jaxa gli calibration group - earth onlineearth.esa.int/workshops/ivos05/pres/p6_tanak.pdfgli...

1
Vicarious coefficients !"#! !"#$ !"%! !"%$ &"!! &"!$ &"&! &"&$ &"’! ! & ( ) $ * + # % &! && &’ &( &) &$ &* &+ &# &% ’! ’& ’’ ’( ’) ’$ ’* ’+ ’# ’% (! ,-. 0123345 6748 967::;<:=>?6748@ A2=5:72B’!!(!#&% ACD’!!(D!#D&% 9E7F1=B2@ G2::7HD’!!(!)&) G2::7HD’!!(!)’* ,57I25 C4:"! 9JKF=B4 I2F4@ ,57I25 C4:"& :4L=F4B 9JMKI2F4@ ,57I25 C4:"’ 9GKI2F4@ N6J O<GE&(K&%P=Q JRA<SRTDL&"$34HDF=U4 GLI vicarious calibration coefficients (Kvc) by several ways JAXA GLI Calibration Group: K. Tanaka a , H. Murakami a , S. Kurihara a , J. Inoue a , Y. Okamura a , K. Isono a , J. Nieke a , T. Hashimoto a , H. Yamamoto a , I. Asanuma a , K. Iwafune b , Y.Aoki b , H. Yatagai b , H. Kurihara b , M. Yoshida c , N. Sekio c , Y. Mitomi c , and Y. Senga d , a Japan Aerospace Exploration Agency (JAXA), b Fujitsu Ltd, c RESTEC, d Tokai Univ. Temporal change of K pre /K sun after correction of diffuser incident angle and sun-earth distance (scan-mirror side B, EL=15deg, normalized by 06 Apr. 2003). 0.80 0.85 0.90 0.95 1.00 1.05 1.10 09-Jan-03 08-Feb-03 10-Mar-03 09-Apr-03 09-May-03 08-Jun-03 08-Jul-03 07-Aug-03 06-Sep-03 06-Oct-03 05-Nov-03 ratio to 06-Apr-03 ch1(380) ch2(400) ch3(412) ch4(443) ch5(460) ch6(490) ch7(520) ch8(545) ch9(565) ch10(625) ch11(666) ch12(680) ch13(678) ch15(710) ch17(763) ch19(865) ch24(1050) ch25(1135) ch26(1240) ch27(1380) ch19 ch1027 Solar calibration outputs dropped in channels under 700nm. We consider this is caused by degradation of diffuser. Other channels are stable within 2%. Raw data of mirror side A increased, and ones of mirror side B decreased. Data corrected by monitor diode is increased in both mirror sides, so decrease of raw data level in mirror side B is considered to be caused by lowering of lamp radiance. Corrected data of mirror side-B increased only 1%. The ratio of side B to A increased after launch, so the reflectance of side A is thought to be decreased (about 4%) due to the influence of launch, but recovered since then. Noise level of the lamp data is equivalent to the pre-launch test. Linear part of the black body calibration (C1) at the same sun elevation point (20deg). GLI thermal data is calibrated by the C1 (for each scan) and fixed calibration factors (C0, C2, and other environmental factors) derived in the pre- launch tests. !"# !$# !!# %&&# %&%# %&’# %&(# ’&&()&%)&! ’&&()&’)&$ ’&&()&()%& ’&&()&*)&! ’&&()&+)&! ’&&()&,)&$ ’&&()&")&$ ’&&()&$)&" ’&&()&!)&, ’&&()%&)&, ’&&()%%)&+ -% /0123 13 ’&&()&%)’, ’,& ’,% ’,’ ’,( ’,* ’,+ ’,, ’," ’,$ ’,! ’"& 45067 4389 :;<=;/01>/; ?8;@-A 6B(& 6B(% 6B(’ 6B(( 6B(* 6B(+ 6B(, CC1;<= C1 was stable over all operation period within ±3% at ch30, and other channels within ±1%. C1 changed corresponding Blackbody temperature, so it is considered that the change is caused by the seasonal variation of environmental temperature. C1 was smaller (= higher sensitivity) in cold environment in orbit. This agrees the pre- launch test results. Calculated NEΔT and dynamic range is within specification. Version up & processing information Cooperation with GLI Validation Group Lamp calibration raw data from 1st lamp calibration in Jan. 2003. Lamp-A, Scan mirror-A !"#$ !"#% !"#& !"## ’"!! ’"!’ ’"!( ’"!) !#*+,-*!) !&*./0*!) ’!*1,2*!) !#*342*!) !#*1,5*!) !&*+6-*!) !&*+67*!) !%*368*!) !$*9/4*!) !$*:;<*!) !=*>?@*!) 2,<A? <? (=*+,-*!) ;C’ ;C( ;C) ;CD ;C= ;C$ ;C% ;C& ;C# ;C’! ;C’) ;C’= ;C’% ;C’# ;C(D ;C(= ;C($ ;C(% E?-A<?2 !"#$ !"#% !"#& !"## ’"!! ’"!’ ’"!( ’"!) !#*+,-*!) !&*./0*!) ’!*1,2*!) !#*342*!) !#*1,5*!) !&*+6-*!) !&*+67*!) !%*368*!) !$*9/4*!) !$*:;<*!) !=*>?@*!) 2,<A? <? (=*+,-*!) ;C’ ;C( ;C) ;CD ;C= ;C$ ;C% ;C& ;C# ;C’! ;C’) ;C’= ;C’% ;C’# ;C(D ;C(= ;C($ ;C(% E?-A<?2 1000 0.06 358 1020 12001.3 36 1000 386 (5) 211 *3 10 865.7 19 1000 0.05 354 955 10768.0 35 1000 1309 (5) 8 20 866.1 18 1000 0.05 350 519 8626.3 34 1000 293 (6) 246 *3 8 762.0 17 1000 0.02 324 526 7511.4 33 1000 991 (7) 11 11 749.0 16 1000 0.03 322 502 7332.6 32 1000 300 (10) 233 *3 11 710.1 15 1000 0.03 (at 285K) 307 531 6737.5 31 1000 1404 (10) 16 11 710.5 14 1000 0.07 345 336 3721.1 30 1000 235 (12) 342 *3 10 678.6 13 1000 1293 (12) 22 10 679.9 12 IFOV [m] NEΔT [K] at 300K Dynamic range [Kelvin] width [nm] WL *4 [nm] Ch 1000 1342 (13) 21 10 666.7 11 250 *2 160 (1.3) 32 220 2193.8 29 1000 1370 (17) 32 (28 *3 ) 10 624.7 10 250 *2 298 (5) 76 203 1644.9 28 1000 1301 (23) 39 10 564.8 9 1000 192 (1.5) 153 36 1380.6 27 1000 611 (28) 96 *1 /596 10 544.0 8 1000 303 (5.4) 208 18 1241.0 26 1000 627 (31) 92 *1 /569 10 519.2 7 1000 412 (8) 184 69 1136.6 25 1000 1212 (43) 64 11 489.5 6 1000 381 (8) 227 20 1048.6 24 1000 880 (54) 124 *1 /769 9 459.3 5 250 218 (21) 235 (210 *3 ) 103 824.1 23 1000 893 (54) 110 *1 /680 9 442.5 4 250 255 (14) 107 59 661.3 22 1000 1402 (65) 130 10 412.3 3 250 141 (25) 585 48 542.1 21 1000 1286 (70) 162 9 399.6 2 250 241 (36) 691 62 462.4 20 1000 467 (59) 683 10 380.7 1 IFOV [m] SNR *5 (input level) Dynamic range [W/m 2 /str/μm] Width *4 [nm] WL *4 [nm] Ch IFOV [m] SNR *5 (input level) Dynamic range [W/m 2 /str/μm] Width *4 [nm] WL *4 [nm] Ch Earth Observation Research and Application Center (EORC) Research &Level-2 information and sample data Earth Observation Center (EOC) Data distribution to public Table 1 Characteristics of GLI channels *1 Knee points of the piece- wise linear gain channels 4, 5, 7, and 8. *2 Channels 28 and 29 are re- sampled for each 2-km (1/8) on board and stored in the 1- km level-1B product. *3 Maximum radiance for linear response. *4 Channel center and width are derived from GLI spectral response. *5 SNR at the standard input level (W/m2/sr/μm) was measured in pre-launch evaluation tests. Using global datasets, we derived dependencies on scan-mirror A/B sides, incident angle (ϕ), and observation date (T). Correction of stripe-pattern noise The de-striping coefficients a k,l,j are applied to Level-1B radiance after the all other radiometric calibrations, L k,l,j . L k,l,j corrected = a k,l,j L k,l,j , (k: pixels, l: lines, j: bands) (1) We assume a k,l,j are related to input radiance L k,l,j and scan-mirror incident angle φ k,l . a k,l,j =b0 i,j +b1 i,j L k,l,j +b2 i,j / L k,l,j +b3 i,j L k,l,j 2 +b4 i,j φ k,l +b5 i,j φ k,l 2 , (2) i: detectors (1-12 or 48 × scan-mirror sides), i=mod(l-1, 24 or 96)+1. before before after after Band-to-band registration of L1A GCP extraction from L1A images Correction of Sat/GLI Alignment Correction of detector address Correction of mirror-side A/B alignments !"#$% ’()*+,-. /$ /0 1 0 $ /$ /0 1 0 $ !23(( 425!6 57389 425!6 1380/27 1240/26 1135/25 1050/24 865/19 763/17 710/15 678/13 680/12 666/11 625/10 565/9 545/8 520/7 + UV/Blue channels: Degradation! 0.9 0.95 1 1.05 1.1 1.15 1.2 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 Wavelength [nm] Pre-launch/Sun calibration Solar Calibration Solar Calibration Lamp Lamp Calibration Calibration Blackbody Calibration Blackbody Calibration Image Characterization and Correction Image Characterization and Correction Non-linearlity, over saturation and tailing Non-linearity table for ch14, 16, 18 is updated using solar calibration data. Over saturation and tailing are flagged using neighboring low-gain channels. Vicarious Vicarious Calibration Calibration Cooperation with GLI Land group Geometric calibration Geometric calibration JAXA GLI calibration JAXA GLI calibration sub-groups sub-groups Geometric accuracy by system correction (without GCPs): about 1.5 pixels (250m) [about 1 pixel (1km) ] Precise geometric correction (with GCPs, for land product): less than 1 pixel (250m, 1km) Group 1 Solar & internal lamp calibrations Group 4 General L1 characterization Group 5 Vicarious calibration & Cross calibration Group 3 Geometric correction Group 6 Level-1 software development Group 2 Blackbody calibration Pre-launch/ SunCal gain (K pre /K sun ) derived using solar diffuser BRDF data (Nieke et al., SPIE, 2003) The ratio of mirror side B to A increase after launch, and decreased gradually in orbit. It is considered that reflectance of side A decreased after launch by some reason, and recovered gradually. Lamp-A, Scan mirror-B Global Imager (GLI) system overview Global Imager (GLI) system overview Ch18 (High gain) Ref. Ch19 (Low gain) Tailing Reverse pattern: Over saturation Same wavelength (865nm) Kvc at CHs 1-3 for each ϕ and T by the global scheme. Colors indicate T from 6 Feb. to 24 Oct.; circles, average Kvc for each 5-deg ϕ bin. Along and cross track deviations from GCP (250m CH23). http://suzaku.eorc.jaxa.jp/GLI/cal/index.html http://www.eoc.jaxa.jp/homepage.html Scan direction Over saturation Recover: Tailing GLI DN Input Radiance Linear Max Non-linear region Railroad Valley Alaska Barrow MOBY and AERONET Global scheme Global scheme Sun Cal monitor data monitor data

Upload: others

Post on 26-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: JAXA GLI Calibration Group - Earth Onlineearth.esa.int/workshops/ivos05/pres/p6_tanak.pdfGLI vicarious calibration coefficients (Kvc) ... Using global datasets, we derived dependencies

Vicarious coefficients

!"#!

!"#$

!"%!

!"%$

&"!!

&"!$

&"&!

&"&$

&"'!

! & ' ( ) $ * + # % &! && &' &( &) &$ &* &+ &# &% '! '& '' '( ') '$ '* '+ '# '% (!

,-./0123345

6748/967::;<:=>?6748@

A2=5:72B'!!(!#&% ACD'!!(D!#D&%/9E7F1=B2@

G2::7HD'!!(!)&) G2::7HD'!!(!)'*

,57I25/C4:"!/9JKF=B4/I2F4@ ,57I25/C4:"&/:4L=F4B/9JMKI2F4@

,57I25/C4:"'/9GKI2F4@ N6J

O<GE&(K&%P=Q JRA<SRTDL&"$34HDF=U4

GLI vicarious calibrationcoefficients (Kvc) by several ways

JAXA GLI Calibration Group:K. Tanakaa, H. Murakamia, S. Kuriharaa , J. Inouea, Y. Okamuraa, K. Isonoa, J. Niekea, T. Hashimotoa, H. Yamamotoa, I. Asanumaa, K. Iwafuneb, Y.Aokib,H. Yatagaib, H. Kuriharab, M. Yoshidac, N. Sekioc, Y. Mitomic, and Y. Sengad, aJapan Aerospace Exploration Agency (JAXA), bFujitsu Ltd, cRESTEC, dTokai Univ.

Temporal change of Kpre/Ksun after correction of diffuserincident angle and sun-earth distance (scan-mirror side B,EL=15deg, normalized by 06 Apr. 2003).

0.80

0.85

0.90

0.95

1.00

1.05

1.10

09-Jan

-03

08-F

eb-0

3

10-M

ar-03

09-A

pr-0

3

09-M

ay-0

3

08-Ju

n-0

3

08-Ju

l-03

07-A

ug-0

3

06-S

ep-0

3

06-O

ct-03

05-N

ov-0

3

rati

o t

o 06-A

pr-

03

ch1(380) ch2(400) ch3(412) ch4(443) ch5(460)

ch6(490) ch7(520) ch8(545) ch9(565) ch10(625)

ch11(666) ch12(680) ch13(678) ch15(710) ch17(763)

ch19(865) ch24(1050) ch25(1135) ch26(1240) ch27(1380)

ch1∼9

ch10∼27

Solar calibration outputs dropped in channels under700nm. We consider this is caused by degradation ofdiffuser.

Other channels are stable within 2%.

Raw data of mirror side A increased, and ones of mirror side B decreased. Data corrected by monitor diode is increased in both mirror sides, so decrease of raw data

level in mirror side B is considered to be caused by lowering of lamp radiance. Corrected data of mirror side-B increased only 1%. The ratio of side B to A increased after launch, so the reflectance of side A is thought to be

decreased (about 4%) due to the influence of launch, but recovered since then. Noise level of the lamp data is equivalent to the pre-launch test.

Linear part of the black bodycalibration (C1) at the samesun elevation point (20deg).GLI thermal data is calibratedby the C1 (for each scan) andfixed calibration factors (C0,C2, and other environmentalfactors) derived in the pre-launch tests.

!"#

!$#

!!#

%&&#

%&%#

%&'#

%&(#

'&&()&%)&!

'&&()&')&$

'&&()&()%&

'&&()&*)&!

'&&()&+)&!

'&&()&,)&$

'&&()&")&$

'&&()&$)&"

'&&()&!)&,

'&&()%&)&,

'&&()%%)&+

-%./0123.13.'&&()&%)',

',&

',%

','

',(

',*

',+

',,

',"

',$

',!

'"&

45067.4389.:;<=;/01>/;.?8;@-A

6B(&

6B(%

6B('

6B((

6B(*

6B(+

6B(,

CC1;<=

C1 was stable over all operation period within ±3% at ch30, and other channels within ±1%. C1 changed corresponding Blackbody temperature, so it is considered that the change is

caused by the seasonal variation of environmental temperature. C1 was smaller (= higher sensitivity) in cold environment in orbit. This agrees the pre-

launch test results. Calculated NEΔT and dynamic range is within specification.

Version up & processinginformation

Cooperation withGLI Validation Group

Lamp calibration raw data from 1st lamp calibration in Jan. 2003.

Lamp-A, Scan mirror-A

!"#$

!"#%

!"#&

!"##

'"!!

'"!'

'"!(

'"!)

!#*+,-*!)

!&*./0*!)

'!*1,2*!)

!#*342*!)

!#*1,5*!)

!&*+6-*!)

!&*+67*!)

!%*368*!)

!$*9/4*!)

!$*:;<*!)

!=*>?@*!)

2,<A?B<?B(=*+,-*!)

;C'

;C(

;C)

;CD

;C=

;C$

;C%

;C&

;C#

;C'!

;C')

;C'=

;C'%

;C'#

;C(D

;C(=

;C($

;C(%

E?-A<?2

!"#$

!"#%

!"#&

!"##

'"!!

'"!'

'"!(

'"!)

!#*+,-*!)

!&*./0*!)

'!*1,2*!)

!#*342*!)

!#*1,5*!)

!&*+6-*!)

!&*+67*!)

!%*368*!)

!$*9/4*!)

!$*:;<*!)

!=*>?@*!)

2,<A?B<?B(=*+,-*!)

;C'

;C(

;C)

;CD

;C=

;C$

;C%

;C&

;C#

;C'!

;C')

;C'=

;C'%

;C'#

;C(D

;C(=

;C($

;C(%

E?-A<?2

10000.06358102012001.3361000386 (5)211*310865.71910000.0535495510768.03510001309 (5)820866.11810000.053505198626.3341000293 (6)246*38762.01710000.023245267511.4331000991 (7)1111749.01610000.033225027332.6321000300 (10)233*311710.11510000.03 (at 285K)3075316737.53110001404 (10)1611710.51410000.073453363721.1301000235 (12)342*310678.613

10001293 (12)2210679.912IFOV[m]

NEΔT [K]at 300K

Dynamic range[Kelvin]

width[nm]

WL*4

[nm]Ch

10001342 (13)2110666.711250*2160 (1.3)322202193.82910001370 (17)32 (28*3)10624.710250*2298 (5)762031644.92810001301 (23)3910564.891000192 (1.5)153361380.6271000611 (28)96*1 /59610544.081000303 (5.4)208181241.0261000627 (31)92*1 /56910519.271000412 (8)184691136.62510001212 (43)6411489.561000381 (8)227201048.6241000880 (54)124*1 /7699459.35250218 (21)235 (210*3)103824.1231000893 (54)110*1 /6809442.54250255 (14)10759661.32210001402 (65)13010412.33250141 (25)58548542.12110001286 (70)1629399.62250241 (36)69162462.4201000467 (59)68310380.71

IFOV[m]

SNR*5

(input level)Dynamic range[W/m2/str/µm]

Width*4

[nm]WL*4

[nm]ChIFOV[m]

SNR*5

(input level)Dynamic range[W/m2/str/µm]

Width*4

[nm]WL*4

[nm]Ch

Earth Observation Research and ApplicationCenter (EORC)

Research &Level-2 information and sample data

Earth Observation Center (EOC)Data distribution to public

Table 1 Characteristics of GLI channels

*1 Knee points of the piece-wise linear gain channels 4,5, 7, and 8.

*2 Channels 28 and 29 are re-sampled for each 2-km (1/8)on board and stored in the 1-km level-1B product.

*3 Maximum radiance for linearresponse.

*4 Channel center and widthare derived from GLI spectralresponse.

*5 SNR at the standard inputlevel (W/m2/sr/µm) wasmeasured in pre-launchevaluation tests.

Using global datasets, we derived dependencies onscan-mirror A/B sides, incident angle (ϕ), andobservation date (T).

Correction of stripe-pattern noiseThe de-striping coefficients ak,l,j are applied to Level-1B radiance after the all otherradiometric calibrations, Lk,l,j . Lk,l,j

corrected= ak,l,j Lk,l,j , (k: pixels, l: lines, j: bands) (1)We assume ak,l,j are related to input radiance Lk,l,j and scan-mirror incident angle φk,l. ak,l,j=b0i,j+b1i,j⋅ Lk,l,j+b2i,j / Lk,l,j+b3i,j⋅ Lk,l,j

2+b4i,j⋅ φk,l +b5i,j⋅ φk,l2, (2)

i: detectors (1-12 or 48 × scan-mirror sides), i=mod(l-1, 24 or 96)+1.

beforebefore

afterafter

Band-to-band registration of L1A GCP extraction from L1A images Correction of Sat/GLI Alignment Correction of detector address Correction of mirror-side A/B alignments

!"#$%&'()*+,-.

/$

/0

1

0

$

/$ /0 1 0 $

!23((&425!6

57389&425!6

1380/27

1240/26

1135/25

1050/24

865/19

763/17

710/15

678/13

680/12

666/11

625/10

565/9

545/8

520/7 + UV/Blue

channels: Degradation!

0.9

0.95

1

1.05

1.1

1.15

1.2

500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400

Wavelength [nm]

Pre

-lau

nch

/Su

n c

alib

rati

on

Solar CalibrationSolar Calibration

Lamp Lamp CalibrationCalibration

Blackbody CalibrationBlackbody Calibration

Image Characterization and CorrectionImage Characterization and Correction

Non-linearlity, over saturation and tailing Non-linearity table for ch14, 16, 18 is updated using solar calibration data. Over saturation and tailing are flagged using neighboring low-gain channels.

Vicarious Vicarious CalibrationCalibration

Cooperation with GLI Land group

Geometric calibrationGeometric calibration

JAXA GLI calibrationJAXA GLI calibrationsub-groupssub-groups

Geometric accuracy by system correction (without GCPs):about 1.5 pixels (250m) [about 1 pixel (1km) ]

Precise geometric correction (with GCPs, for land product):less than 1 pixel (250m, 1km)

Group 1Solar & internal lamp

calibrations

Group 4 General L1

characterization

Group 5Vicarious calibration& Cross calibration

Group 3 Geometric correctionGroup 6

Level-1 software

development

Group 2Blackbody calibration

Pre-launch/ SunCal gain (Kpre/Ksun) derived using solardiffuser BRDF data (Nieke et al., SPIE, 2003)

The ratio of mirror side B to Aincrease after launch, and decreasedgradually in orbit. It is considered thatreflectance of side A decreased afterlaunch by some reason, andrecovered gradually.

Lamp-A, Scan mirror-B

Global Imager (GLI) system overviewGlobal Imager (GLI) system overview

Ch18 (High gain) Ref. Ch19 (Low gain)

Tailing

Reverse pattern: Over saturation

Same wavelength (865nm)

Kvc at CHs 1-3 for each ϕ and T by the global scheme. Colors indicate Tfrom 6 Feb. to 24 Oct.; circles, average Kvc for each 5-deg ϕ bin.

Along and cross trackdeviations from GCP(250m CH23).

http://suzaku.eorc.jaxa.jp/GLI/cal/index.html

http://www.eoc.jaxa.jp/homepage.html

Scan directionOver saturation

Recover: Tailing

GLI

DN

Input RadianceLinear Max

Non-linear region

Railroad Valley

Alaska BarrowMOBY and AERONET

Global schemeGlobal scheme

Sun Cal

monitor data monitor data