jean clement boyeme zogo, university of johannesburg

20

Upload: informa-australia

Post on 12-Aug-2015

102 views

Category:

Documents


0 download

TRANSCRIPT

INTRODUCTION

•  Manganore Iron Formation is

slumped into sinkhole structures

of the Campbellrand Subgroup

and occurs exclusively on the

Maremane Dome.

•  Maremane Dome is an open

domal structure located between

Postmasburg in the south and

Kathu in the north, in the Northern

Cape Province of South Africa.

•  Manganore Iron Formation is

Eroded in the centre of the

Maremane Dome.

IRON ORE BENEFICIATION AFRICA

INTRODUCTION •  Manganore Iron Formation hosts bulk of high-

grade deposits of South Africa

•  High-grade iron ores are produced at Sishen,

Khumani, Beeshoek and Kolomela (Sishen

South)

•  Almost 84% of iron ore produced in South Africa;

•  Presence of low grade material 34-36 wt. % Fe

•  Hematite and quartz with specific gravity 5.2gcm-3

and 2.7 g.cm-3

•  Beeshoek and Khumani mines are operated by

Assmang Ltd;

•  3 types of ore products: Lumpy – Fines – DR

lump;

•  Materials containing less than 60 wt. % Fe are

discarded;

IRON ORE BENEFICIATION AFRICA

STRATIGRAPHY AND OCCURRENCE OF LOW-GRADE IRON ORES

Oxidized and partly ferruginized MIF occurs closely associated with high-grade iron ore; 1.  Banded MIF type occurs below high-grade laminated iron ore; 2.  Breccia textured type MIF occurs above a chert breccia unit, Wolhaarkop Breccia; Both MIF types has been evaluated from drill cores -(34 -102m thick) and hand samples .

IRON ORE BENEFICIATION AFRICA

Unconformity

Gamagara Formation

Campbellrand Subgroup

Palin Shale

Dolomite

Wolhaarkop Chert Breccia

BIF Breccia

Iron Ore

Doornfontein Conglomerate

Sishen Shale

Marthaspoort quartzites

Manganore Iron

Formation

BACKGROUND AND MOTIVATIONS: PROJECTS GRIQUALAND WEST BASIN

•  Hotazel (This Study)

•  Sishen B Grade (Koumba)

•  Sep 1B (Koumba)

•  Shishen Concentrate (K.)

•  Pipeline (Koumba)

•  Aquila

•  Beeshoek Village

(Assmang)

TRANSVAAL BASIN/ BUSHVELD

•  Gulukwane iron project

•  Malemane

•  Turquoise Moon

•  Phoenix (Thabazimbi)

•  Zandrivierspoort

SAMPLE COLLECTION •  Drilled cores; open pits,

waste damps IRON ORE BENEFICIATION AFRICA

Modified after the Council of Geoscience

PHYSICAL CHARACTERIZATION: Texture & Mineralogy Banded MIF •  Randomly alternating chert and hematite bands (<mm to 1cm) •  Parallel, wavy, meandering, •  Silica bands: chert or red jasper •  Iron rich bands: laminated hematite; •  Crosscut by fissures and micro-faults •  Secondary mineralization •  Mineralogy: Hematite/Specularite, Quartz, Apatite,…

IRON ORE BENEFICIATION AFRICA

Massive Iron Ore

Hematite Lutite Brecia Ore

Hematite Greenalite lutite

Thinly Laminate Ore

Thickly Laminate Ore

BIF/Breccia BIF

BIF Shale

Carbonaceous shale

PHYSICAL CHARACTERIZATION: Texture & Mineralogy

IRON ORE BENEFICIATION AFRICA

Massive Iron Ore

Hematite Lutite Brecia Ore

Hematite Greenalite lutite

Thinly Laminate Ore

Thickly Laminate Ore

BIF/Breccia BIF

BIF Shale

Carbonaceous shale

Breccia textured MIF •  Lies immediately below the banded MIF •  Formed in response to the collapse of banded MIF and high-grade

iron ore •  Mixture of angular to subrounded fragments of BIF, chert, jasper, old

hematite ore,… •  Clasts size: mm to cm •  Pore spaces filled by crystalline hematite or specularite - clast or

matrix supported •  Mineralogy: Hematite/specularite, Martite, Quartz, minor magnetite

PHYSICAL CHARACTERIZATION: Grain Size Analysis

IRON ORE BENEFICIATION AFRICA

   Sieve  Size  (µm)  

Average  Chemical  Composi6on  of  the  Breccia-­‐textured  MIF  size  frac6ons  SiO2   TiO2   Al2O3   Fe2O3   Mn3O4   MgO   CaO   K2O   P2O5   S  

(wt.  %)   (wt.  %)   (wt.  %)   (wt.  %)   (wt.  %)   (wt.  %)   (wt.  %)   (wt.  %)   (wt.  %)   (wt.  %)  

+4000   29.4   0.01   0.24   67.3   0.02   0.10   0.12   0.00   0.10   0.19  

-­‐4000+2000   27.7   0.03   0.41   67.8   0.02   0.17   0.18   0.04   0.10   0.04  

-­‐2000+1000   28.2   0.01   0.27   68.7   0.02   0.11   0.13   0.00   0.12   0.11  

-­‐1000+600   24.9   0.04   0.60   71.6   0.04   0.16   0.17   0.08   0.11   0.01  

-­‐600+425   21.7   0.05   0.71   76.8   0.07   0.06   0.10   0.10   0.13   0.11  

-­‐425+212   24.3   0.03   0.68   71.6   0.07   0.15   0.17   0.08   0.13   0.05  

-­‐212   28.8   0.02   0.35   70.0   0.07   0.01   0.06   0.01   0.13   0.11  

Average  Chemical  Composi6on  of  the  Banded  MIF  size  frac6ons  +4000   42.7   0.02   0.29   51.9   0.01   0.12   0.15   0.00   0.11   0.08  

-­‐4000+2000   41.9   0.01   0.24   54.7   0.01   0.12   0.14   0.00   0.10   0.07  

-­‐2000+1000   44.2   0.01   0.12   52.5   0.02   0.09   0.10   0.01   0.06   0.05  

-­‐1000+600   48.5   0.01   0.12   48.1   0.03   0.10   0.11   0.00   0.06   0.11  

-­‐600+425   47.1   0.02   0.30   49.7   0.05   0.09   0.13   0.01   0.12   0.15  

-­‐425+212   42.3   0.02   0.43   53.1   0.07   0.18   0.18   0.01   0.11   0.16  

-­‐212   43.5   0.01   0.23   54.0   0.08   0.24   0.23   0.01   0.05   0.12  

•  In Breccia MIF: 67.3 to 76.8 wt. % Fe2O3 - (Si : 21.7 – 29.4 wt. %)

•  In Banded MIF: 48.1 to 54.7 wt. % Fe2O3 – (Si: 41.9 – 48.5 wt. %)

•  Significant iron enrichment up to 76.8 wt.% Fe2O3 in breccia textured

MIF for [-600+425µm]

•  Texture important parameter for the liberation of ore mineral

GRAVITY SEPARATION: METHODOLOGY

IRON ORE BENEFICIATION AFRICA

Gravity Separation: MDS Mintek (mineral density

separator)

•  PLC controlled air-pulsed batch jigging

•  Separates according to mineral specific gravity

•  Cylindrical Chamber: Clamped rings connected to

a water chamber ( Diam.: 385mm; H: 50mm);

•  Pulsations: provided by air valves with PLC

controlling the frequency and the upstroke, holding

and release times;

•  Input and output pressures: 200kPa/m and 14kPa/

mm;

•  Valve Control Pressure: 400kPa/m

•  Water flow: 1000l/h

•  Residence time: 30 minutes

•  Water: first turn to maximum then to low flow

•  Sample Collection using a tray

•  One layer = ring content

GRAVITY SEPARATION: RESULTS

IRON ORE BENEFICIATION AFRICA

 (1)  Breccia  Textured  MIF     Average  Layer  SG  Determina6ons      

Layer   Dry  Mass   Mass  Cum.  Mass   M1   M2   M3   M5   Ave.  SG   Cum.  SG   SI  

 No   g   %    %   g   g   g   g   g.cm-­‐3   g.cm-­‐3        BoYom   1   4792.2   17.0   17.0   -­‐29.8   1.4   2465.2   1902.4   4.63   4.63   0.67  

2   4269.7   15.2   32.2   -­‐29.0   3.2   2132.0   1608.0   4.33   4.49   0.37  3   4176.2   14.8   47.0   -­‐29.6   2.0   2121.0   1583.0   4.18   4.39   0.22  4   3396.4   12.1   59.0   -­‐29.8   2.6   1729.0   1268.0   4.03   4.31   0.07  5   3690.2   13.1   72.1   -­‐29.4   2.4   1932.0   1406.0   3.90   4.23   0.06  6   3976.2   14.1   86.2   -­‐29.2   2.4   2019.0   1438.0   3.67   4.13   0.29  7   2795.6   9.9   96.2   -­‐29.4   2.8   1440.4   965.0   3.24   4.01   0.72  

Top   8   1079.3   3.8   100.0   -­‐29.2   3.0   510.8   308.2   2.98   3.96   0.98       Total   28175.8   100.0                   3.96       0.38  

(2)  Banded    MIF   Average  Layer  SG  Determina6ons      

Layer   Dry  Mass   Mass  Cum.  Mass   M1   M2   M3   M5   Ave.  SG   Cum.  SG   SI  

No     g   %   %   g   g   g   g   g/cc   g/cc      BoYom     1   4217.1   18.9   18.9   -­‐28.8   3.0   2171.2   1624.4   4.21   4.21   0.72  

2   3701.6   16.6   35.6   -­‐28.2   4.0   1908.0   1375.8   3.81   4.01   0.31  3   3594.5   16.1   51.7   -­‐28.2   3.8   1774.2   1256.0   3.64   3.89   0.15  4   3406.5   15.3   67.0   -­‐27.6   4.8   1753.2   1212.4   3.44   3.78   0.05  5   2813.6   12.6   79.7   -­‐29.0   2.8   1435.2   959.0   3.22   3.68   0.27  6   2990.7   13.4   93.1   -­‐28.8   3.4   1495.2   956.8   2.95   3.55   0.55  

Top   7   1537.7   6.9   100.0   -­‐28.8   3.6   778.8   477.4   2.88   3.49   0.61       Total   22261.7   100.0       3.49       0.37  

M1= Mass of basket in hair; M2= Mass of “water on basket” in air; M3= Sample in air (+ “Water on basket”); M4= Sample in air M3-M2; M5= sample in Water; SG = Specific gravity (= (M4)/[M4-(M5-M1)]

GRAVITY SEPARATION: RESULTS

IRON ORE BENEFICIATION AFRICA

 (1)  Breccia  Textured  MIF     Average  Layer  SG  Determina6ons      

Layer   Dry  Mass   Mass  Cum.  Mass   M1   M2   M3   M5   Ave.  SG   Cum.  SG   SI  

 No   g   %    %   g   g   g   g   g.cm-­‐3   g.cm-­‐3        BoYom   1   4792.2   17.0   17.0   -­‐29.8   1.4   2465.2   1902.4   4.63   4.63   0.67  

2   4269.7   15.2   32.2   -­‐29.0   3.2   2132.0   1608.0   4.33   4.49   0.37  3   4176.2   14.8   47.0   -­‐29.6   2.0   2121.0   1583.0   4.18   4.39   0.22  4   3396.4   12.1   59.0   -­‐29.8   2.6   1729.0   1268.0   4.03   4.31   0.07  5   3690.2   13.1   72.1   -­‐29.4   2.4   1932.0   1406.0   3.90   4.23   0.06  6   3976.2   14.1   86.2   -­‐29.2   2.4   2019.0   1438.0   3.67   4.13   0.29  7   2795.6   9.9   96.2   -­‐29.4   2.8   1440.4   965.0   3.24   4.01   0.72  

Top   8   1079.3   3.8   100.0   -­‐29.2   3.0   510.8   308.2   2.98   3.96   0.98       Total   28175.8   100.0                   3.96       0.38  

(2)  Banded    MIF   Average  Layer  SG  Determina6ons      

Layer   Dry  Mass   Mass  Cum.  Mass   M1   M2   M3   M5   Ave.  SG   Cum.  SG   SI  

No     g   %   %   g   g   g   g   g/cc   g/cc      BoYom     1   4217.1   18.9   18.9   -­‐28.8   3.0   2171.2   1624.4   4.21   4.21   0.72  

2   3701.6   16.6   35.6   -­‐28.2   4.0   1908.0   1375.8   3.81   4.01   0.31  3   3594.5   16.1   51.7   -­‐28.2   3.8   1774.2   1256.0   3.64   3.89   0.15  4   3406.5   15.3   67.0   -­‐27.6   4.8   1753.2   1212.4   3.44   3.78   0.05  5   2813.6   12.6   79.7   -­‐29.0   2.8   1435.2   959.0   3.22   3.68   0.27  6   2990.7   13.4   93.1   -­‐28.8   3.4   1495.2   956.8   2.95   3.55   0.55  

Top   7   1537.7   6.9   100.0   -­‐28.8   3.6   778.8   477.4   2.88   3.49   0.61       Total   22261.7   100.0       3.49       0.37  

M1=  Mass  of  basket  in  hair;  M2=  Mass  of  “water  on  basket”  in  air;    M3=  Sample  in  air  (+  “Water  on  basket”);  M4=  Sample  in  air  M3-­‐M2;  M5=  sample  in  Water;  SG  =  Specific  gravity  (=  (M4)/[M4-­‐(M5-­‐M1)]  

CONCLUSION

IRON ORE BENEFICIATION AFRICA

Chemical  and  Physical  Proper6es  •  Essen%al  from  explora%on    to  metallurgical  

processes  development  stages;  •  Ore  textures:  rela%onships  between  iron-­‐bearing  

and  gangue  minerals  –  predic%on  of  the  communi%on  efficiency    

•  Breccia-­‐textured:  clast  or  matrix  supported  with  angular  clasts  –  Easy  to  liberate;  

•  Par%cle  size  analyse:  most  par%cles  were  found  in      -­‐4000μm  +2000μm;    

•  70  wt.%  Fe2O3  in  <600  μm  Breccia  textured  MIF;  

•  54  wt.%  Fe2O3  in  <425  μm  Banded  MIF;  

•  Mineralogy  and  density  of  ore  and  gangues  

•  Chemical composition: deleterious elements for the smelting characteristics and product quality;  

•  Magne%c  separa%on  vs.  Froth  Flota%on  vs.  Gravity  Separa%on  (cheap  and  environmental  friendly);  

•  Breccia  and  Banded  MIF  materials  are  high  Silicon,  low  P,  low  Al  and  low  S.  

Amenability  to  Beneficia6on  •  Equipment  requirements:  MDS  can  only  

operates  par%cles  size  between  20    to  1mm  •  Texture  of  Breccia  and  Banded  MIF:  thickness  of  

individual  clasts  and  bands  (iron-­‐rich  and  chert-­‐rich)  varies  from  less  than  a  millimetre  

•  Recovery  and  Efficiency:  

•  MDS  not  suitable  for  par%cles  less  than  1  mm;    

•  Block  the  filter  and  impede  the  pulsing  ac%on;  

•  Ability  to  process  very  fine  material    will  Improve  significantly  the  beneficia%on  of  iron  ore  by  gravity  separa%on;  

THANK YOU FOR YOUR ATTENTION

IRON ORE BENEFICIATION AFRICA 2014

ACKNOWLEDGEMENTS:

•  N.J. BEUKES for the opportunity and for organizing the finances for this project;

•  Jens Gutzmer, for the encouragements and the advices;

•  Marius Burger and Willem Grobblar (Assmang Ltd, Iron Ore Division)

•  Ashma Singh and Sandi Gcangi (Mintek, Mineral Processing Department)