention,   and   the  provision   of   low   CO2   electricity.   Second,   hydropower   production   is   an   ancient   and   well-­‐proven   technology  dating  back   centuries.  Due   to   its   long  history,   it   uses  a   very  advanced  technology  with  modern  plants  delivering  the  most  efficient  energy  conversion  method  of  more  than  90  per  cent  as  compared  to  other  conversion  techniques  (IHA,  ICOLD,  IEA  &  CHA,  2000).  Third,  hydropower  plants  hold  the  longest  plant  life  with  the  lowest  operating  costs  as  compared  to  other  energy  production  facilities.  This  provides  large  economic  as  well  as  ecological   benefits.   For   example,   the   generated   emissions   and   adverse   effects   from  construction  materials   are  much   smaller   per   life   cycle   year   than   for   other   plants.   Today,  large  dams  are  built  with  an  operating  life  of  100  years,  while  older  plants  with  an  operating  life  of  40-­‐50  can  be  improved  to  double  their  operating  life  (IHA,  ICOLD,  IEA  &  CHA,  2000).  Lastly,  GHG  emissions  from  hydropower  plants  have  proven  to  be  30-­‐60  times   lower  than  those   of   fossil   fuel   production,   which   is   a   significant   environmental   benefit   regarding  avoiding  global  climate  change  (IHA,  ICOLD,  IEA  &  CHA,  2000).  

It   needs   to   be   noted   here   that   for   many   years   it   has   been   advocated   that   hydropower  production   is  a  GHG-­‐neutral   source  of  electricity  production.  However,   studies  conducted  since  the  1990s  have  discovered  that  this  may  not  hold  true  (Fearnside,  1997;  Diem  et  al.,  2012).  In  particular,  these  studies  have  shown  that  artificial  storage  lakes  and  reservoirs  do  in  fact  emit  three  important  GHGs,  namely  methane  (CH4),  carbon  dioxide  (CO2)  and  nitrous  oxide  (N2O).  These  GHGs  are  emitted  either  directly  or  indirectly  during  the  various  stages  of  a  reservoir.  Direct  emissions  occur  during  the  construction  phases  of  the  reservoirs  and  during  peak  electricity  production,  when  large  quantities  of  the  water  are  flushed  through  the  turbines.  Indirect  emissions  are  found  mainly  from  decaying  biomass  from  land  flooding  (Gagnon  &  van  de  Vate,  1997).  These  studies  reveal  important  information  as  they  disprove  the  general  assumption  of  hydropower  being  a  GHG-­‐free  source  of  energy.  However,  GHG  emissions  from  hydropower  production,  when  considered  throughout  the  whole   life  cycle  are  still  many  times   lower   than  those   from  fossil   fuel  production   (IHA,   ICOLD,   IEA  &  CHA,  2000;  Ott  et  al.,  2008).

As   an   illustration,   GHG   emissions   from   hydropower   storage   and   pumped-­‐storage   plants  were   calculated   for   the   production   difference   between   the   baseline   and   the   expansion  

Page 31: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 31

scenario.  The  results  are  shown  in  Table 5-10   (Annex  B)  as  t  of  CO2  equivalents.  However,  the   illustrated   GHG   calculations   will   not   be   further   considered   in   the   CBA,   as   other  estimates  will  be  used  to  value  the  external  costs  and  benefits  of  hydropower  as  explained  in  the  following  sections.    

As   to   the   further   adverse   environmental   impacts   of   hydropower   generation,   there   are  generally   three  main  problems   that   can  be  distinguished,   namely   sedimentation,   impacts  on  fish,  and  the  reduction  of  water  quality.  These  are  explained  as  follows.  

“Sedimentation  occurs  when  weathered  rock,  organic  and  chemical  materials   transported  in   a   river   system   are   trapped   in   a   reservoir”   (IHA,   ICOLD,   IEA  &   CHA,   2000,   p.   9).   These  materials  accumulate  in  the  reservoir  and  may  occupy  significant  volumes  of  a  storage  dam  for  electricity  production.  Many  of  those  materials  have  important  refreshing  purposes  for  downstream   river   systems   and   agricultural   lands,  which   are   lost   if  materials   are   trapped  upstream.   Today,   only   a   small   proportion   of   dams   has   serious   problems   with  sedimentation,  but  it  is  expected  that  many  large  dams  in  dry  areas  will  have  sedimentation  problems  in  the  future  (IHA,   ICOLD,   IEA  &  CHA,  2000).  Measures  to  reduce  sedimentation  are  periodic  flushing  or  dredging  from  reservoirs,  which  have  the  advantage  that  pollutants  retained  in  the  sediment  are  also  retrieved  from  the  water  and  will  not  harm  downstream  ecosystems.    

The   protection   of   fish   populations   has   been   a   serious   concern   related   to   hydropower  installations  for  many  decades.  The  main  problems  include  the  destruction  and  changes  of  habitat,  changes  in  flow  regime  and  fish  passage,  especially  in  storage  schemes.  As  water  is  released  from  the  reservoirs,  it  passes  through  the  turbines  with  a  very  high  velocity,  which  makes  it  inevitable  that  large  quantities  of  fish  enter  the  production  flow.  This  is  especially  the  case  during  times  of  spawning  and  incubation  of  migratory  species.  Furthermore,  large  dams  form  an  insuperable  barrier  to  returning  fish  species,  i.e.  fish  that  return  to  up-­‐stream  areas   for   spawning,  which  may   considerably   reduce   fish   reproduction   cycles   (IHA,   ICOLD,  IEA  &  CHA,  2000).  Numerous  measures  have  been  designed  in  the  past  to  reduce  negative  impacts  on  fish  populations  from  hydropower  schemes,  including  bubble  curtains,  acoustic  barriers,   electrical   fields,   fish   ladders,   underwater   lights   and   louvre   screens   (generating  turbulence).  It  is  estimated  if  modern  systems  are  well-­‐designed  and  installed,  a  90  per  cent  exclusion  rate  for  certain  species  can  be  reached  (IHA,  ICOLD,  IEA  &  CHA,  2000).    

The  reduction  of  water  quality   in   large  dams   is  a  real  concern  not  only  due  to   its  adverse  effects  on  fish  species,  but  also  for  downstream  ecosystems  and  land  use.  As  water  in  large  dams  is  stored  in  deep  reservoirs,  water  tends  to  be  colder  and  often  has  changed  levels  of  dissolved  minerals,  such  as  oxygen.  Therefore,  water   flowing  downstream  from  reservoirs  often  has  lower  levels  of  oxygen  and  may  lead  to  fish  mortality  or  forced  relocation.  Other  problems  of  water   quality   are   the   increase   in   total   dissolved   gases,  modified   amounts  of  nutrients  and  increased  levels  of  heavy  metals.  Measures  to  reduce  these  problems  include,  for  example,  oxygenation  of  the  benthic  water  by  auto-­‐venting  turbines  the  mixing  of  water  bodies  at  lower  levels  (IHA,  ICOLD,  IEA  &  CHA,  2000).    

Page 32: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$
Page 33: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 33

4 Cost-­‐Benefit  Analysis  

4.1 Defining  The  Project  And  Scenarios  The   aim   of   this   research   is   to   estimate   the   total   economic   value   added   of   hydropower  production  in  Switzerland  under  the  current  conditions  and  under  the  potential  expansion  as   explained   earlier.   Thus,   the   question   is   whether   or   not   hydropower   production   in  Switzerland  generates  a  positive  economic  value  added  when  moving  from  the  status  quo  to  an  expansion  scenario.  For  this  purpose,  a  CBA  is  used  to  provide  a  structured  overview  of  the  positive  and  negative  effects  of  the  two  situations  or  scenarios,  which  are  the  with-­‐  and   without-­‐project   situation.   In   this   sense,   the   project   is   defined   as   the   expansion   of  hydropower.  The  two  scenarios  can  then  be  defined  as  (1)  the  baseline  scenario  and  (2)  the  expansion  scenario:  

• Baseline  Scenario  The  baseline  scenario   is   the  without-­‐project  situation  and  reflects   the  continuation  of  the   present   situation.   Thus,   this   scenario   illustrates   the   status   quo   of   hydropower  production   in  Switzerland  and  assesses   the   current   costs  and  benefits  of  hydropower  production.   Furthermore,   it   serves   as   the   reference   scenario   for   the   expansion  scenario.   In   the   baseline   scenario,   554   hydropower   plants   are   analysed,   as   these   are  the   plants   located   within   Switzerland   with   a   maximum   capacity   above   300   kW.   This  includes   455  ROR  plants,   85   storage  plants   and   14   pumped-­‐storage  plants.   Together,  these   plants   generated   an   average   35,818   GWh   of   electricity   in   2012   (BFE,   2012b).  However,  this  number  does  not  take  into  account  the  electricity  produced  by  Swiss  re-­‐circulation  plants  nor  does  it  count  small  hydropower  plants  with  a  maximum  capacity  below  300  kW.  This  is  because  their  production  capacities  are  relatively  small  compared  to  the  other  facilities,  namely  approximately  3  per  cent  for  re-­‐circulation  plants  and  less  than  1  per  cent  of  overall  hydropower  production  for  small  hydropower  plants  (Bryner,  2011).   For   this   reason   re-­‐circulation   plants   and   small   hydropower   plants   will   not   be  considered  in  the  analysis  here.  

• Expansion  Scenario  The   expansion   scenario   is   the   with-­‐project   situation   and   describes   the   projected  expansion  of  hydropower  production   in  Switzerland.  Therefore,   it   assesses   the   future  costs   and   benefits   of   hydropower   generation   and   calculates   its   expected   economic  value.  For  the  expansion  of  hydropower  installations,  diverse  numbers  as  to  the  extent  of   production   increase   and   new   constructions   can   be   found   (Previdoli,   2012;  Wüest,  2012;  BFE,  2011b).  The  numbers  used  for  this  analysis  are  therefore  based  on  the  most  recent  publication  of   the  BFE   that  presents   total   estimations  amounting   to  10.7  TWh  for  hydropower  expansion  (Previdoli,  2012).  This  number  can  be  divided  into  two  ways  of  expansion.  These  are  first  new  constructions  and  optimisation  of  existing  plants  from  which   additional   3.2   TWh   of   electricity   can   be   generated,   and   second   the   additional  electricity   production   from   new   pumped-­‐storage   facilities   amounting   to   7.5   TWh.  However,  this  analysis  will  only  include  the  former  estimates  for  the  following  reasons.  Pumped-­‐storage  plants  have  an  efficiency  degree  of  only  80  per  cent,  which  has  already  been  explained  in  section  3.2.  This  means  that  20  per  cent  of  the  electricity  generated  is  lost  in  the  process  of  pumping  up  the  water.  The  inclusion  of  these  estimates  would  require   extensive   new   calculations   that   unfortunately   lie   outside   the   scope   of   this  paper  due  to  the  limited  amount  of  time  to  write  this  thesis.  Thus,  the  analysis  here  will  be  conducted  with  an  expansion  of  3.2  TWh.    

Page 34: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

34 Cost-Benefit Analysis

Assessing   different   scenarios   is   a   crucial   tool   of   CBA   as   it   helps   policy-­‐makers   comparing  alternatives  and  thereby  finding  the  most  suitable  solution  for  the  existing  policy  problems.  In  the  case  of  Swiss  hydropower  production,  it  is  important  to  highlight  the  true  economic  value   of   hydropower   production   from   a   societal   point   of   view,   as   there   is   a   widespread  uncertainty  regarding  its  positive  and  negative  impacts.  By  comparing  the  current  situation  with   the   projected   expansion   scenario,   one   can   conclude   whether   there   is   an   economic  gain  of  the  expansion.  Hydropower  plants  that  are  located  outside  Switzerland  will  not  be  counted  here  since  the  study  focuses  on  a  national   level  only  and  the  economic  costs  and  benefits  affecting  the  Swiss  population.    

4.2 Identifying  Impacts  That  Are  Economically  Relevant  This   step   looks   at   the   impacts   resulting   from   the  hydropower   production   expansion,   and  ultimately   selects   those   impacts   that   are   considered  most   economically   relevant   for   the  analysis.   For   this   purpose,   an   effects   table   has   been   created   as   shown   in   Table   4-­‐1.   The  table   lists   the   direct   and   indirect   effects   of   hydropower   production,   which   are   further  divided   into  market  and  non-­‐market  effects.  Direct  market  effects  are   those   impacts  of  a  project   or   action   that   are  measurable   in   terms   of   a  market   price   and   that   are   intended  direct  outcomes.  Indirect  market  effects  can  be  defined  as  often  unintended  effects  of  the  project  that  are  measurable  with  a  market  price.  In  contrast,  non-­‐market  effects  are  those  external  impacts  that  cannot  be  valued  directly  based  on  market  prices  and  that  may  have  substantial  non-­‐use  values,  as  discussed  in  section  2.1.  Thus,  direct  non-­‐market  effects  are  those  impacts  that  directly  occur  from  a  project,  and  that  have  a  positive  or  negative  use  or  non-­‐use  value  to  humans  but  fall  outside  existing  markets.  Indirect  non-­‐market  effects  are  then   those   impacts   that   do   not   directly   occur   and   that   are   not   measurable   directly   in  monetary  terms  through  market  prices.    

Table 4-1 Effects Table

   

The   direct  market   effects   for   the   depicted   scenarios   are   the   common   financial   costs   and  benefits  arising  from  hydropower  generation,  as  discussed  by  most  standard  financial  CBAs  (Filippini  et  al.,  2001;  Geissmann,  2012).  These  include  the  electricity  generation  itself  as  a  benefit,   and   the   costs   of   production   as   the   costs.   The   latter   includes   factors   such   as   the  costs  of  investment,  operation,  maintenance,  and  labour  throughout  the  plant’s  lifetime.  As  already   mentioned,   these   are   the   criteria   discussed   in   a   standard   CBA   with   the   aim   of  calculating  the  financial  gains  and  losses  of  a  project.  Therefore,  they  will  also  be  analysed  

Page 35: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 35

and  calculated   in   this  analysis.  Besides   those,  however,   this  study  attempts   to  also  assess  the  three  other  dimensions   listed  above  with  a  particular   focus  on  the  direct  and   indirect  non-­‐market  effects.  The  assessment  of  indirect  effects  on  the  economy  as  a  whole  requires  a  macro-­‐economic  model   and   corresponding  data   collection   that   lie  outside   the   scope  of  this  study.    

As  to  the  direct,  non-­‐monetary  effects  two  main   impacts  have  been  identified  and  will  be  included  in  the  analysis.  These  are  environmental  and  biodiversity  losses  and  the  reduction  of   GHG   emissions   by   hydropower   production   as   compared   to   other   electricity   sources.  Regarding  the  cost  of  environmental  and  biodiversity  losses,  various  impacts  are  included  in  this   category   as   discussed   in   section   3.6.   These   are   sedimentation   due   to   river   flow  alteration,   the   loss   of   fish   habitat   and   the   consequent   loss   of   fish   population,   and   the  reduction   of   water   quality.   These   direct   but   non-­‐market   externalities   are   crucial   in  environmental   CBA   because   they   change   the   quality   of   output   of   some   positively   valued  commodity  (Hanley  &  Spash,  1993).  As  discussed  previously,  hydropower  production  is  not  GHG-­‐neutral,   however,   it   emits   considerable   lower   amounts   of   GHG   than   other  conventional  ways  of  energy  production.  Therefore,   this  needs   to  be   included   in   the  CBA  calculations  as  a  benefit  of  hydropower  production.    

In  the  lower  right  quadrant  of  Table  4-­‐1,  the  indirect  and  non-­‐monetary  impacts  are  listed.  These   are   the   potential   damage   costs   and   the   costs   from   changes   in   landscape.   Damage  costs  may  arise   in  the  case  of  material  defects  or  obsolete  technologies   in  use,  which  can  lead  to  substantial  damages  as   for  example  a  dam  failure  and  the  consequent   flooding  of  downstream   villages   or   regions.   Therefore,   this   is   a   cost   of   hydropower   production.  Regarding   the   effects   of   landscape   changes,   this   should   be   included   as   a   cost   associated  with   hydropower   production.   Landscape   changes   are   a   cost   to   those   people   that   highly  value  the  aesthetic  characteristics  of  nature.      

Lastly,   the   indirect   market   effects   are   flood   protection   and   local   employment.   Flood  protection  can  be  an   indirect  benefit   from  a   storage  or  ROR  plant,   if  a   region   is  prone   to  extensive   flooding   periods.   With   hydropower   facilities   the   water   can   be   alternated   to  various   regions   or,   in   the   case   of   a   storage   plants,   can   be   released  with   a   constant   flow  volume   to   downstream   regions.   Local   employment   is   an   indirect   effect   of   hydropower  production,  especially   for   the  early   investment  phases.   For   this   analysis,  none  of   the   two  effects  will  be  considered.  This  is  because  estimations  for  employment  rates  are  very  site-­‐specific  and  so  far  there  is  no  commonly  accepted  method  for  calculating  the  social  benefit  of   jobs   created   in   the   hydro   industry   (European   Commission   [EC],   1995).   Regarding   the  effect   of   flood   protection,   it   is   argued   in   this   paper   that   hydropower   facilities   within  Switzerland   are   almost   exclusively   used   for   electricity   generation   and   therefore   do   not  operate  as  flood  protection  systems  per  se.  

Summarising   this   section,   the   following   criteria  will   be   considered   in   the  analysis.  On   the  benefit  side  these  are  electricity  generation  and  the  benefits  from  reduced  GHG  emissions.  On  the  cost  side,  these  are  the  costs  of  production,  environmental  and  biodiversity  losses,  potential  damage  costs  and  the  costs  from  landscape  changes.    

4.3 Physically  Quantifying  The  Impacts  As  previously  explained  this  step  explains  the  identified  costs  and  benefits  in  terms  of  their  physical   flows,   their   occurrence   in   time   or,   if   applicable,   their   probability   of   occurrence.  Here,  all  physical  positive  and  negative  flows  are  based  on  yearly  electricity  output  from  the  individual   hydropower   plant   types.   Furthermore,   the   CBA   has   been   calculated   for   a  

Page 36: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

36 Cost-Benefit Analysis

timespan  of  23  years  starting  in  year  2012  and  ending  in  year  2034.  The  reason  for  taking  this  timespan  was  the  assumption  that  the  last  nuclear  power  plant  will  be  taken  from  the  grid  and  closed-­‐down  by  2034,  as  decided  by  the  Swiss  Federal  Council.  Therefore,   it  was  interesting  to  calculate  the  economic  CBA  for  hydropower  production  in  Switzerland  within  this  time  period.  Furthermore,  all  calculations  of  the  positive  and  negative  effects  will  start  in   year   one   of   the   calculations,   as   the   used   monetary   estimates   reflect   average   yearly  values  per  kWh  of  electricity.  

For   the   baseline   scenario   it   was   assumed   that   electricity   output   from   hydropower  production   would   slowly   increase   within   the   next   23   years.   However,   this   increase   was  expected  to  be  much  smaller  than  the  one  for  the  expansion  scenario.  In  order  to  calculate  the  electricity  output  per  year  for  the  future  23  years  in  the  baseline  scenario,  projections  from  the  BFE  (BFE,  2012a)  were  used  that  provide  estimates  for  the  coming  six  years,  until  2018   (see  Table 5-1,   Annex   A).   For   the   years   afterwards   it   was   assumed   that   electricity  output   from   hydropower   would   increase   by   10   GWh   per   year,   which   is   based   on   the  increase  between  the  years  2017  and  2018  as  estimated  by  the  BFE  (BFE,  2012a).    

For   the   expansion   scenario,   it  was   assumed   that   electricity   output  would   increase  by   3.2  TWh   by   2034   as   discussed   previously.   This   gives   a   yearly   increase   of   approximately   140  GWh  for  23  years.  In  order  to  identify  the  production  increases  per  power  plant  type,  it  was  assumed  that  47  per  cent   from  the   total  production  comes   from  ROR  plants,  48  per  cent  from   storage   plants   and   5   per   cent   from   pumped-­‐storage   plants   (see   Table   3-­‐1).   The  division   of   shares   was   held   constant   for   all   the   years   throughout   the   CBA   for   both   the  baseline  and  expansion  scenario.  

4.4 Calculating  A  Monetary  Value  Having   quantified   the   positive   and   negative   effects   for   the   CBA,   this   stage   discusses   the  calculations  of  the  analysis  by  giving  the  impacts  monetary  values.    

In   order   to   calculate   the   financial   benefits   gained   from   hydropower   production,   it   was  necessary  to  find  recent  data  about  the  volume  of  production  for  the  three  different  plant  types  as  well  as  current  prices  for  electricity  from  hydropower  plants.  As  to  the  former,  this  was  already  discussed   in   the  previous   subsection  and   the  production  volume   is  based  on  the  annual  statistics  of  Swiss  electricity  production  and  consumption  that   include  detailed  data  about  the  national  wide  hydropower  production  (BFE,  2012a).  The  average  electricity  production   as   of   January   1st,   2012   amounted   to   16.9   TWh   for   ROR  plants,   17.3   TWh   for  storage  plants  and  1.6  TWh  for  pumped-­‐storage  plants  (see  Table  3-­‐1)  (BFE,  2012b).  For  the  analysis,   this   data   will   be   used   as   basis   for   all   following   calculations.   Furthermore,   it   is  assumed  that  considering  the  average  yearly  production  volume  (instead  of  the  differences  of   summer   and  winter   production),   gives   a   sufficient   overview  of   the   general   production  volume  and  characteristics.    

The  second  item  required  to  quantify  the  financial  gains  from  hydropower  production  are  the  revenues  gained  per  kWh  of  electricity  sale.  Therefore,  market  prices  of  electricity  have  been  used  that  have  been  identified  by  one  of  the  most  recent  CBAs  by  Geissmann  (2012).  The   study   identifies   revenues   gained   per   kWh   for   the   three   different   plant   types,   ROR,  storage  and  pumped-­‐storage,  by  analysing  66  Swiss  hydropower  companies  over  a  period  of  10  years,  from  2000  till  2009  (Geissmann,  2012).  As  of  the  year  2009,  the  mean  revenues  for   the   three  different  plant   types  were   found   to  be  as   follows.   For  ROR  plants   revenues  amounted  to  4.3  Rp./kWh,  for  storage  plants  5.5  Rp./kWh  and  for  pumped-­‐storage  plants  6.1   Rp./kWh   (Geissmann,   2012).   When   comparing   these   findings   to   current   electricity  

Page 37: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 37

prices  of   the  Swiss  electricity  market  as  depicted  on   the  European  Energy  Exchange   (EEX,  20123)  the  average  electricity  price  for  one  week  can  be  found  amounting  to  4.7  Rp./kWh  for  base  load  electricity  and  5.5  Rp./kWh  for  peak  load  electricity4.  As  explained  previously,  ROR  plants  generally  produce  base   load  electricity,  whereas   storage  and  pumped-­‐storage  plants  are  used  to  generate  peak  load  electricity.  As  the  analysis  here  requires  exact  price  data   for   the   three  hydropower  plant   types,   it  was  concluded  that   the  estimates   found  by  Geissmann   (2012)   are   more   suitable   for   being   used   in   the   analysis   and   are   sufficiently  reflecting  current  market  prices  for  electricity.  Hence,  they  are  used  as  price  estimates  for  the  calculations  of  the  revenues  or  financial  benefits  gained  from  hydropower  production.  They  will  start  in  year  one  of  the  calculations.  

To  calculate  the  financial  costs  of  hydropower  production  the  costs  of  production  per  kWh  are   considered   for   each   power   plant   type   in   addition   to   the   average   yearly   volume   of  production.  The  latter  has  already  been  explained  and  quantified.  As  to  the  former,  several  studies   exist   that   reveal   costs   of   production   for   the   three   hydropower   plant   types   ROR,  storage   and   pumped-­‐storage.   For   example,   Moser,   Pfammatter,   Ribi   and   Zysset   (2009)  prepared   an   overview   of   the   financial   indicators   of   the   Swiss   water   industry,   including  water   supply,   sanitation,   flood  control  and  hydropower.  The  paper  uses  data   from  other,  earlier  studies  and  includes  the  following  estimates  for  hydropower  costs  of  production.  For  ROR  plants  the  estimates  range  between  3  –  7  Rp./kWh,  for  storage  plants  between  4  –  10  Rp./kWh   and   for   pumped-­‐storage   plants   between   6   –   16   Rp./kWh   (Moser   et   al.,   2009).  Average  costs  of  production  for  all  plant  types  are  6.6  Rp./kWh.  Unfortunately,   the  paper  does  not  reveal  the  cost  criteria  included  in  the  estimates.  Geissmann  (2012)  analysed  the  costs  of  production  for  the  three  power  plant  types  for  the  years  2000  till  2009.  The  author  defines  costs  of  production  as  the  sum  of  the  costs  of  water  rates,  amortisation,  materials,  financing,  personnel,   energy  and  grid  usage,  dividends,  and  other   taxes  and  costs.  As   the  study  actually  details   the  different  cost  criteria  of   the  costs  of  production,   it  was  decided  that  the  estimates  provided  by  Geissmann  (2012)  would  be  used  here  instead  of  those  from  Moser  et  al.   (2009).  Moreover,   it   is   important  to  note  that  no  additional  cost  category  for  ‘investment  costs’  will  be  calculated  as  the  costs  for  the  initial  investment  and  construction  are   included   in   the   cost   criteria   ‘amortisation’.   Hence,   the   costs   of   production   can   be  calculated   starting   in  year  one  of   the  CBA,  as   they   represent  average  costs  of  production  including  the  initial  investment  phase.  

The   revenues   from  electricity  production   in   the  baseline   scenario   for  ROR  plants,   storage  and  pumped-­‐storage  plants  are  shown  in  Table  5-­‐2  (Annex  A)  using  the  previously  discussed  price  estimates  from  Geissmann  (2012).  Table  5-­‐3  (Annex  A)  shows  the  costs  of  production  for  the  three  plant  types  with  the  estimates  from  Geissmann  (2012).  The  same  is  shown  for  the  expansion   scenario   in  Tables  5-­‐4  and  5-­‐5   (Annex  A)  using   the   same  estimates   for   the  revenues  and  costs  per  kWh.    

As  to  the  external  or  indirect  effects  from  hydropower  production  the  following  estimates  will   be   used   for   the   calculations.   As   discussed   in   the   literature   review,   Ott   et   al.   (2008)  identified   the   avoided   external   costs   from   hydropower   production   in   Switzerland.   As  already  explained  these  avoided  costs  can  be  seen  as  external  or  social  benefits  due  to  the  use   of   hydropower   instead   of   other   conventional   or   nuclear   power   production.   The  estimates   have   been   taken   from   the   ExternE   studies   first   conducted   by   the   European  

3 European Energy Exchange (EEX) (2012). Market Data: Swissix - hour contracts. Retrieved June 30,

2012 from http://www.eex.com/en/Market%20Data/Trading%20Data/Power/Hour%20Contracts%20|%20Spot%20Hourly%20Auction/spot-hours-table/2012-07-01/SWISSIX.

4 As of June 24 - 30, 2012, with a currency exchange rate of € 1 = CHF 1.2.

Page 38: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

38 Cost-Benefit Analysis

Commission  in  1995  with  several  follow-­‐up  studies  (e.g.  EC,  1995;  EC,  2003;  Ecoplan,  2007).  The   studies  have  analysed  and  produced  estimates  about   the  external   costs  of  electricity  production  from  various  production  sources,  namely  coal,  peat,  oil,  gas,  nuclear,  biomass,  water,   solar,   wind   and   waste.   Figure   5-­‐1   (Annex   A)   shows   the   average   external   costs   of  electricity  production  in  Europe  and  Switzerland  as  calculated  by  different  studies.  Various  effects  have  been  considered  to  calculate  the  estimates  of  the  external  costs  of  electricity  production  and   include   the   following.  First,   there  are   the  external   costs  due   to  emissions  from   fossil   fuels,   that   lead   to   the   reduction  of   life  expectancy  due   to  additional  diseases,  damages   to   property   from   air   pollution   and   acid   rains,   crop   failures   due   to   air   pollution,  losses   of   biodiversity   and   ecosystems   due   to   acidification,   GHG   emissions   and   fossil   fuel  induced   climate   change,   and   lastly,   radioactive   radiation   from   nuclear   power   plants.  Second,   there  are  aesthetical  adverse  effects   for   landscapes  and  heritage  areas   that  arise  from  the  power  plants’  infrastructure.  Third,  it  includes  the  deterioration  of  waterways  and  habitat  due  to  hydropower  plants  and  cooling  systems  from  fossil  fuel  plants.    Fourth,  there  are  the  potential   risks  of  accidents  especially   from  nuclear  power  plants  and  dam  failures  from   storage   plants.   Lastly,   there   are   the   risks   of   disposal   and   processing   from   nuclear  waste.  The  study  by  Ott  et  al.  (2008)  used  the  estimates  from  Ecoplan  (2007)  and  compared  the   external   costs   from   hydropower  with   the   external   costs   from   nuclear,   oil,   gas,  wind,  biomass  and  solar  power  plants.  The  difference  between  the  estimates  is  then  the  avoided  external  cost  from  hydropower  production  in  Rp./kWh  as  depicted  in  Figure  4-­‐1.    

Figure 4-1 Avoided external costs from hydropower

Source:  Ott  et  al.  (2008)    The   depicted   estimates   are   used   in   the   following   analysis   in   order   to   compare   the  expansion   scenario   to   the   baseline   scenario   in   terms   of   the   potential   external   benefits  gained  by  expanding  the  hydropower  sector  instead  of  using  other  energy  sources.  As  with  the  other  impacts,  it  is  assumed  that  the  occurrence  of  the  external  benefits  starts  in  year  one  of  the  calculations  until  the  end  of  the  plants  operating  lifetime.  

In  order   to  calculate  the  monetary  values  of   the  avoided  external  costs   from  hydropower  production,   first  the  difference   in  the  production  output  from  the  baseline  and  expansion  scenarios  for  all  years  was  calculated.  The  results  were  then  multiplied  by  a  weighted  rate  of  avoided  external  costs  that  was  defined  as  follows.  It  was  assumed  that  the  alternative  of  an  expansion  with  hydropower  production  would  be  50  per  cent  production  with  gas-­‐fired  combined  cycle  plants  (GCC),  25  per  cent  solar  power,  15  per  cent  wind  power  and  10  per  cent  biomass  power  production.  This  assumption   is  based  on   scenarios  developed  by   the  Swiss  Federal  Council  discussing  the  alternatives  for  the  provision  of  electricity  with  regard  to   the   lost   supply   from   nuclear   power   plants   for   the   coming   50   years   (Schweizerischer  Bundesrat,  2011).  Taking  the  estimates  from  Figure  4-­‐1,  the  weighted  sum  of  the  avoided  external  costs  gives  a  value  of  1.3  Rp./kWh  (0.5*2.2  +  0.25*0.1  +  0.15*-­‐0.4  +  0.1*2.4  =  1.3).  The  value   is  multiplied  with  the  production  difference  for  each  year   in  the  CBA  leading  to  

40 Nutzen der Wasserkraft

!

"#$! %&'#(#$$#!)&!*+"(,#-#.'(/0/'1'!2#$'#3#&!4/("!5&"!6/'! $'#/7#&"#&! 8,$$/-#&!9(#/$#&!5&"! :#('/8/.)'$;(#/$#&! &,<3! 05&#36#&! 4/("=! 4)$! /&! )--81--/7#&! >?'#()24175&7#&! 05!2#(?<.$/<3'/7#&!/$'@!

!

3.3 Indirekte Nutzen der Stromproduktion mit Wasserkraft

A#"#!9(,"5.'/,&! B,&!C-#.'(/0/'1'! /$'!6/'! 056!D#/-! 2#'(1<3'-/<3#&! #E'#(&#&!F,$'#&! B#(G25&"#&=!4#-<3#!&/<3'!B,&!"#&!B#(5($)<3#&"#&!C-#.'(/0/'1'$.,&$56#&'#&=!$,&"#(&!B,&!H(/''#&!7#'()7#&!4#("#&@!H)$!I5$6)$$!"#(!#E'#(&#&!F,$'#&!"#(!C-#.'(/0/'1'$;(,"5.'/,&!/&!C5(,;)!5&"!/&!"#(!J<34#/0!45("#! /&!"/B#($#&!I(2#/'#&!)27#$<31'0'!K$/#3#!I&3)&7!IGL@MN!CE'#(&C=!CO!MPPQN!R#4CE'!KR)<38,-7#;(,7()66!B,&!CE'#(&CS=!%CT!#'!)-@!MPPUN!e c o & < # ; ' V%&8()$! MPPWN! */($<32#(7VA).,2! LXXXN! 8?(! Y)$$#(.()8'Z! *)5#&$'#/&! #'! )-@!LXXXN!:5$)66#&8)$$5&7Z!C<,;-)&!MPP[=!J@!LUQ!88@S@!

H/#!\)&"2(#/'#&!2#/!"#&!J<31'05&7#&!"#(!#E'#(&#&!F,$'#&!$/&"!(#-)'/B!7(,$$@!J/#!4/G"#($;/#7#-&!"/#!J<34)&.5&7#&!$,4/#!"/#!]&$/<3#(3#/'#&!2#/!"#(!C(6/''-5&7!"#(!^#4#/G-/7#&!I5$4/(.5&7#&!"#(!#E'#(&#&!C88#.'#=!4#-<3#!05"#6!B,&!"#(!^#4#/-$!.,&.(#'!#/&7#G$#'0'#&!D#<3&,-,7/#=!B,6!J')&",('!5&"!B,&!"#&!]67#25&7$B#(31-'&/$$#&!2#/!"#&! ^#G4#/-/7#&! 9(,"5.'/,&$)&-)7#&! )231&7#&@! H/#! (#$5-'/#(#&"#&! B#(6/#"#&#&! #E'#(&#&!F,$'#&! 31&7#&! B,&! "#(! I('! "#(! Y)$$#(.()8';(,"5.'/,&! $,4/#! B,&! "#(! $52$'/'5/#('#&!9(,"5.'/,&$'#<3&,-,7/#!)2!K$/#3#!I&3)&7!IGLS@!

Vermiedene externe Kosten

in [Rp./kWh]

Kernenergie Risikoaversion:

ohne mit

Öl Gas Wind Biomasse Photovoltaik

Wasserkraft:

- Speicher-KW

- Laufkraftwerk

0.0 – 18.0

-0.2 – 17.0

0.1 – 17.3

6.2

6.0

6.3

2.2

2.0

2.3

-0.4

-0.6

-0.3

2.4

2.2

2.5

0.1

-0.3

0.0

!Tabelle 5 Vermiedene externe Kosten [Rp./kWh] gemäss 'Durchschnittswert' von

Tabelle 12 in Anhang A-1 bei Wasserkraft anstelle von anderen Produkti-onstechnologien.

!

3.4 Fazit: Nutzen der Wasserkraft

H/#!Gesamtnutzen!"#(!Y)$$#(.()8';(,"5.'/,&!$#'0#&!$/<3!05$)66#&!)5$!"#&!direk-ten Nutzen!5&"!indirekten 204@ externen Nutzen!"#(!J'(,6;(,"5.'/,&@!!

Page 39: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 39

the  results  depicted   in  Table  5-­‐6  (Annex  A).  The  next  two  steps  of  the  CBA,  discounting  and  weighting,  will  be  discussed  together  in  the  following  section.  

4.5 Discounting  And  Weighting  The  Results  Discounting  is  an  important  tool  in  CBA  and  needs  to  be  done  because  of  the  time  value  of  money.  The  costs  and  benefits   that  have  been  calculated   for   the   time  period  of  23  years  need   to   be   expressed   in   their   present   values   in   order   to   be   comparable.   Therefore,   the  results   are   discounted   with   a   discount   rate   of   4.5   per   cent.   The   discount   rate   has   been  chosen   according   to   the   CBA   conducted   by   Filippini   et   al.   (2001)   that   was   discussed  previously   in   this   thesis.   The  authors   stated   that   this   is   the   rate  of   the  weighted  average  cost  of  capital  (WACC)  for  investments  made  in  the  hydropower  sector.  Therefore,  this  rate  was  used   as   the  discount   rate   for   the  original   calculations   in   this   analysis.   The   sensitivity  analysis  conducted   later   in   this  study  shows  variation  calculations   for  alternative  discount  rates.    

This   analysis   attempts   to   investigate   both   the   financial   and   the   economic   value   of  hydropower   production   under   the   projected   expansion   scenario   as   compared   to   the  baseline  scenario,  i.e.  the  current  situation.  Therefore,  the  following  steps  were  taken.  First,  the  total  costs  of  production  of  the  baseline  scenario  are  deducted  from  the  total  costs  of  production  of   the  expansion   scenario   (for  each  year   in   the   timeline),  which  gives   the  net  financial  costs  as  depicted  in  Table  5-­‐7  (Annex  A).  The  same  has  been  done  for  the  financial  benefits,   namely   deducting   the   total   financial   benefits   of   the   baseline   scenario   from   the  total   financial   benefits   of   the   expansion   scenario   for   each   year.   The   results   are   shown   in  Table  5-­‐8  (Annex  A).  As  for  the  net  economic  benefits,  the  calculation  has  been  explained  in  the   previous   section   already   and   the   results   are   shown   in   Table   5-­‐6   (Annex   A).   Having  calculated  all  net  financial  and  economic  costs  and  benefits,  the  next  step  was  to  discount  the  monetary  values  for  each  year.  Thus,  the  results  were  discounted  for  each  year  with  a  discount   rate  of  4.5  per  cent,  as   shown   in  Table  5-­‐9   (Annex  A).  Subsequently,   in  order   to  calculate   the   financial  NPV,   the   sum  of   the  discounted   financial   costs  was  deducted   from  the   sum  of   the   discounted   financial   benefits.   As   expected,   the  NPV   for   the   financial   CBA  resulted  in  a  negative  value  amounting  to  -­‐  CHF  42.2  million,  as  shown  in  Table  4-­‐2.  

Table 4-2 Results of the Financial CBA with a discount rate of 4.5%

4.5%  DISCOUNT  RATE   FINANCIAL  CBA  NPV  (in  CHF)   -­‐  42,222,490  B/C  RATIO   0.93  

IRR   cannot  be  calculated  

 

Furthermore,   the   benefit-­‐cost   ratio   was   calculated   and   the   result   gave   a   value   below   1,  namely  0.93.  Because  the  NPV  is  a  negative  value  and  the  net  benefits  for  the  financial  CBA  will  always  be  negative,   the   IRR  could  not  be  calculated.  The  results  of   the  three  decision  criteria   lead   to   the   following   recommendation.  Because   the  NPV  has  a  negative  value,  or  NPV  <  0,  the  projected  expansion  should  not  be  implemented  from  a  pure  financial  point  of  view.  The  same  recommendation  can  be  concluded  from  the  B/C  ratio  that  is  smaller  than  1,  or  B/C  <  1.   In  other  words,  when   looking  only  at  the  financial  costs  and  benefits  of  the  projected  expansion  for  hydropower,  hydropower  production  should  not  be  expanded.        

However,  this  analysis  was  specifically  set  up  to  conduct  an  economic  CBA  for  the  projected  expansion   scenario   that   also   takes   into   account   the   wider   external   costs   and   benefits  

Page 40: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

40 Cost-Benefit Analysis

associated  with  hydropower  production.  Therefore,  discounted  economic  benefits   (or   the  discounted   avoided   external   costs)   were   added   to   the   calculation.   The   sum   of   the  discounted  values  was  added  to  the  NPV  of  the  financial  calculations  leading  to  the  results  as  shown  in  Table  4-­‐3.  The  NPV  for  the  economic  CBA  is  a  positive  value  amounting  to  CHF  99.8  million.  Furthermore,  the  B/C  ratio  equals  1.17,  thus  B/C  >  1,  and  the  IRR  gives  a  value  of   54   per   cent   (IRR   >   discount   rate).   These   numbers   lead   to   a   very   different  recommendation  as  opposed  to  the  results  from  the  pure  financial  CBA.  Namely,  under  the  consideration   of   the   external   effects   from   hydropower   production   the   results   of   the  economic   CBA   represent   an   efficient   reallocation   of   resources   and   thus   support   the  projected  production  expansion  of  Swiss  hydropower.  

Table 4-3 Results of both CBAs with a discount rate of 4.5%

4.5%  DISCOUNT  RATE   FINANCIAL  CBA   ECONOMIC  CBA  

NPV  (in  CHF)   -­‐  42,222,490  (<  0)   99,788,720  (>  0)  B/C  RATIO   0.93  (<  1)   1.17  (>  1)  

IRR   cannot  be  calculated   54%  (>  DISCOUNT  RATE)  

 

The  difference  in  the  results  shows  that  it  is  important  to  take  into  consideration  the  wider,  external  effects  when  it  comes  to  the  question  of  whether  or  not  to  implement  such  large-­‐scale   projects   within   a   country.   It   is   thus   not   sufficient   to   look   at   the   pure   financial  indicators  of   such  projects,   in   this   case   the   financial   costs   and  benefits   from  hydropower  production.  A  more  detailed  discussion  of  the  findings  will  be  elaborated  in  the  conclusion.  The   following   section   presents   the   results   from   a   sensitivity   analysis   of   the   different  estimates.    

4.6 Conducting  A  Sensitivity  Analysis  The  final  step  of  a  CBA  is  the  completion  of  a  sensitivity  analysis  for  various  estimates  sued  in  the  calculations.  This  is  important  because  it  helps  identifying  those  parameters  to  which  the   results   are   most   sensitive.   First,   the   sensitivity   analysis   has   been   performed   for  different  values  of  the  discount  rate  and  its  effects  on  the  NPV.  Next,  alternative  estimates  have   been   used   for   the   costs   of   production   and   revenues   from   hydropower,   and   their  effects  on  the  B/C  ratio.  Lastly,   it  has  been  investigated  how  increases   in  the  estimates  of  the  avoided  external  costs  change  the  B/C  ratio.  All  sensitivity  calculations  have  been  done  for  the  results  of  the  economic  CBA.    

As   explained   in   section   2.4,   the   discount   rate   is   used   to   calculate   the   present   value   of   a  future  cost  or  benefit.  The  higher  the  discount  rate,  the  higher  one  values  costs  or  benefits  accruing   today.   Or   otherwise   stated,   the   lower   the   discount   rate,   the   higher   one   values  costs   and   benefits   accruing   in   the   future.   Thus,   in   the   sensitivity   analysis   the   CBA  calculations  were  performed  again  but  with  increased  values  of  the  discount  rate  to  show  their  effects  on  the  NPV.  The  discount  rate  was  increased  by  5  per  cent,  10  per  cent,  15  per  cent  and  20  per  cent  as  compared  to  the  original  calculations  that  have  been  done  with  a  discount   rate   of   4.5   per   cent.     The   results   are   shown   in   Figure   4-­‐2.   The   x-­‐axis   shows   the  percentage  increase  in  the  discount  rate  and  the  y-­‐axis  shows  the  NPV  in  million  CHF.  It  can  be  seen  that  as  the  discount  rate  increase,  the  NPV  becomes  smaller.  This  is  in  line  with  the  general   expectation   as   the   IRR  was   calculated   to   be   54   per   cent.   This  means   that  with   a  discount  rate  of  54  per  cent,  the  NPV  would  be  zero  (0).  The  sensitivity  analysis  shows  that  for  every  increase  by  5  per  cent,  the  NPV  halves  approximately.  Lastly,  it  can  be  concluded  

Page 41: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 41

that   the  NPV   is  very  sensitive  to  different  values  of   the  discount  rate.  Thus,   the  choice  of  the  used  discount  rate  in  this  CBA  for  a  very  large  extent  determines  the  outcomes  of  this  analysis   and   should   be   adapted   according   to   changing   rates   of   the   WACC   for   future  analyses.    

Figure 4-2 Sensitivity of NPV to discount rate increases

 

  Figure  4-­‐3  shows  the  results  of  a  sensitivity  analysis  of   the  B/C  ratio  to   increased  costs  of  production.  This  was  done  for  cost  increases  of  5  per  cent,  10  per  cent,  15  per  cent  and  20  per  cent.  This  was  done  in  order  to  investigate  to  what  extent  costs  of  production  could  rise  until   the   B/C   ratio   reaches   a   value   of   1   or   a   value   below   1.   This   could   be   of   particular  interest,  as  future  costs  of  production  cannot  be  estimated  with  certainty.  Thus  there  is  the  possibility  that  due  to  the  high  costs  of  investments  for  the  hydropower  expansion,  costs  of  production   might   increase   by   a   higher   percentage   than   what   is   expected   today.   The  sensitivity  analysis  shows  the  following  results,  with  the  x-­‐axis  presenting  the  cost  increases  and   the  y-­‐axis   showing   the  B/C   ratio.   It   can  be  seen   that  as   costs  of  production   increase,  naturally  the  B/C  ratio  decreases  as  expected.  Thus,  the  expansion  becomes  less  profitable  from  an  economic  point  of  view.  Moreover,  as  costs  of  production  increase  by  a  higher  rate  than  15  per  cent,  the  B/C  ratio  turns  below  1.  Thus,  it  can  be  concluded  that  any  increases  of  costs  that  are  higher  than  15  per  cent  would  turn  the  expansion  to  be  economically  less  preferable.    

99.8  

45.5  

22.3  11.6   6.6  0  

20  40  60  80  100  120  

0%   5%   10%   15%   20%  

NPV

 IN  M

ILLION  CHF

 

DISCOUNT  RATE  INCREASE  

Sensifvity  of  NPV  to  discount  rate  increases  

NPV  

Page 42: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

42 Cost-Benefit Analysis

Figure 4-3 Sensitivity of the B/C ratio to cost increases

 Figure  4-­‐4  shows  the  results  of  a  sensitivity  analysis  of  the  B/C  ratio  to  price  decreases  and  depicts   a   very   similar   trend   line   as   shown   in   Figure   4-­‐3.   This   is   also   according   to  expectations  as  both  cases,  cost  increases  or  price  decreases,  lead  to  the  same  result  in  net  benefits,  namely  a  decrease  in  net  benefits.  This  sensitivity  analysis  was  conducted  for  the  case  that  electricity  prices  would  fall   in  the  future  due  to  a  surplus   in  European  electricity  production.  As   the  Swiss  electricity   grid   is   tightly   connected   to  other  European  electricity  grids,  this  would  have  an  effect  on  Swiss  electricity  prices  too  and  thus  decrease  electricity  prices.  The  x-­‐axis  shows  the  percentage  decrease  of  electricity  prices  and  the  y-­‐axis  shows  the  values  for  the  B/C  ratio.  It  can  be  seen  that  a  price  decrease  by  15  per  cent  leads  to  a  B/C  ratio  of  1.02.  For  a  price  decrease  by  20  per  cent,  the  B/C  ratio  turns  below  1.  Thus,  it  can  be  concluded  that  any  price  decrease  higher  than  15  per  cent  would  suggest  that  the  expansion  of  hydropower  becomes  economically  unattractive.    

Figure 4-4 Sensitivity of the B/C ratio to price decreases

1.17  1.12  

1.06  1.02  

0.98  

0.80  

0.90  

1.00  

1.10  

1.20  

0%   5%   10%   15%   20%  

BENEFIT  -­‐  CO

ST  RAT

IO  

COST  INCREASE  

Sensifvity  of  B/C  rafo  to  cost  increases  

B/C  ra}o  

1.17  1.12  

1.08  1.03  

0.99  

0.85  0.90  0.95  1.00  1.05  1.10  1.15  1.20  

0%   5%   10%   15%   20%  BENEFIT  -­‐  CO

ST  RAT

IO  

ELECTRICITY  PRICE  DECREASE  

Sensifvity  of  B/C  rafo  to  price  decreases  

B/C  ra}o  

Page 43: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 43

Another  sensitivity  analysis  was  conducted  for  decreasing  estimates  of  the  avoided  external  costs   from  hydropower.   It  was  expected   that   as   the  estimates  decrease,   the  NPV   for   the  economic  CBA  would   also  decrease,   and   vice   versa.   The   results   of   the   sensitivity   analysis  support   the   expectations.   This   is   shown   in   Figure   4-­‐5,   with   the   x-­‐axis   depicting   the  percentage  decrease  in  avoided  external  costs  by  5  per  cent,  10  per  cent,  15  per  cent  and  20  per   cent.   The   y-­‐axis   shows   the   values   for   the  B/C   ratio.   Thus,   as   the   avoided  external  costs   decrease   the   B/C   ratio   decreases   accordingly   by   a   slow   rate.   This   is   an   interesting  scenario  as  the  original  calculations  were  based  on  a  weighted  average  estimate  calculated  for   a   combination   of   different   electricity   production   techniques.   However,   if   this  combination   would   change   contrary   to   today’s   expectations   to   the   case   that   renewable  energies,   such   as   wind   and   solar,   have   larger   shares,   then   the   weighted   average   would  decrease.  Accordingly,  the  results  for  the  conducted  CBA  would  become  less  supportive  for  the  projected  hydropower  expansion.    

Figure 4-5 Sensitivity of B/C ratio to decreases of avoided external costs

 

Lastly,   a   sensitivity   analysis   was   conducted   taking   into   account   the   results   from   the  previously   discussed   choice   experiment   conducted   by   Klinglmair   et   al.   (2012).   This   was  done   in   order   to   give   particular   significance   to   the   adverse   impacts   on   nature   and  landscape  associated  with  hydropower  production,  even  though  they  seem  to  be  included  in   the   estimates   from   the   ExternE   studies   (Ott   et   al.,   2008;   Ecoplan,   2007).   However,   no  data  could  be  found  about  the  share  of  these  impacts  in  the  estimates.  Therefore,  it  was  of  particular   interest   to   investigate   the   change   in   the   CBA   calculations   when   including   the  results  from  the  choice  experiment  conducted  in  Austria,  not  least  because  the  validity  and  feasibility  of  the  estimates  from  the  ExternE  studies  are  subject  to  controversy  themselves.    

The  results  of  the  choice  experiment  reveal  that  people  in  Austria  value  adverse  impacts  to  nature   and   landscape   due   to   hydropower   production   with   EUR   13.5   per   household   per  month.  By  using  environmental  value  transfers  this  value  can  be  re-­‐stated  as  CHF  194  per  household  per  year  for  Swiss  people.  The  average  amount  of  Swiss  households  was  found  to  be  3.2  million  as  of  2000  (Bundesamt  für  Statistik  [BFS],  2010).  To  calculate  the  costs  of  adverse   impacts  per  year  the  number  of  households  was  multiplied  by  the  yearly  amount  that   people   would   be   willing   to   pay,   namely   CHF   194.   Subsequently,   the   amounts   were  

1.17  1.16  

1.15  1.13  

1.12  

1.08  

1.10  

1.12  

1.14  

1.16  

1.18  

0%   5%   10%   15%   20%  

BENEFIT  -­‐  CO

ST  RAT

IO  

DECREASE  OF  AVOIDED  EXTERNAL  COSTS  

Sensifvity  of  B/C  rafo  to  decreases  of  avoided  external  costs  

B/C  ra}o  

Page 44: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

44 Cost-Benefit Analysis

discounted  with  a  discount  rate  of  4.5  per  cent  for  each  year.  The  discounted  yearly  costs  were  summed  up  and  subtracted  from  the  financial  NPV.    

Furthermore,  the  benefits  from  reduced  emissions  from  hydropower  as  compared  to  other  electricity   production   technologies  were   added.   These  were   calculated   by   comparing   the  amount  of  GHG  emissions  from  storage  and  pumped-­‐storage  plants  due  to  the  expansion  (as   depicted   in   Annex   B)   with   hypothetical   emissions   that   would   occur   if   the   expansion,  thus  3.2  TWh  of  electricity,  would  be  done  with  gas  power  plants.  It  was  found  that  direct  emissions   from   gas   power   plants   amount   to   a  minimum  of   362   g   of   CO2   equivalents   per  kWh  (World  Nuclear  Association  [WNA],  2012).  When  comparing  the  emissions  that  would  arise   from   electricity   production   with   gas   power   plants   with   those   from   hydropower  production,   it   was   found   that   for   the   time   period   of   23   years,   the   emissions   from  hydropower  production   are   approximately   40  per   cent   lower   than   those   from  gas  power  plants.     The   first   10   per   cent   of   GHG   reduction   would   occur   in   year   10,   20   per   cent  reduction  would  be  achieved  after  year  15,  30  per  cent  after  year  20  and  40  per  cent  GHG  reduction   would   occur   after   year   23.   Klinglmair   et   al.   (2012)   have   found   that   people   in  Austria  are  willing  to  pay  EUR  1.3  per  household  per  month  for  every  10  per  cent  reduction  of  GHG  emissions  obtained  by  the  intensified  use  of  hydropower.  Transferring  the  value  to  Switzerland   gives   an   estimate   of   CHF   19   per   household   per   year.   This   estimate   was  multiplied  by  number  of  households  for  the  year  10,  15,  20  and  23,  and  discounted  by  the  respective  discount  year.  The  benefits  were  summed  up  and  added  to  the  financial  NPV.    

The  results  of  subtracting  the  costs  from  landscape  and  nature  plus  the  benefits  of  reduced  GHG  emissions  are  shown  in  Table  4-­‐4  and  reveal  an  interesting  result.      

Table 4-4 Sensitivity analysis to NPV including the estimates from Klinglmair et al., 2012

4.5%  DISCOUNT  RATE   ECONOMIC  CBA   CBA  with  estimates  Klinglmair  et  al.  (2012)  

NPV  (in  CHF)   99,788,720  (  >  0)   -­‐8,659,117,673  (  <  0)  B/C  RATIO   1.17  (  >  1)   0.07  (  <  1)  

IRR   54%   cannot  be  calculated    

As  can  be  seen,  when  adding  the  costs  from  adverse  impacts  on  nature  and  landscapes  plus  the  benefits   from  reduced  GHG  emissions,   the  NPV  of   the  economic  CBA  becomes  highly  negative,  namely  -­‐  CHF  8,659  million.  Furthermore,  the  B/C  ratio  gives  a  very  low  value  of  0.07.   Naturally,   these   results   suggest   that   the   projected   expansion   does   not   result   in   an  economic   benefit   and   should   not   be   commenced.   It   should   be   noted   here   that   the  estimates   for   the   loss   of   nature   and   landscape   used   for   this   sensitivity   study   have   been  calculated  with  a  study  conducted  in  Austria  and  present  an  average  WTP  from  the  people  participating  in  the  study.  Thus,  there  is  high  uncertainty  as  to  what  extent  these  estimates  reflect   the   true  WTP  of   Swiss   people  with   regard   to   the   topic,   especially  when   assuming  that  probably  not  all  households  would  really  pay  that  amount.  The  same  holds  true  for  the  estimates   of   GHG   emission   reductions.   However,   this   sensitivity   analysis   was   conducted  particularly  in  order  to  show  what  could  be  the  results  when  using  different  estimates.    

Page 45: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 45

5 Conclusion  And  Discussion  

The  aim  of  this  study  was  to  estimate  the  economic  value  added  of  hydropower  production  in  Switzerland  under  current  conditions,   i.e.  under  the  status  quo  scenario,  and  under  the  expansion   scenario   as   projected   by   the   Swiss   Federal   Council.   The   motivation   for   this  investigation  was   based   on   the   decision   of   the   Swiss   Federal   Council   that   nuclear   power  production  will  no  longer  be  part  of  the  Swiss  electricity  supply  mix  and  shall  be  phased  out  until   2034.   Instead,   Switzerland   has   decided   to   pursue   a   large   expansion   of   its   already  existing  hydropower  sector  as  well  as  other  renewable  energy  sources.  For  this  purpose,  an  extended   CBA   has   been   performed   taking   into   account   not   only   the   financial   costs   and  benefits  associated  with  the  expansion,  but  also  the  positive  and  negative  external  effects  of   electricity   production   from   hydropower,   such   as   reduced   GHG   emissions,   reduced  damages   from   air   pollution,   or   the   loss   of   ecosystems   and   biodiversity.   Surprisingly,   few  analyses   have   been   conducted   in   the   past   in   Switzerland   investigating   the   costs   and  benefits  of  hydropower  generation,  which  contrasts   the   fact   that  hydropower  production  plays  such  a  critical  role  in  the  Swiss  economy.  A  possible  explanation  for  the  low  number  of  previous  studies  could  be  the  fact  that  the  Swiss  electricity  market  only  recently  became  more  liberalised  and  involved  in  the  wider  European  energy  market.  In  the  past,  electricity  production   in   Switzerland  was   governed   and   controlled   almost   entirely   by   the   individual  Swiss  cantons.  Thus,  the  need  or  even  the  possibility  to  conduct  a  national  study  about  the  sector’s  economic  value  was  perhaps  less  urgent  than  it  is  seems  to  be  today,  especially  in  view  of  the  recent  aforementioned  decision  taken  by  the  Swiss  Federal  Council.  The  results  of  the  analysis  conducted  in  this  thesis  are  discussed  in  the  following  subsection.  

5.1 Conclusion  The  CBA  was  conducted  for  a  time  period  of  23  years  from  2012  until  2034,  as  Swiss  nuclear  power  production  will  be  phased  out  by  then.  Two  analyses  have  been  conducted  for  both  the   financial   costs   and   benefits,   and   the   economic   costs   and   benefits   arising   from   an  expansion  of  hydropower.  The  difference  between  the  two  types  of  analysis  is  the  inclusion  of   the   external   costs   and   benefits   in   the   economic   CBA.   It   has   been   found   that   when  looking   only   at   the   financial   flows   of   expected   costs   and   revenues,   the   expansion   of  hydropower  does  not  seem  profitable  compared  to  the  baseline  scenario  in  view  of  the  fact  that   the   calculated   NPV   revealed   a   negative   value   of   –   CHF   42.2   million.   However,   the  benefit-­‐cost  ratio  is  very  close  to  1,  indicating  that  the  projected  revenues  from  the  current  electricity   bill   almost   cover   the  projected  expansion   costs.  Moreover,  when   including   the  external   net   benefits   associated   with   hydropower   production,   it   was   found   that   the  projected  expansion  does  indeed  reflect  an  efficient  allocation  of  resources.  The  NPV  of  the  economic   CBA   results   in   that   case   in   a   positive   value   of   CHF   99.8  million.   The   estimates  used   to   calculate   the   external   costs   and   benefits   included   according   to   the   literature   in  which  these  values  were  estimated,  the  following  main  effects:  (1)  GHG  emissions  and  fossil  fuel   induced   climate   change,   leading   to   damages   to   property,   crop   failures   due   to   air  pollution,   losses  of  biodiversity  and  ecosystems  due   to  acidification,  and   the   reduction  of  life  expectancy  due  to  additional  diseases;  (2)  aesthetical  adverse  effects  on  landscapes  and  heritage  areas;   (3)  deterioration  of  waterways  and  habitat  due   to  hydropower  plants  and  cooling   systems   from   fossil   fuel   plants;   (4)   potential   risks   of   accidents   especially   from  nuclear  power  plants  and  dam  failures;  and  (5)  risks  of  disposal  and  processing  from  nuclear  waste.    

Page 46: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

46 Conclusion And Discussion

The   difference   in   the   results   of   the   CBAs   shows   the   importance   of   including   the   wider,  external   costs   and   benefits   in   the   decision-­‐making   process   of   policy   evaluations.   This   is  especially  relevant  for  this  case,  as  hydropower  production  is  a  crucial  part  of  the  electricity  sector   in  Switzerland  and  subject   to  considerable  debate  within   research,  politics  and  the  economy.   The   financial   results   would   suggest   that   the   scheduled   expansion  may   not   be  fully   profitable   for   the   sector   and   lead   to   a   loss.   However,  when   comparing   hydropower  production   to   alternative   types   of   electricity   production,   the   results   of   the   CBA   show   a  different  picture  and  the  expansion  appears  profitable.    

Clearly,   this   study   is   subject   to   various   limitations   and   uncertainties   whose   importance  should   not   be   underestimated.   Therefore,   an   in-­‐depth   discussion   of   these   limitations   is  provided  in  the  following  and  last  subsection.  

5.2 Limitations  Of  This  Study  First   of   all,   it   should   be   emphasized   that   most   assumptions   underlying   this   study   with  regards  to  the  hydropower  expansion  scenario  are  based  on  official  documents  provided  by  the   BFE.   A   few   other   studies   exist   that   have   investigated   the   potential   expansion  possibilities  of  Swiss  hydropower  production  and  varying  numbers  were  found  (e.g.  Wüest,  2012).   However,   here   only   the   numbers  were   used   as   calculated   by   the   BFE   since   these  official  data  and   information  were  expected  to  be  the  most  accurate  and  up  to  date  ones  available.  

Regarding  the  uncertainties  associated  with  the  used  estimates  for  costs  of  production  and  electricity  prices,   these  were  taken  from  Geissmann  (2012),  who  conducted  a  study  of  66  Swiss  hydropower  production  firms  for  a  time  period  of  10  years  from  2000  until  2010.  The  estimates  for  the  costs  and  revenues  of  hydropower  production  were  the  most  recent  and  accurate   data   that   could   be   found   after   a   thorough   review  of   the   existing   published   and  unpublished   literature   in   this   field   (most  of  which  was  written   in  German)  and  contacting  different   sources   in   Switzerland.   For   this   study   it   was   furthermore   important   to   take  specific   data   for   the   three   hydropower   plant   types   and   their   specific   cost   and   price  estimates,  which  is  not  available  anywhere  else  when  examining  other  information  sources,  for  example  for  electricity  prices.    As  pointed  out  in  section  4.3,  the  price  estimates  used  in  this   study   from   Geissmann   (2012)   are   nevertheless   similar   to   current   electricity   prices  found  on  the  European  Energy  Exchange  (EEX,  2012).    The  study  by  Geissmann  (2012)  was  conducted   based   on   internal,   often   unofficial   documents   received   from   the   electricity  companies  detailing  their  cost  statements.  These  cost  statements  could  not  be  verified  and  had   to   be   trusted   on   their   face   value.   The   companies   who   supplied   the   data   and  information  may  have  had  strategic  interests  (and  behaved  accordingly  when  supplying  the  data)  to  specify  their  costs  of  production  higher  than  they  actually  were  in  order  to  secure  future   financial   support   from   the   government.   Validating   the   reliability   of   the   data   and  information   used   falls   outside   the   scope   and   time   boundaries   of   this   study,   and   the  potential  bias  underlying  the  estimates  can  merely  be  acknowledged  here.  

The   assumption   that   the   unit   costs   per   kWh   for   the   costs   of   production  will   remain   the  same  in  the  baseline  and  the  expansion  scenario,  is  perhaps  more  questionable.  Due  to  the  expansion   of   the   hydropower   capacity,   the   costs   of   production   might   in   fact   be   higher  compared   to   the   baseline   scenario.   The   outcome   of   the   sensitivity   analysis   presented   in  section  4.6  shows  that  the   investment   in  the  expansion  scenario  remains  beneficial   in  the  economic  CBA  as  long  as  any  increase  in  the  estimated  costs  is  not  higher  than  15  per  cent.    This   suggests   that   the   outcome   of   the   economic   CBA   remains   sensitive   to   the   cost  estimation.   An   error   margin   of   15   per   cent   is   not   much.   Turning   to   the   estimated   net  

Page 47: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 47

benefits  of   the  externalities  associated  with   the  expansion  of  hydropower   in  Switzerland,  one   of   the   key   questions   remains   what   exactly   is   included   in   the   avoided   external   cost  estimates  by  Ott  et  al.   (2008).  The  information  provided  in  this  report,  based  on  the  well-­‐known  European  research  project  ExternE,  was  insufficiently  specified  to  be  able  to  assess  the   reliability   of   the   data   and   information.   The   sensitivity   analysis   in   Section   4.6   showed  that   even   if   the   avoided   external   costs   are   20-­‐25   per   cent   lower   than   estimated,   the  investment   in   the   expansion   scenario   can   still   be   justified.   Using,   however,   the   external  nonmarket  value  of  hydropower  expansion  on  water  ecology  and  landscape  from  a  recent  economic  valuation  study  conducted   in  Austria,  causes  the  outcome  of  the  economic  CBA  to   turn   negative.   This   particular   area   of   environmental   costs   and   benefits   requires  more  consideration   as   the   largest   uncertainties   are   expected   to   be   found   in   these   external  (nonmarket)  effects,  not  so  much  in  the  estimated  costs.  

Finally,   based   on   the   above   there   is   sufficient   reason   to   initiate   and   conduct   further  detailed   research   in   this   particular   field,   especially   in   view   of   the   important   role   of  hydropower  production  in  the  Swiss  economy  and  political  arena.  The  limited  availability  of  relevant  data  and  information  from  previous  studies  is  remarkable  given  the  crucial  role  of  this   type   of   information   for   policy   decisions   and   the   important   economic   status   of  hydropower  in  Switzerland.    

 

Page 48: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$
Page 49: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 49

References  

Bateman,  I.J.,  Jones,  A.P.,  Nishikawa,  N.  &  Brouwer,  R.  (2000).  Benefits  Transfer  In  Theory  And  Practice:  A  Review.  (Report  No.  2000-­‐25).  East  Anglia:  Centre  for  Social  and  Economic  Research  on  the  Global  Environment  (CSERGE).

 Beukering,  P.  van  &  Botzen,  W.  (2012).  Preparing  for  economic  analysis:  Course  notes.  

Amsterdam:  VU  University  Amsterdam.    Brouwer,  R.  (2000).  Environmental  value  transfer:  state  of  the  art  and  future  prospects.  

Ecological  Economics,  32,  137-­‐152.      Bryner,  A.  (2011).  Wasserkraft  und  Ökologie  –  Faktenblatt.  Eawag:  Das  Wasserforschungs-­‐

Institut  des  ETH-­‐Bereichs.  Retrieved  May  2,  2012,  from  http://www.eawag.ch/medien/publ/fb/index?clear_lang=1.    

 Bundesamt  für  Energie  (BFE)  (2012a).  Schweizerische  Elektrizitätsstatistik  2011.  Retrieved  

June  06,  2012,  from  http://www.bfe.admin.ch/themen/00526/00541/00542/00630/index.html?lang=de&dossier_id=00765.    

 Bundesamt  für  Energie  (BFE)  (2012b).  Statistik  der  Wasserkraftanlagen  der  Schweiz  am  1.  

Januar  2012.  Retrieved  June  06,  2012,  from  http://www.bfe.admin.ch/themen/00490/00491/index.html?lang=de&dossier_id=00803.    

 Bundesamt  für  Energie  (BFE)  (2011a).  Zentralen  von  Wasserkraftanlagen  der  Schweiz  mit  

einer  maximal  möglichen  Leistung  ab  Generator  von  mindestens  10  MW.  Retrieved  February  28,  2012,  from  http://www.bfe.admin.ch/themen/00490/00491/index.html?lang=de&dossier_id=00803.  

 Bundesamt  für  Energie  (BFE)  (2011b).  EnergiePerspektiven  2050.  Abschätzung  des  

Ausbaupotenzials  der  Wasserkraftnutzung  unter  neuen  Rahmenbedingungen.  Retrieved  May  31,  2012,  from  http://www.bfe.admin.ch/themen/00526/00527/index.html?lang=de&dossier_id=05024.    

 Bundesamt  für  Statistik  (BFS)  (2010).  Familien,  Haushalte  –  Daten,  Indikatoren:  Haushalte  

nach  Haushaltstyp.  Retrieved  June  25,  2012,  from  http://www.bfs.admin.ch/bfs/portal/de/index/themen/01/04/blank/key/haushaltstypen.html.    

 Bundesamt  für  Umwelt  (BAFU)  (2012).  Emissionsübersicht:  Emissionen  nach  CO2-­‐Gesetz  

und  Kyoto-­‐Protokoll.  Retrieved  June5,  2012,  from  http://www.bafu.admin.ch/klima/09570/09574/index.html?lang=de.  

 Bundesamt  für  Umwelt  (BAFU)  (2011).  Methoden  zur  Untersuchung  und  Beurteilung  von  

Fliessgewässer.  Hydrologie  –  Abflussregime  Stufe  F  (flächendeckend).  Retrieved  

Page 50: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

50 Conclusion And Discussion

June  6,  2012,  from  http://www.modul-­‐stufen-­‐konzept.ch/d/hydro_startseite_d.htm.    

 Constanza,  R.,  d’Arge,  R.,  Groot,  de  R.,  Farber,  S.,  Grasso,  M.,  Hannon,  B.,  …  Belt,  van  den  

M.  (1997).  The  value  of  the  world’s  ecosystem  services  and  natural  capital.  Nature,  387,  253-­‐260.    

 Deutsche  Energie-­‐Agentur  GmbH  (2012).  Geschichte  der  Wasserkraftnutzung.  Retrieved  

April  23,  2012,  from  http://www.thema-­‐energie.de/energie-­‐erzeugen/erneuerbare-­‐energien/wasserkraft/grundlagen/geschichte-­‐der-­‐wasserkraftnutzung.html.    

 Diem,  T.,  Koch,  S.,  Schwarzenbach,  S.,  Wehrli,  B.  &  Schubert,  C.J.  (2012).  Greenhouse  gas  

emissions  (CO2,  CH4  and  N2O)  from  several  perialpine  and  alpine  hydropower  reservoirs  by  diffusion  and  loss  in  turbines.  Aquatic  Sciences  –  Research  Across  Boundaries,  74(3),  619-­‐635.    

      DOI:  10.1007/s00027-­‐012-­‐0256-­‐5    Ecoplan  (2007).  Die  Energieperspektiven  2035  –  Band  3  Volkswirtschaftliche  Auswirkungen:  

Ergebnisse  des  dynamischen  Gleichgewichtsmodells,  mit  Anhang  über  die  externen  Kosten  des  Energiesektors.  On  behalf  of  the  Bundesamt  für  Energie  (BFE).  Bern,  Switzerland.    

 Energy  Information  Administration  (EIA)  (2012).  Hydropower  Explained.  Retrieved  April  22,  

2012,  from  http://205.254.135.7/energyexplained/index.cfm?page=hydropower_home.  

 European  Commission  (EC)  (2003).  External  Costs:  Research  results  on  socio-­‐environmental  

damages  due  to  electricity  and  transport.  Retrieved  July  5,  2012,  from  http://www.externe.info/externe_2006/externpr.pdf.    

 European  Central  Bank  (ECB)  (2012).  Currency  conversion  rates.  Retrieved  from  

http://www.ecb.int/stats/exchange/eurofxref/html/eurofxref-­‐graph-­‐chf.en.html.  European  Commission  (EC)  (1995).  ExternE:  Externalities  of  Energy,  Vol.  6,  Wind  &  Hydro.  

Retrieved  June  1,  2012,  from  http://www.externe.info/externe_d7/?q=node/44.      European  Energy  Exchange  (EEX)  (2012).  Market  Data:  Swissix  -­‐  hour  contracts.  Retrieved  

June  30,  2012  from  http://www.eex.com/en/Market%20Data/Trading%20Data/Power/Hour%20Contracts%20|%20Spot%20Hourly%20Auction/spot-­‐hours-­‐table/2012-­‐07-­‐01/SWISSIX.  

 Fearnside,  P.M.  (1997).  Greenhouse-­‐gas  emissions  from  Amazonian  hydroelectric  

reservoirs:  the  example  of  Brazil’s  Tucuruí  Dam  as  compared  to  fossil  fuel  alternatives.  Environmental  Conservation,  24,  64-­‐75.    

 Filippini,  M.,  Banfi,  S.,  Luchsinger,  C.  &  Wild,  J.  (2001).  Perspektiven  für  die  

Wasserkraftwerke  in  der  Schweiz:  Langfristige  Wettbewerbsfähigkeit  und  mögliche  Verbesserungspotenziale.  On  behalf  of  the  Forschungsprogramm  Energiewirtschaftliche  Grundlagen  des  Bundesamtes  für  Energie  (BFE),  Bundesamt  für  Wasser  und  Geologie,  und  Interessengruppe  Wasserkraft.  Dezember  2001,  Zürich.    

Page 51: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 51

 Gagnon,  L.  &  Vate,  van  de  J.F.  (1997).  Greenhouse  gas  emissions  from  hydropower:  The  

state  of  research  in  1996.  Energy  Policy,  25(1),  7-­‐13.      Geissmann,  T.  (2012).  Ökonomische  Analyse  des  schweizerischen  Wasserzinssystems  im  

Hinblick  auf  ein  alternatives  Abgabesystem  (Unpublished  master’s  thesis).  Swiss  Federal  Institute  of  Technology  Zurich  (ETH),  Switzerland.    

 Hanley,  N.  &  Spash,  C.L.  (1993).  Cost-­‐Benefit  Analysis  and  the  Environment.  Cheltenham:  

Edward  Elgar.    Hairer,  F.  (2005).  Die  Wasserkraft  als  Rückhalt  einer  nachhaltigen  Stromversorgung.  

Elektrotechnik  und  Informationstechnik,  122(11),  431-­‐432.           DOI:  10.1007/BF03054335.    International  Energy  Agency  (IEA)  (2010).  Renewable  Energy  Essential:  Hydropower.  

Retrieved  April  18,  2012,  from  http://www.iea.org/publications/freepublications/publication/name,3930,en.html.    

 International  Energy  Agency  (IEA)  (2011).  Key  World  Energy  Statistics  2011.  Retrieved  May  

15,  2012,  from  http://www.iea.org/publications/freepublications/publication/name,26707,en.html  

 International  Hydropower  Association  (IHA),  International  Commission  on  Large  Dams  

(ICOLD),  International  Energy  Agency  (IEA)  &  Canadian  Hydropower  Association  (CHA)  (2000).  Hydropower  and  the  World’s  Energy  Future.  The  role  of  hydropower  in  binging  clean,  renewable,  energy  to  the  world.  Retrieved  April  19,  2012,  from  http://www.ieahydro.org/Hydropower_Development13.html.  

 Kahn,  J.R.  (2005).  The  Economic  Approach  to  Environmental  and  Natural  Resources  (3rd  

ed.).  United  States:  South-­‐Western  College  Publishing.    Klinglmair,  A.,  Bliem,  M.,  Brouwer,  R.  &  Graser,  L.  (2012).  HYDROVAL:  Evaluation  of  

Hydropower  Energy  Development  in  Austria:  Exploring  the  Energy-­‐Water  Nexus  using  Public  Choice  Models.  On  behalf  of  the  Österreichische  Forschungsförderungsgesellschaft  mbH  (FFG).    

 Moser,  D.,  Pfammatter,  R.,  Ribi,  F.  &  Zysset,  A.  (2009).  Überblick  finanzielle  Kenngrössen  der  

Schweizer  Wasserwirtschaft:  Expertenbericht.  On  behalf  of  the  Bundesamt  für  Umwelt  (BAFU).  Zollikon,  Switzerland:  Ernst  Basler  +  Partner  AG.    

 Ott,  W.,  Bade,  S.,  Hürlimann,  J.  &  Leimbacher,  J.  (2008).  Bewertung  von  Schutz-­‐,  

Wiederherstellungs-­‐  und  Ersatzmassnahmen  bei  Wasserkraftanlagen.  On  behalf  of  the  Bundesamt  für  Energie  (BFE).  Ittigen,  Switzerland.    

   Owen,  A.D.  (2004).  Environmental  Externalities,  Market  Distortions  and  the  Economics  of  

Renewable  Energy  Technologies.  The  Energy  Journal,  25(3),  127-­‐156.      Pearce,  D.W.  &  Nash,  C.A.  (1981).  The  Social  Appraisal  of  Projects:  A  Text  in  Cost-­‐Benefit  

Analysis.  London:  The  Macmillan  Press  Ltd.      

Page 52: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

52 Conclusion And Discussion

Pearce,  D.W.  &  Turner,  R.K.  (1990).  Economics  of  Natural  Resources  and  the  Environment.  Baltimore:  The  Johns  Hopkins  University  Press.    

 Pfammatter,  R.  (2012).  Wasserkraftpotenzial  der  Schweiz  –  eine  Auslegeordnung.  Wasser  

Energie  Luft,  1.  Retrieved  May  6,  2012,  from  http://www.swv.ch/Fachinformationen/Wasserkraft-­‐Schweiz.    

 Previdoli,  P.  (2012).  Energiestrategie  2050.  Infoanlass  Energiestrategie  2050.  Bundesamt  für  

Energie.  Retrieved  May  10,  2012  from  http://www.bfe.admin.ch/themen/00526/00527/index.html?lang=de&dossier_id=05472.    

 Snell,  M.  (1997).  Cost-­‐benefit  analysis  for  engineers  and  planners.  London:  Thomas  Telford  

Publications.    Schweizerischer  Bundesrat  (2011).  Energy  Perspectives  2050,  Federal  Council’s  analysis  of  

the  options  for  provision  of  electricity.  Fact  sheet.  Retrieved  April  16,  2012  from  http://www.bfe.admin.ch/themen/00526/00527/index.html?lang=de&dossier_id=05024.    

 Teuwsen,  P.  (2011).  Kann  man  diesen  Augen  trauen?  Zeit  Online,  March  24,  2011.  Retrieved  

May  4,  2012,  from  http://www.zeit.de/2011/13/CH-­‐Leuthard-­‐Energiepolitik.    World  Nuclear  Association  (WNA)  (2012).  Environment  and  Health  in  Electricity  Generation:  

Greenhouse  gas  emissions.  Retrieved  July  16,  2012,  from  http://www.world-­‐nuclear.org/education/ehs.html.  

 Wüest,  A.  (2012)  Hydropower:  potential  for  and  limits  to  expansion.  Eawag  News  72  ed.,  

June  2012.  Retrieved  July  5,  2012,  from  http://www.eawag.ch/medien/publ/eanews/news_72/index_EN.      

 Zacharakis,  Z.  (2011).  Schweiz  plant  Atomausstieg  bis  2034.  Zeit  Online,  May  25,  2011.  

Retrieved  May  4,  2012,  from  http://www.zeit.de/politik/ausland/2011-­‐05/atomausstieg-­‐schweiz-­‐akw.  

 

 

 

Page 53: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 53

Annex  A

Figure 5-1 Average external costs of electricity production in the EU and Switzerland for hydro, nuclear, oil, gas, wind, biomass and solar power

Source:  Ott  et  al.  (2008)  

 

Table 5-1 Production projections for the baseline scenario

 

Data  source:  BFE  (2012a)  

 

Anhang: Nutzen der Wasserkraft 115

!

"#$!%&'!('$')*+,+-!%'$!./0123&$42)*5640&)*'+!7,23&$1,+-'+! &8!95*8'+!%'$!:+'$-&';<'$2<'14&.'+!=>?@!%'2!(,+%'2584'2!6#$!:+'$-&'!3,$%'+!%&'!%&.'$2'+!2)*3'&A'$&2)*'+!,+%! ',$/<B&2)*'+! :$-'C+&22'! A,! %'+! 'D4'$+'+! E/24'+! %'$! F4$/8<$/%,14&/+! A,258;8'+-'65224!G:)/<05+!=>>HI!FJ!KL?!66JMJ!N&'!:$-'C+&22'I!%&'! 6#$!%&'!*&'$!./$-'+/88';+'+! 7C2)*B4A,+-'+! 58! $'0'.5+4'24'+! 2&+%I! 3'$%'+! &+! %'$! 6/0-'+%'+! O5C'00'! 5,6-';6#*$4J! P+! %'$! 0'4A4'+! F<504'! 3&$%! '&+! Q/$2)*05-! 6#$! %&'! 2<'A&6&2)*'+! 'D4'$+'+! E/24'+!R9<JS1T*U!6/$8,0&'$4!GVDurchschnittswert CHVMJ!

Externe Kosten in [Rp./kWh]

Geltungsbereich

ExternE

EU

NewExt

EU

Hauenstein et al.

CH

econcept/ In-fras/Prognos

CH

Hirschberg/ Jakob

CH

Durch- schnittswert

CH

Wasserkraft - Speicher-KW - Laufkraftwerk

0.02 – 0.8 0.36 – 0.39 0.44 – 0.58

0.64 - 1.44 0.47 – 0.97

0.00 – 1.20 0.8 1.0 0.7

Kernenergie - mit Risikoaversion

0.73 – 1.15 0.32 0.31 – 0.85 1.31 – 35.7

0.20 – 1.30 0.8 18

Öl 4.06 – 17.0 3.36 – 8.57 3.3 – 5.4 3.50 – 17.8 7.0

Gas 1.07 – 4.69 1.24 – 2.42 2.2 – 7.0 0.80 – 5.50 3.0

Wind 0.07 -. 0.39 0.10 – 0.60 0.4

Biomasse 0.2 – 8.6 1.0 – 2.1 2.5 – 5.8 3.2

Photovoltaik 0.21 – 0.51 0.10 – 1.50 0.7 !

Tabelle 12 Bandbreiten von Abschätzungen externer Kosten der Stromproduktion in der EU und in der Schweiz für verschiedene Produktionstechnologien in [Rp./kWh]. ( Quel-len: Ecoplan 2007 und Hauenstein et al. 1999)

7,2-5+-2<,+14!6#$!%&'!/C&-'+!7+-5C'+!2&+%!%&'!F)*B4A,+-'+!'D4'$+'$!E/24'+!6#$!%&'!F)*3'&AI!%&'!3&'!O5C'00'!K=!A'&-4I!8&4!%'+!7+-5C'+!./+!:D4'$+:!2/3&'!8&4!%'+!G4&'6';$'+M!7+-5C'+!./+!W'3:D4!6#$!%&'!:X!$')*4!-,4!#C'$'&+24&88'+Y!!

N&'!(5+%C$'&4'+!C'&!%'+!F)*B4A,+-'+!%'$!'D4'$+'+!E/24'+!2&+%!$'054&.!-$/22J!F&'!3&;%'$2<&'-'0+!%&'!F)*35+1,+-'+!2/3&'!%&'!X+2&)*'$*'&4'+!C'&!%'$!:$8&440,+-!%'$!Z'3'&;0&-'+!7,23&$1,+-'+!%'$!'D4'$+'+!:66'14'I!3'0)*'!./+!%'$!Z'3'&02!'&+-'2'4A4'+!O')*+/;0/-&'I!./8!F45+%/$4!,+%!./+!%'+!X8-'C,+-2.'$*B04+&22'+!C'&!%'+!Z'3'&0&-'+![$/%,1;4&/+25+05-'+!5C*B+-'+J!N5A,!1/88'+!X+2)*B$6'+!C'&!%'$!8/+'4B$'+!('3'$4,+-!%&';2'$!7,23&$1,+-'+J!:D4'$+:!,+%!W'3:D4!'$10B$'+!%&'!E/24'+2)*35+1,+-'+!,+4'$!5+;%'$'8!%58&4I!%522! &+!%&'2'+!F4,%&'+!%&'!'D4'$+'+!E/24'+! 6#$!%&'!.'$2)*&'%'+'+![$/;%,14&/+24')*+/0/-&'+! 6#$! .'$2)*&'%'+'! \B+%'$I! ,+4'$2)*&'%0&)*'! F45+%/$4'! ,+%! <$/![$/%,14&/+25$4!A,8!O'&0!,+4'$2)*&'%0&)*'!O')*+/0/-&'+!'$8&44'04!3,$%'+J!!

!

Page 54: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

54 Conclusion And Discussion

Table 5-2 Revenues from electricity production for the baseline scenario

 

Page 55: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 55

Table 5-3 Costs of hydropower production for the baseline scenario

 

Page 56: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

56 Conclusion And Discussion

Table 5-4 Revenues from electricity production for the expansion scenario

 

Page 57: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 57

Table 5-5 Costs of hydropower production for the expansion scenario

 

Page 58: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

58 Conclusion And Discussion

Table 5-6 Avoided external costs from hydropower production

 

Page 59: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 59

Table 5-7 Calculating the net financial (and economic) costs of production

   

Page 60: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

60 Conclusion And Discussion

Table 5-8 Calculating the net financial benefits (revenues from electricity production)

 

Page 61: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 61

Table 5-9 Undiscounted and discounted net financial costs and benefits, and economic benefits

Page 62: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$
Page 63: IVM Institute for Environmental Studies · IVM Institute for Environmental Studies !!! ! 7! ... Conclusion$And$Discussion 45! ... ICOLD$International$Commission$on$Large$Dams$

IVM Institute for Environmental Studies

A cost-benefit analysis of hydropower production in Switzerland 63

Annex  B  

The  calculations  are  based  on  study  results  from  Gagnon  and  van  de  Vate  (1997)  that  found  an  average  emission   factor  of   15g  CO2   equivalent  per   kWh   from  hydropower  production.  The   study   included   CO2,   CH4   and   N2O.   First,   the   emission   levels   for   each   scenario   were  calculated   individually.   Subsequently,   the   difference   between   the   two   scenarios   was  calculated,  by  subtracting  the  emission   levels  of  the  baseline  from  those  of  the  expansion  scenario  to  receive  the  net  emission  levels.  The  emissions  were  calculated  for  storage  and  pumped-­‐storage  plants  only,  as  emission  levels  from  ROR  can  be  seen  as  negligible.   It  can  be  seen  that  emissions  would  rise  by  nearly  19,000  t  of  CO2  equivalents  by  2034.      

Table 5-10 GHG emissions from storage and pumped-storage plants