jacob fire evaluation

Upload: kulibaut

Post on 06-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Jacob Fire Evaluation

    1/20

    1

    Sizing of relief valves forsupercritical fluids

    March 23rd, 2011

    Overview

    Relief Valve Study An Engineering Approach

    Relief Calculation for Supercritical Fluids Introduction Theoretical Background Discussion & Evaluation

  • 8/3/2019 Jacob Fire Evaluation

    2/20

    2

    Jacobs

    Introduction

    Jacobs Introduction: Who Are We

    Committed to Be ondZero Safet as safet is our #1priority

    Relationship based company

    Global resource base 57.500 employees in 25countries on 4 continents

    Fortune 500 #1 Engineering & Construction Company

    Publicl traded on NYSE

    Net income $65,8 Million 1Q FY11 ($246 Million FY10)

    Revenues $2,4 Billion 1Q FY11 ($9,9 Billion FY10)

    Backlog $13 Billion FY11

    In business since 1947

  • 8/3/2019 Jacob Fire Evaluation

    3/20

    3

    Jacobs Introduction: Worldwide offices

    Jacobs Introduction: Europe

  • 8/3/2019 Jacob Fire Evaluation

    4/20

    4

    Jacobs Introduction: BelgiumOil & Gas(Refining)

    30

    Chemicals &Polymers

    45

    Others12

    Pharma& Bio

    13

    Project Serv. &Admin., 82

    Procurement,14

    Process, 52

    Engineering &Design, 316

    Project Mgt., 48

    G&A, 31

    Constr. Mgt, 26

    Civil, 44Mechanical, 31Instrumentation,88Piping, 127Electrical, 26

    Jacobs Introduction: Clients

    Client Workload Sinc Client Workload Since

    / People e / People

    BASF 30-50 2003 SABIC 15-60 2004

    Borealis 25-50 2002 Shell 15-60 2007

    BPChembel

    15-30 2004 Solvay 20-80 2001

    ow - o a -

    ExxonMobil

    15-60 1985 Yara 30-60 2005

    GSK 15-20 2004

  • 8/3/2019 Jacob Fire Evaluation

    5/20

    5

    Relief Valve Study

    An Engineering Approach

    Relief Valve Study An Engineering Approach

    P&IDs

    Equipment data

    Etc.

    Define relief scenarios: E.g.: External fire, Blocked outlet, etc.

    Use list API 521 as guidance

    Use tools as HAZOP, PLANOP, client specific methodsto determine applicable scenarios

  • 8/3/2019 Jacob Fire Evaluation

    6/20

    6

    Relief Valve Study An Engineering Approach

    Relief load

    Relief valve orifice size

    Determine governing case General a roach:

    Scenario requiring the largest orifice size

    =

    Governing case

    Relief Valve Study An Engineering Approach

    Pressure drop over inlet (< 3% of set pressure)

    Pressure at outlet (backpressure):

    Superimposed backpressure: static pressure (if variable:NOconventional type valve)

    Built-up backpressure: pressure increase as result of relief, .

    100% for pilot operated type valves)

  • 8/3/2019 Jacob Fire Evaluation

    7/20

    7

    Relief Valve Study An Engineering Approach

    Conventional spring-loaded

    Balanced bellows

    Pilot operated

    Mechanical stress anal sis

    Flare network study

    Relief Calculation forSupercritical Fluids

  • 8/3/2019 Jacob Fire Evaluation

    8/20

    8

    Introduction

    Objective:Calculate mass relief flow, volume relief flow and required orificesize of heat-input driven relief cases on systems with supercriticalrelief temperature and/or pressure.

    Examples:

    Fire case for a Vessel

    Blocked-in Heat Exchanger

    References:

    R. Ouderkirk, Rigorously Size Relief Valves for Supercritical Fluids,CEP magazine, pp. 34-43 (Aug. 2002).

    L. L. Simpson, Estimate Two-Phase Flow in Safety Devices, Chem.Eng., pp. 98-102, (Aug. 1991).

    Theoretical Background

    Definition of enthal :H = U + pV (1)

    dH = dU + Vdp + pdV (2)

    dU = Q pdV (3)

    Combining (2) & (3)

    dH = Q + Vdp (4)

    p is constant during relief; hence,

    H = Q (5)

    And,

    H/t = Q (6)

  • 8/3/2019 Jacob Fire Evaluation

    9/20

    9

    Theoretical Background

    Heat input = Enthalpy change

    Hi (H)p Hi+1

    t * Q

    i i+1

    V/t H: Specific enthalpyV: Specific volumeQ: Heat inputt: Time

    Example Case Information

    Fire case for a Vessel SP

    Process Data (normal operation):

    Content: Methane

    Crit. Temp. -82,7 C Crit. Press. 45,96 bara

    Level: 60% Liquid

    Pressure: 10 barg

    arg

    Temperature: -122 C

    Volume: 10 m

    Area: 25 mQ

    fire

  • 8/3/2019 Jacob Fire Evaluation

    10/20

    10

    Example Case Relief Process Overview

    1 2 Heatin before Relief: Isochoric rocess

    No volume or mass change (no relief)

    2 3 Relief: Isentropic flash

    Adiabatic & frictionless flow through relief valve

    2 2 Relief Progression: Isobaric processSystem at constant pressure (i.e. relief pressure)

    P-E Diagram of M ethane

    100

    = 10kg/m3

    = 100kg/m3

    2 2'

    + Qfire

    + Qfire

    Density [kg/m] - Temperature [K] - Entropy [kJ/(kgK)]

    = 400kg/m3

    Relief

    Press.

    10

    Pressure

    (ba

    r)

    = 1kg/m3

    1

    3 3'

    0.1

    -100 100 300 500 700 900 1100 1300 1500

    Enthalpy (kJ/ kg)

    = 0,1kg/m3

    T=100K

    T=200K

    T=150K

    T=300K

    T=400K

    T=500K

  • 8/3/2019 Jacob Fire Evaluation

    11/20

    11

    Example Case Calculation Steps

    Ste 1: Select Pro ert Method

    Step 2: GatherRelief Case Information

    Step 3: DetermineHeat Input

    Step 4: CalculatePhysical Properties

    Step 5: CalculateRelief Flow Rate

    Step 6a: DetermineIsentropic Choked Nozzle Flux

    Step 6b: DetermineRequired Orifice Size

    Example Case Step 1

    Requirements: Suitable for respective component(s)

    Accurate for the relevant pressure and temperature rangeP > 1 // T > 1

    Accurate for both liquid and gas properties

    Important:Always verify property method with empirical property data!

  • 8/3/2019 Jacob Fire Evaluation

    12/20

    12

    Example Case Step 1

    Fit for light hydrocarbons

    Application range

    Pr: 0 to 10 (up to ca. 460 bara)

    Tr: 0,3 to 4 (ca. -216 to 485 C)

    One correlation for both liquid as well as vapor phase

    No distinguishable transition from supercritical fluid tosupercritical vapor

    Integration of the thermal properties with the otherphysical properties

    Thermodynamic cohesiveness

    Example Case Step 2

    GatherRelief Case Information

    Relief pressure:

    PSV set press.: 50 bargFire case relief press.: 121 %of set pressure

    Relief press.: 61,5 bara (Pr= 1,3)

    n a re e empera ure:Considering an isochoric process:

    (Tini(pini))ini (Trlf(prlf))ini(Tini(10barg))ini (Trlf(61,5barg))ini-122C -77C

  • 8/3/2019 Jacob Fire Evaluation

    13/20

    13

    Example Case Step 3

    DetermineHeat In ut

    API 521 external pool fire, heat absorption forliquids:

    Qfire = 43.200 * f * 0,82With f = 1 (no fireproof insulation / bare metal vessel)

    = 25 m

    Qfire = 605,05 kW

    = 2.178.196 kJ/h: Wetted surface [m]f: Environment factor[-]Q: Heat input [W]

    Example Case Step 4

    CalculatePhysical Properties

    Determine the specific volume (V), specific enthalpy (H) & entropy (S)at initial relief conditions:

    Applying property method correlations in Excel spreadsheets

    Using property models in Simulation Tools (Pro/II, Aspen Plus, etc.)

    At relief pressure

    Step size: ca. 3C

    # iterations: see later

  • 8/3/2019 Jacob Fire Evaluation

    14/20

    14

    P-E Diagram Methane

    100

    = 10kg/m3

    = 100kg/m3

    2 2'

    + Qfire

    + Qfire

    Density [kg/m] - Temperature [K] - Entropy [kJ/(kgK)]

    = 400kg/m3

    10

    Pressure

    (bar)

    = 1kg/m3

    1

    33'

    0.1

    -100 100 300 500 700 900 1100 1300 1500

    Etnhalpy (kJ/ kg)

    = 0,1kg/m3

    T=100K

    T=200K

    T=150K

    T=300K

    T=400K

    T=500K

    Example Case Step 4

    T, C S, kJ/(kg.K) H, kJ/kg V, m3/kg

    -77 8,742 -288,7 0,00455

    -74 8,920 -253,7 0,00527

    -71 9,169 -203,7 0,00662

    -68 9,341 -168,7 0,00781-65 9,487 -138,7 0,00896

    -62 9,582 -118,7 0,00978

    -59 9,676 -98,7 0,01062

    -56 9 746 -83 7 0 01127, , ,

    -53 9,814 -68,7 0,01193

    -50 9,882 -53,7 0,01259

    -47 9,927 -43,7 0,01303

    -41 10,036 -18,7 0,01414

    -38 10,079 -8,7 0,01459

  • 8/3/2019 Jacob Fire Evaluation

    15/20

    15

    Example Case Step 5

    CalculateRelief Flow Rate

    Volumetric flow rate:

    Mass flow rate:

    H

    VQV

    = &&

    Vm

    &

    & =

    H: Specific enthalpy [kJ/kg]V: Specific volume [m/kg]V: Volume flow [m/s]m: Mass [kg]m: Mass flow [kg/s]Q: Heat input [kW]

    Example Case Step 5

    T, C S, kJ/(kg.K) H, kJ/kg V, m3/kg V, m3/s m, kg/s

    - , - , , , ,

    -74 8,920 -253,7 0,00527 0,01427 2,710

    -71 9,169 -203,7 0,00662 0,01916 2,891 Max. mass flow

    -68 9,341 -168,7 0,00781 0,02227 2,849

    -65 9,487 -138,7 0,00896 0,02432 2,714

    -62 9,582 -118,7 0,00978 0,02532 2,588

    -59 9,676 -98,7 0,01062 0,02602 2,448

    - -- , - , , , ,

    -53 9,814 -68,7 0,01193 0,02662 2,232

    -50 9,882 -53,7 0,01259 0,02674 2,124

    -47 9,927 -43,7 0,01303 0,02687 2,061 Max. volume flow

    -41 10,036 -18,7 0,01414 0,02686 1,899

    -38 10,079 -8,7 0,01459 - -

  • 8/3/2019 Jacob Fire Evaluation

    16/20

    16

    Example Case Step 6

    DetermineIsentro ic Choked Nozzle Flux

    For each relief temperature calculate the chokednozzle flux:

    Iteratively, at decreasing

    outlet pressure:( )

    b

    b0

    V

    HH2G

    =

    And, along isentropic path:

    Max. flux = Choked flux

    b0 SS =

    H: Specific enthalpy [J/kg]V: Specific volume [m/kg]G: Mass flux [kg/(m.s)]S: Entropy [kJ/(kg.K)]

    0: Inlet condition

    b: Outlet condition

    P-E Diagram Methane

    100

    = 10kg/m3

    = 100kg/m3

    2 2'

    + Qfire

    + Qfire

    Density [kg/m] - Temperature [K] - Entropy [kJ/(kgK)]

    = 400kg/m3

    10

    Pressure

    (ba

    r)

    = 1kg/m3

    1

    33'

    0.1

    -100 100 300 500 700 900 1100 1300 1500

    Etnhalpy (kJ/ kg)

    = 0,1kg/m3

    T=100K

    T=200K

    T=150K

    T=300K

    T=400K

    T=500K

  • 8/3/2019 Jacob Fire Evaluation

    17/20

    17

    Example Case Step 6

    Relief tem erature: -68 C

    Tb, C pb, bara Vb, m/kg Hb, kJ/kg G, kg/(m.s)

    T0, p0: -68 61,5 0,00808 -158,8 -

    -72 57,0 0,00840 -162,5 10248

    -76 52,5 0,00878 -166,4 14009

    -80 48,0 0,00924 -170,4 16496

    :

    -85 43,5 0,00988 -174,7 18058 GChoked-88 39,0 0,01134 -179,5 17931

    -92 34,5 0,01309 -185,0 17479

    Example Case Step 6

    Iteration = time consumin rocess!!

    Alternative method: use simplified correlations to

    determine isentropic choked flux J.C. Leung, A Generalized Correlation for One-component

    Homogeneous Equilibrium Flashing Choked Flow, AIChE Journal,pp. 1743-1746 (Oct. 1986).

    0

    0choked

    V

    pG

    =

  • 8/3/2019 Jacob Fire Evaluation

    18/20

    18

    ATTENTION: 2-phase flow

    Relief of su ercritical fluids can lead to 2- hase flow!

    Homogenous Equilibrium Model (HEM)

    Assumptions

    1. Velocities of phases are equal

    2. Phases are at thermodynamic equilibrium

    Formula applies:

    And H = xL.HL + (1-xL).HGV = xL.VL + (1-xL).VG

    ( )b

    b0

    VHH2G =

    H: Specific enthalpy [J/kg]V: Specific volume [m/kg]G: Mass flux [kg/(m.s)]

    0: Inlet condition

    b: Outlet condition

    L: Liquid phase

    G: Gas phase

    Example Case Step 7

    DetermineRe uired Orifice Size

    API 521:

    With backpressure correction, Kb = 1 (backpressure

  • 8/3/2019 Jacob Fire Evaluation

    19/20

    19

    Example Case Step 7

    T, C S, kJ/(kg.K) H, kJ/kg V, m3/kg V, m3/s m, kg/s A, mm

    - -- , - , , , ,

    -74 8,920 -253,7 0,00527 0,01427 2,710 -

    -71 9,169 -203,7 0,00662 0,01916 2,891 153

    -68 9,341 -168,7 0,00781 0,02227 2,849 155 Req. Nozzle Size

    -65 9,487 -138,7 0,00896 0,02432 2,714 152

    -62 9,582 -118,7 0,00978 0,02532 2,588 -

    -59 9,676 -98,7 0,01062 0,02602 2,448 -

    -56 9 746 -83 7 0 01127 0 02638 2 340 -, , , , ,

    -53 9,814 -68,7 0,01193 0,02662 2,232 -

    -50 9,882 -53,7 0,01259 0,02674 2,124 141

    -47 9,927 -43,7 0,01303 0,02687 2,061 -

    -41 10,036 -18,7 0,01414 0,02686 1,899 -

    -38 10,079 -8,7 0,01459 - - -

    Example Case Results

    When all values (relief volume flow, mass flow and nozzle size)decrease with increasing relief temperature: stop iterations.

    Determine selected effective orifice (API 526) based on maximum

    calculated nozzle size value: Max. nozzle size value: 155 mm

    Selected standard orifice: 198 mm (F)

    a cu ate pressure rop over n et an sc arge

    Determine safety valve type (conventional, balanced bellows, pilotoperated)

  • 8/3/2019 Jacob Fire Evaluation

    20/20

    Calculation Results

    100%Volume Relief Rate

    70%

    80%

    90%

    Orifice Area

    40%

    50%

    60%

    200 210 220 230 240 250

    Temperature (K)

    Mass Relief Rate

    Example Case Conclusions

    S ecific calculation method is re uired:

    Fluids that are below critical conditions in normal operation

    can have super critical relief

    Max. mass flow Max. volume flow Min. required nozzlesize

    Required nozzle size determined using a simplified method(API 521 5.15.2.2.2): 58 mm vs. 155 mm