l m xi aijej wi wi, ei: j=l - mit opencourseware · 2020. 8. 12. · lecture 15: linear models with...

20
LECTURE 15: Linear models with normal noise m xi - L aijej + wi Wi, ei: independent, normal j=l • Very common and convenient model Bayes' rule: normal posteriors MAP and LMS estimates coincide - simple formulas (linear in th·e observations) Many nice properties • Trajectory estimation example 1

Upload: others

Post on 26-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • LECTURE 15: Linear models with normal noise

    m

    xi - L aijej + wi Wi, ei: independent, normal j=l

    • Very common and convenient model

    • Bayes' rule: normal posteriors

    • MAP and LMS estimates coincide

    - simple formulas (linear in th ·e observations)

    • Many nice properties

    • Trajectory estimation example

    1

  • ecogn1z1ng o mal PD s

    fx(x) = 1 e-(x-µ)2/2a2uv"h

    - B(x- 3) 2c•e

    fx(x) = c · e-(o:x 2 +f1x 1') a > 0 Normal with mean -{3/2a and var·ance /2a

    2

  • st-m t· g a no mal andom varia e _ f e(0) f 1e(x I 0) f e1 (0 I x) - fx(x)

    f x(x) = f fe(0)f x1e(x I 0) d0 in the p esence of add- ive no ma no-se

    =8 e, . N(O, 1) · de e de

    f x1e(x I0) :

    UMAP - IJLMS = E[9 IX= x] = §MAP = E[e IxJ = 3

  • st-m t· g a no mal andom varia e in the p esence of add- ive no ma no-se

    =8 e, . N(O, 1) · de e de

    ~ .-. X eMAP = eLMs = E[e 1x1= -

    2

    • ven w·th general means and variances:

    - pos erior ·s no mal

    - LMS and MAP estimators co·nc·de

    _ f e(0) f 1e(x I 0) f e1 (0 I x) - fx(x)

    f x(x) = f fe(0)f x1e(x I 0) d0

    .-. hese es imators are .. linear," of he form e = aX + b

    4

  • he case of mult-p e observations _ Je(0) f~ 1e(x I 0) fe1 (0 Ix) - fx(x)

    fx(x) = f fe(B)f x1e(x I 0) dB Xn=S+Wn e, W1, . .. , Wn indepe dent

    5

  • .

    he case of mult-p e observations

    qu.ad(0) - (0 - xo)2 + (0 - x1)2 + + (0 - xn)22 2 - I I •fe1x(0 Ix) = c · exp { - quad(B)} 2u 0 2u 1 2u~

    n x·

    - - _Lu~ 6MAP = 0LMS = E[e IX= x] = i=O i

    n 1 20 a.

    i= i

    6

  • he case of mult-p e observations

    • Key co c usions.

    - posterior ·s normal

    - LMS and MAP estimates coincide

    -these estimates are ulinear," of the form 0 = ao+ a1x1 + · · · + anXn • Interpre ations.

    - estimate 9: we·g ted average of x 0 (prior mean) and xi (observations)

    we·ghts determined by variances

    Ln x; OMAP = OLMS = E[e IX = x] = i=;:Oa;

    2 i=O ai

    7

  • T e mean squa ed error

    fe1x(0 Ix) = c · exp { - quad(0)}

    (0 X ) 2 (0 - x1) 2 (0 - xn) 2 quad(0) = - 0 2 2 + .. ·+ 2 22u 2 lTl Un0 • Per ormance measures.

    I n 1 E[(e - 9) 2 IX= x] = E[(e - 0)2 IX= x] = var(e IX= x)= 1 - 2 i=. 0 lT·i

    2Jx(x) = c • e-(ax ~x 1) a> 0 Normal w·th mea -/3/2a and var·ance /2a

    8

  • T e mean squa ed erro

    • Example. u~= a-f= ... =a~= u 2

    • cond·tional mean squared error same

    • Example X - 9 +W e f'.J N(O, 1), "ndepe dent e, W § = X/2

    n _ x· i

    2 fJ= i=O ui

    n 1 2

    i=Oai

    for al x

    W rv N(O, 1)

    E[(e - 9) 2 IX= x] =

    9

  • The case of mult- parameters: tra- cto y estimation

    400

    350

    300

    250

    200

    150

    • Random variables eo, 61, 92

    independe t, priors /e.3

    • Measurements at t·mes t 1 , .. .. , tn

    xi = e 0 61ti + e2tf wi noise model. fw:.

    i 100 ! _ ___ ,___ , __ , __ ,__ , ___ , __ ,____ , __ ,

    2 8 100 1 3 4 § 6 7 9 independent Wi, i dependent from ei t

    10

  • A model with ormality assumpt -ons f (0 I ) = f e(0) J.,1e(x I 0) e1 x fx(x)

    it':·i i=l, ... ,n fx(x) = f fe(B)f x1e(x I 0) d0

    • assume ej """'N(O, a-J),Wi """'N(O, a 2 ); independent

    • posterior. f e1x(B Ix) =

    1 02 c(x) exp { - - ( 0

    2 a 0

    11

  • A model with normality assumptions

    • MAP estimate: maximize over (00 ,0 1 ,0 2 ); (minimize quadratic function)

    12

  • Linear normal models

    • e3 and Xi and are linear functions of independent normal random variables

    • f e ix(O Ix) = c(x) exp { - quadratic(01, ... , Bm)} • MAP estimate: maximize over (01, ... Om);

    (minimize quadratic function) ..-... eMAP,f linear function of X = (X1, ... , Xn)

    • Facts: ...-...

    o eMAP,j = E[ej Ix] o marginal posterior PDF of Sf feJix(Oj Ix), is normal o MAP estimate based on the joint posterior PDF:

    same as MAP estimate based on the marginal posterior PDF

    O E[cei,MAP - Si) 2 I X = x]:same for all X 13

  • An - ustratio

    300

    200

    100

    0

    -100

    -200

    -300

    m·nimize 00,81,02

    -400 ----------------_____,....._____._ _ _ ___....__ __.___ _.______, 0 1 2 3 4 5 6 7 8 9 1(]

    t

    14

  • 300

    An - ustratio

    100

    0

    -100

    -200

    -300

    m·nimize Oo,01

    (0o - 200) 2 + (01 - so)2 n

    -400 ol~ 1-: 2~~ 3-- 4 s----=-s ---= a _----1.,__-------1!"-----! 1-_____1,_t 9 1~

    15

  • An - ustratio

    300

    0

    -100

    -200

    -300

    -400

    -soo---_..___. ___ 0 1 2

    t

    m·nimize Oo,01

    _._ _ ____._____ ___,___ _____.__ _._ __ 3 4 5

    (0o - 200) 2 + (01 - 50) 2 n

    i=l

    6 7 8 9 10

    16

  • An - ustratio

    400

    300

    200

    100

    0

    -100

    -200

    -300 -__.,..____,, _ ____._

    0 1 2 3 4 5 6 7 8 9 10 t

    m·nimize Oo,01

    ___._____ _____.__ _._ _ __._ ___

    (0o - 200) 2 + (01 - 50) 2 n

    i=l

    _,

    17

  • 400

    An - ustratio

    200

    100

    0

    -100

    -200

    -300 ---------_...

    0 1 2 3 4 5 B 7 8 9 10 t

    m·nimize Oo,01

    _______________

    (0o - 200) 2 + (01 - 50) 2 n

    i=l

    _

    18

  • 400

    An - ustratio

    200

    100

    0

    -100

    -200

    -300--

    Irue 9a - 236. 2702 ~IAP 6 = 2 6 056 Error std ( 6:1) = 21.1193 Irue fh..= 46. 473 1AP 91 = 4 · .2 2

    Error std ( 61 - 3.2538

    -- True trajectory S pied po· ts

    -- Es ·ma ed 95°/4 oonfid e noe lnterval

    ·ec ory base o MAP

    m·nimize Oo,01

    -------'----'---------L--___...L..__--L__-__L __ _J__ _ __j_ __ _L_ _ ___j 1 2 3 4 5 B 7 B 9 10

    t

    (0o - 200) 2 + (01 - 50) 2 n

    + _ (xi - Bo - 01ti + 9.81tl) i=l

    19

    0

    2

  • MIT OpenCourseWare https://ocw.mit.edu

    Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

    The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

    For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

    20

    https://ocw.mit.eduhttps://ocw.mit.edu/terms

    cover.pdfBlank Page