lead and arsenic concentration in the marseille calanques ... · 1 atelier du réseau des...

42
1 Atelier du Réseau des Observatoires Hommes - Milieux " Contaminations métalliques " 21 Novembre 2016 Technopôle de l'Environnement Arbois - Méditerranée , AIX en Provence by T. Sarnet and J. Hermann Lead and Arsenic concentration in the Marseille Calanques measured by Laser Induced Breakdown Spectroscopy LP3 Laboratory, CNRS/Aix-Marseille University, Marseille, France

Upload: others

Post on 16-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

1

Atelier du Réseau des Observatoires Hommes-Milieux"Contaminations métalliques"

21 Novembre 2016

Technopôle de l'Environnement Arbois-Méditerranée, AIX en Provence

by T. Sarnet and J. Hermann

Lead and Arsenic concentration in the Marseille Calanquesmeasured by Laser Induced Breakdown Spectroscopy

LP3 Laboratory, CNRS/Aix-Marseille University, Marseille, France

Outline

- Presentation of LIBS technique

- Calibration-free LIBS developed at LP3

- Heavy metal pollution in the Calanques

Laser, Optics

and Matter

Responsable:

Olivier Uteza

Chercheur CNRS

Laser and

Plasmas

Responsable:

Jörg Hermann

Chercheur CNRS

Laser and

Biophotonics

Responsable:

Andreï Kabashin

Chercheur CNRS

Laser and

Micro-Nano

Electronics

Responsable:

Anne-P. Alloncle

Chercheur CNRS

Marc Sentis

DR1 CNRS section 10

Directeur Unité 2000-2011

Philippe Delaporte

DR1 CNRS section 10

Directeur Unité 2011-

Laser, Energy

and

Environment

Responsable:

Thierry Sarnet

Chercheur CNRS

20 permanents (80% CNRS, 20% AMU), 12 PhD/postdocs, 10 Masters/Ingénieurs

Total personnel = environ 40

UMR CNRS 7341

(Envoyé Spécial France 2 July 28, 2016 Viewers : 4 millions)

5

Material analysis via LIBS

- contactless

- realtime

- no sample preparation

- almost damage free

Jean-Luc LACOUR / 2004 (CEA)

6

Jean-Luc LACOUR / 2004 (CEA)

- contactless

- realtime

- no sample preparation

- almost damage free

- hazardous environment- industrial control- material recycling- environmental survey- safety- biomedical- interplanetary exploration, …

Material analysis via LIBS

7

State of art

+

+ +

+++

+-

--

-

-

--Plasma

Laser pulse Analytical performance of LIBS was demonstrated for various materials

in many cases :

LIBS measurements are qualitative or semi-quantitative

Inte

nsi

ty (

arb

. un

its)

Mg concentration (%)

Mg I 285.21 nm

Mg I 517.27 nm

0 0.5 1.0

problem = matrix effect

standards must have composition close to sample composition

8

N-BaK4

the solution :

LIBS analysis based on modeling

Outline

- Presentation of LIBS

- Calibration-free LIBS developed in LP3

- Heavy metal pollution in the Calanques

10

Calibration-free LIBS

> 100 publications (WEB of science)

First calibration-free LIBS method :

(No)

No

( )

- stoichiometric ablation

- local thermodynamic equilibrium

- plasma homogenous elemental composition

- plasma uniformin temperature and density

- plasma optically thin

+

+ +

+++

+-

--

-

-

--Plasma

Laser

hypotheses :

Ciucci et al., Appl. Spectrosc. (1999)

11

CF-LIBS method developed in LP3

100 ns

hot core

cold periphery

to spectrometer

z

Lp

Lc

to

spectrometer

T, ne

z

Lc Lp

PPPPCC LP

LLC eUeeUB

11

kThc

llu ePnfrT 1,, 0

2

0

spectral radiance :

absorption coefficient :

UV laser ablation

US patent 8942927 B2 (2015)

LTE plasma composition

T, ne, L

elemental fractions

absorption coefficient

(spectral line profile)

compare to

measured spectrum

radiation transport

(uniform or non-uniform)

12

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

13

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

1st loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

14

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

1st loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

15

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

1st loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

16

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

No

1st loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

17

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

2nd loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

18

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

2nd loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

19

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

2nd loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

20

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

No

2nd loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

21

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

3rd loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

22

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

3rd loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

23

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

3rd loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

24

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

No

3rd loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

25

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

4th loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

26

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

4th loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

27

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

4th loop

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

28

analysis of fused silica

measure ne

arb. values

T, ne, Ci small ?

analysis finished

Yes

No

measure T

meas. composition

Yes

analysis finished

T, ne, Ci small ?

O I 777.54 nm

O I 777.42 nm

O I 777.19 nm

Si II 385.37 nm

Si II 385.60 nm

Si II 386.26 nmSi I 390.55 nm

measured

computed

NIST data

laser: 266 nm, 8 mJ100 Jcm-2

gas: argon, 5×104 Pagate: (500 ± 100) ns

Outline

- Presentation of LIBS

- Calibration-free LIBS developed in LP3

- Heavy metal pollution in the Calanques

Heavy metal pollution in the Calanques

scoria

limestonewith deposit

LIBS spectrum of limestone deposit

LIBS analysis of limestone deposit

computed

Wavelength (nm)

limestone deposit scoria

L1 L2 L3 S1 S2 S3

Arsenic (wt %) 0,5 0,09 0,1 1,3 - -

Lead (wt %) 15 13 2,5 15 1,7 1,8

35

Conclusion and outlook

LIBS works for analysis of heavy metals in environment

sensitivity > ppm, accuracy of %

LP3 is not a specialist in environment !

Development of portable LIBS for environmental survey

37

History of LIBS

- 1963 : 1st publication, laser à ruby

- 4 years later : 1st apparatus by Zeiss (Germany) and Jarrel-Ash (USA)

No success low precision

- 1980’s : reliable pulsed lasers

- 1990’s : acceleration of development

LIBS development

- 2000 : 1st Conference (Pisa)

- up to now : strong increase of publications / patents

today : 20 companies commercialize LIBS systems

(USA, Germany, Japan, Italy, France, …)

38

Validation on glass accurate spectroscopic data available

spectrum “easy to handle”

N-BaK4

SF5

266 nm8 mJ100 Jcm-2

5×104 Pa Argon

39

Validation on glass accurate spectroscopic data available

spectrum “easy to handle” 266 nm8 mJ100 Jcm-2

5×104 Pa Argon

time

laser

detectiongate

tgate

accurate analysis for tgate < 1 µs

Gerhard et al., SAB 2014

40

analysis of Ti:sapphire

CF-LIBS requires tgate < 1 µs plasma (oxygen) runs out of LTE

in agreement with glass analysis

Validation on Al2O2

accurate spectroscopic data available

spectrum “easy to handle”

Hermann et al., Phys. Rev. E 2015

analysis of Al2O3 aerosols 266 nm, 8 mJ, 100 Jcm-2

5×104 Pa Argon 1064 nm, 300 mJ1 atm helium

Boudhib et al., Anal. Chem. (2016)

41

Air

analysis ofaluminum alloy

Validation on metals

increased lifetime of LTE

CF-LIBS valid for tgate 5 µs

Argon

42

Conclusion

42

LIBS plasmas in airmolecules formed in thin cold peripheral zone atomic emission originates from plasma core peripheral zone essentially contributes through absorption

Consequences for LIBS analysis chemical reactions can be ignored if

- D0 is not “too” large (case of AlO, TiO, … )- no interference between molecular bands and lines of interest

standard CF-LIBS applicable if optically thin lines are used

LIBS plasmas in argon plasma is almost uniform chemical reactions play minor role

LIBS of organic materials chemical reactions cannot be ignored (large D0 , CN, CO, …)

challenge calibration-free LIBS of organic materials