lecture 4a -- transmission lines · all two‐conductor transmission lines either support a tem...

34
9/27/2017 1 Transmission Lines Slide 1 EE 4347 Applied Electromagnetics Topic 4a Transmission Lines These notes may contain copyrighted material obtained under fair use rules. Distribution of these materials is strictly prohibited Course Instructor Dr. Raymond C. Rumpf Office: A‐337 Phone: (915) 747‐6958 E‐Mail: [email protected] Lecture Outline Transmission Lines Slide 2 Introduction Transmission Line Equations Transmission Line Wave Equations Transmission Line Parameters and Characteristic Impedance, Z 0 Special Cases of Transmission Lines General transmission lines Lossless lines Weakly absorbing lines Distortionless lines Examples RG‐59 coaxial cable Microstrip design

Upload: others

Post on 18-Mar-2020

3 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

1

Transmission Lines Slide 1

EE 4347 

Applied Electromagnetics

Topic 4a

Transmission Lines

These notes may contain copyrighted material obtained under fair use rules.  Distribution of these materials is strictly prohibited  

Course InstructorDr. Raymond C. RumpfOffice:  A‐337Phone: (915) 747‐6958E‐Mail: [email protected]

Lecture Outline

Transmission Lines Slide 2

• Introduction• Transmission Line Equations• Transmission Line Wave Equations• Transmission Line Parameters

– and – Characteristic Impedance, Z0

• Special Cases of Transmission Lines– General transmission lines– Lossless lines– Weakly absorbing lines– Distortionless lines

• Examples– RG‐59 coaxial cable– Microstrip design

Page 2: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

2

Transmission Lines Slide 3

Introduction

Slide 4

Map of Waveguides (LI Media)

Transmission Lines

• Contains two or more conductors.• No low‐frequency cutoff.• Thought of more as a circuit clement

• Confines and transports waves.• Supports higher‐order modes.

• Has TEM mode.• Has TE and TM modes.

stripline

coaxial microstrip

slotline

coplanar

Transmission Lines

“Pipes”

• Has one or less conductors.• Usually what is implied by the label “waveguide.”

Metal Shell Pipes Dielectric Pipes

Inhomogeneous

Homogeneous

• Enclosed by metal.• Does not support TEM mode.• Has a low frequency cutoff.

• Supports TE and TM modes

• Supports TE and TM modes only if one axis is uniform.

• Otherwise supports quasi‐TM and quasi‐TE modes.

rectangular circular

Channel Waveguides

Slab Waveguides

• Composed of a core and a cladding.• Symmetric waveguides have no low‐frequency cutoff.

• Confinement only along one axis.• Supports TE and TM modes.• Interfaces can support surface waves.

• Confinement along two axes.• TE & TM modes only supported in circularly symmetric guides.

dielectric Slab interface

optical Fiber rib

dual‐ridge

no uniform axis(no TE or TM)

Waveguides

Homogeneous Inhomogeneous• Supports only quasi‐(TEM, TE, & TM) modes.

Single‐Ended

Differential

buried parallel plate

coplanar strips

photonic crystal

shielded pairlarge‐area 

parallel plate

uniform axis(has TE and TM)

Page 3: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

3

Transmission Lines Slide 5

Transmission Line Parameters RLGC

We can think transmission lines as being composed of millions of tiny little circuit elements that are distributed along the length of the line.  

In fact, these circuit element are not discrete, but continuous along the length of the transmission line.

Transmission Lines Slide 6

RLGC Circuit Model

It is not technically correct to represent a transmission line with discrete circuit elements like this.

However, if the size of the circuit zis very small compared to the wavelength of the signal on the transmission line, it becomes an accurate and effective way to model the transmission line.

z

Page 4: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

4

Transmission Lines Slide 7

L‐Type Equivalent Circuit Model

Distributed Circuit Parameters

R (/m)Resistance per unit length.  Arises due to resistivity in the conductors.

L (H/m)Inductance per unit length.  Arises due to stored magnetic energy around the line.

G (1/m)Conductance per unit length.  Arises due to conductivity in the dielectric separating the conductors.

C (F/m)Capacitance per unit length.  Arises due to stored electric energy between the conductors.

z z z

R z L z

G z C z

There are many possible circuit models for transmission lines, but most produce the same equations after analysis.

1G

R

Transmission Lines Slide 8

Relation to Electromagnetic Parameters

LC , ,

G

C

Every transmission line with a homogeneous fill has:

Page 5: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

5

Transmission Lines Slide 9

Fundamental Vs. Intuitive Parameters

Fundamental Parameters Intuitive Parameters

Electromagnetics Electromagnetics

Transmission Lines Transmission Lines

, , , , , , tann

, , , R L G C 0 , , , VSWRZ

The fundamental parameters are the most basic parameters needed to solve a transmission line problem.

However, it is difficult to be intuitive about how they affect signals on the line.

An electromagnetic analysis is needed to determine R, L, G, and C from the geometry of the transmission line.

The intuitive parameters provide intuitive insight about how signals behave on a transmission line.  

They isolate specific information to a single parameter.

The intuitive parameters are calculated from R, L, G, and C .

Transmission Lines Slide 10

Example RLGC Parameters

0

36 mΩ m

430 nH m

10 m

69 pF m

75

R

L

G

C

Z

0

176 mΩ m

490 nH m

2 m

49 pF m

100

R

L

G

C

Z

Surprisingly, almost all transmission lines have parameters very close to these same values.

0

150 mΩ m

364 nH m

3 m

107 pF m

50

R

L

G

C

Z

RG‐59 Coax CAT5 Twisted Pair Microstrip

Page 6: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

6

Transmission Lines Slide 11

Transmission Line Equations

Transmission Lines Slide 12

E & H V and I

Fundamentally, all circuit problems are electromagnetic problems and can be solved as such.

All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM.

An important property of TEM waves is that E is uniquely related to Vand H and uniquely related to E.

L

V E d

L

I H d

This let’s us analyze transmission lines in terms of just V and I.  This makes analysis much simpler because these are scalar quantities!

Page 7: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

7

Transmission Lines Slide 13

Transmission Line Equations

The transmission line equations do for transmission lines the same thing as Maxwell’s curl equations do for unguided waves.

Maxwell’s Equations Transmission Line Equations

HE

t

EH

t

V IRI L

z t

I VGV C

z t

Like Maxwell’s equations, the transmission line equations are rarely directly useful.  Instead, we will derive all of the useful equations from them.

,V z t ,I z t

L zt

,I z t R z ,V z z t

Transmission Lines Slide 14

Derivation of First TL Equation (1 of 2)

z z z

R z L z

G z C z

+

,V z t

+

,V z z t

Apply Kirchoff’s voltage law (KVL) to the outer loop of the equivalent circuit:

1

2 3

4

,I z t

1 23

4

0

Page 8: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

8

Transmission Lines Slide 15

Derivation of First TL Equation (2 of 2)

We rearrange the equation by bringing all of the voltage terms to the left‐hand side of the equation, bringing all of the current terms to the right‐hand side of the equation, and then dividing both sides by z.

,, , , 0

, , ,,

I z tV z t I z t R z L z V z z t

t

V z z t V z t I z tRI z t L

z t

In the limit as z 0, the expression on the left‐hand side becomes a derivative with respect to z.

, ,,

V z t I z tRI z t L

z t

,0

V z z tC z

t

,G zV z z t ,I z z t

Transmission Lines Slide 16

Derivation of Second TL Equation (1 of 2)

z z z

R z L z

G z C z

+

,V z t

+

,V z z t

1 2

3 4

Apply Kirchoff’s current law (KCL) to the main node the equivalent circuit:

,I z t

,I z t

1 2 34

,I z z t

Page 9: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

9

Transmission Lines Slide 17

Derivation of Second TL Equation (2 of 2)

We rearrange the equation by bringing all of the current terms to the left‐hand side of the equation, bringing all of the voltage terms to the right‐hand side of the equation, and then dividing both sides by z.

,, , , 0

, , ,,

V z z tI z t I z z t G zV z z t C z

t

I z z t I z t V z z tGV z z t C

z t

In the limit as z 0, the expression on the left‐hand side becomes a derivative with respect to z.

, ,,

I z t V z tGV z t C

z t

Transmission Lines Slide 18

Transmission Line Wave Equations

Page 10: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

10

Transmission Lines Slide 19

Starting Point – Telegrapher Equations

We start with the transmission line equations derived in the previous section.

, ,,

V z t I z tRI z t L

z t

, ,

,I z t V z t

GV z t Cz t

time‐domain

For time‐harmonic (i.e. frequency‐domain) analysis, we Fourier transform the equations above.

dV zR j L I z

dz

dI zG j C V z

dz frequency‐domain

Note:  Our derivative d/dz became an ordinary derivative because z is the only independent variable left.

These last equations are commonly referred to as the telegrapher equations.

Transmission Lines Slide 20

Wave Equation in Terms of V(z)

To derive a wave equation in terms of V(z), we first differentiate Eq. (1) with respect to z. 

dV zR j L I z

dz

dI zG j C V z

dz Eq. (1) Eq. (2)

2

2

d V z dI zR j L

dz dz Eq. (3)

Second, we substitute Eq. (2) into the right‐hand side of Eq. (3) to eliminate I(z) from the equation.

2

2

d V zR j L G j C V z

dz

Last, we rearrange the terms to arrive at the final form of the wave equation.

2

20

d V zR j L G j C V z

dz

Page 11: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

11

Transmission Lines Slide 21

Wave Equation in Terms of I(z)

To derive a wave equation in terms of just I(z), we first differentiate Eq. (2) with respect to z. 

dV zR j L I z

dz

dI zG j C V z

dz Eq. (1) Eq. (2)

2

2

d I z dV zG j C

dz dz Eq. (3)

Second, we substitute Eq. (1) into the right‐hand side of Eq. (3) to eliminate V(z) from the equation.

2

2

d I zG j C R j L I z

dz

Last, we rearrange the terms to arrive at the final form of the wave equation.

2

20

d I zG j C R j L I z

dz

Transmission Lines Slide 22

Propagation Constant, 

Define the propagation constant  to be

G j C R j L

j G j C R j L

Given this definition, the transmission line equations are written as

2

22

0d V z

V zdz

2

22

0d I z

I zdz

In our wave equations, we have a common term                                    .

Page 12: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

12

Transmission Lines Slide 23

Solution to the Wave Equations

If we hand the wave equations off to a mathematician, they will return with the following solutions.

2

22

0d V z

V zdz

2

22

0d I z

I zdz

0 0 z zV z V e V e

0 0 z zI z I e I e

Both V(z) and I(z) have the same differential equation so it makes sense they have the same solution.

Forward wave Backward wave

Transmission Lines Slide 24

Transmission Line Parameters:

Attenuation Coefficient, Phase Constant,

Page 13: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

13

Transmission Lines Slide 25

Derivation  and  (1 of 7)

Step 1 – Start with our expression for .

j G j C R j L

2j G j C R j L

2 2 22j RG j RC j LG LC

2 2 22j RG LC j RC LG

Square this expression to get rid of square‐root on right‐hand side.

Expand this expression.

Collect real and imaginary parts on the left‐hand and right‐hand sides.

Transmission Lines Slide 26

Derivation  and  (2 of 7)

Step 2 – Generate two equations by equating real and imaginary parts.

2 2 22j RG LC j RC LG

2 2 2RG LC

2 RC LG

We now have two equations and two unknowns.

Page 14: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

14

Transmission Lines Slide 27

Derivation  and  (3 of 7)

Step 3 – Derive a quadratic equation for 2.

2 2 2

2 Eq. (1a)

Eq. (1b)

RC LG

RG LC

Solve Eq. (1a) for .

Eq. (2)2

RC LG

Substitute Eq. (2) into Eq. (1b) and simplify.

22 2

222 2

2

24 2 2 2 2

24 2 2

2

4

4 4 4

02

RC LG RG LC

RC LGRG LC

RC LG RG LC

LC RG RC LG

Transmission Lines Slide 28

Derivation  and  (4 of 7)

Step 4 – Solve for 2 using the quadratic formula.

Recall the quadratic formula:

2

4 2 2 0 2

LC RG RC LG

22 4

0 2

b b acax bx c x

a

Our equation for  is in the form of a quadratic equation where

2

2

2

1

2

a

b LC RG

c RC LG

x

The solution is

22 2

2

2 2 2 2 2 2 2

42

2

2

LC RG LC RG RC LG

RG LC R L G C

Page 15: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

15

Transmission Lines Slide 29

Derivation  and  (5 of 7)

Step 5 – Resolve the sign of the square‐root.

In order for this expression to always give a real value for , the sign of the square‐root must be positive.

The final expression is

2 2 2 2 2 2 2

2

2

RG LC R L G C

2 2 2 2 2 2 2

2

2

RG LC R L G C

Transmission Lines Slide 30

Derivation  and  (6 of 7)

Step 6 – Solve for 2 using our expression for 2.

Recall Eq. (1b):

We obtain an equation for 2 by substituting our expression for 2 into Eq. (1b).

2 2 2RG LC

2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2

2

2

2

RG LC R L G CRG LC

RG LC R L G C

2 2 2 2 2 2 2

2

2

RG LC R L G C

Page 16: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

16

Transmission Lines Slide 31

Derivation  and  (7 of 7)

Step 7 – We arrive at our final expressions for  and  in terms of the fundamental parameters R, L, G, and C by taking the square‐root of our latest expressions for 2 and 2.

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2

2

RG LC R L G C

RG LC R L G C

Both  and must be positive quantities for passive materials.  This means we take the positive sign for the square‐root.

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2

2

RG LC R L G C

RG LC R L G C

Transmission Lines Slide 32

Transmission Line Parameters:

Characteristic Impedance, Z0

Page 17: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

17

Transmission Lines Slide 33

Characteristic Impedance, Z0 ()

The characteristic impedance Z0 of a transmission line is defined as the ratio of the voltage to the current at any point of a forward travelling wave.

0 00

0 0

V VZ

I I

Definition for a forward travelling wave.

Definition for a backward travelling wave.  Notice the negative sign!

Most characteristic impedance values fall in the 50  to 100  range.  The specific value of impedance is not usually of importance.  What is important is when the impedance changes because this causes reflections, standing waves, and more.

Transmission Lines Slide 34

Derivation of Z0 (1 of 5)

Step 1 – Substitute our solution into the transmission line equations.

dV zR j L I z

dz

dI zG j C V z

dz

0 0

0 0

z z

z z

V z V e V e

I z I e I e

0 0

0 0

z z

z z

d

dz

R j L

V e V e

I e I e

0 0

0 0

z z

z z

d

dz

G j C

I e I e

V e V e

Page 18: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

18

Transmission Lines Slide 35

Derivation of Z0 (2 of 5)

Step 2 – Expand the equations and calculate the derivatives.

0 0

0 0

z z

z z

dV e V e

dz

R j L I e I e

0 0

0 0

z z

z z

dI e I e

dz

G j C V e V e

0 0

0 0

z z

z z

V e V e

R j L I e R j L I e

0 0

0 0

z z

z z

I e I e

G j C V e G j C V e

Transmission Lines Slide 36

Derivation of Z0 (3 of 5)

Step 3 – Equate the expressions multiplying the common exponential terms.

0 0 0 0z z z zV e V e R j L I e R j L I e

0 0 0 0z z z zI e I e G j C V e G j C V e

0 0V R j L I

0 0V R j L I

0 0I G j C V

0 0I G j C V

Page 19: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

19

Transmission Lines Slide 37

Derivation of Z0 (4 of 5)

Step 4 – Solve each of our four equations for V0/I0 to derive expressions for Z0.

0 0

0 0

0 0

0 0

V R j L I

V R j L I

I G j C V

I G j C V

00

0

00

0

00

0

00

0

V R j LZ

I

V R j LZ

I

VZ

I G j C

VZ

I G j C

Transmission Lines Slide 38

Derivation of Z0 (5 of 5)

Step 5 – Put Z0 in terms of just R, L, G, and C.

0

R j LZ

G j C

Recall our expression for : j G j C R j L

We can substitute this into either of our expressions for Z0.

Proceed with the first expression.

2

0

R j LR j L R j LZ

G j C R j L G j CG j C R j L

Page 20: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

20

Transmission Lines Slide 39

Final Expression for Z0 ()

We have derived a general expression for the characteristic impedance Z0 of a transmission line in terms of the fundamental parameters R, L, G, and C.

0 00

0 0

V VZ

I I

Definition:

Expression: 0

R j L R j LZ

G j C G j C

Transmission Lines Slide 40

Dissecting the Characteristic Impedance, Z0

The characteristic impedance describes the amplitude and phase relation between voltage and current along a transmission line.  With this picture in mind, the characteristic impedance can be written as

00 0 ZZ Z

The characteristic impedance can also be written in terms of its real and imaginary parts.

0

0

00 0 0

0

Z

z

jz z z

V z V e

VI z I e e Z V e e

Z

0 0 0Z R jX

Reactive part of Z0.  This is not equal to jL or 1/jC.

Resistive part of Z0.  This is not equal to R or G.

Page 21: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

21

Transmission Lines Slide 41

Special Cases of Transmission Lines:

General Transmission Line

Transmission Lines Slide 42

Parameters for General TLs

Propagation Constant, 

j G j C R j L

Attenuation Coefficient, 

2 2 2 2 2 2 2

2

RG LC R L G C

Phase Constant, 

2 2 2 2 2 2 2

2

RG LC R L G C

Characteristic Impedance, Z0

0 0 0

R j LZ R jX

G j C

Page 22: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

22

Transmission Lines Slide 43

Special Cases of Transmission Lines:

Lossless Lines

Transmission Lines Slide 44

Definition of Lossless TL

For a transmission line to be lossless, it must have

When we think about transmission lines, we tend to think of the special case of the lossless line because the equations simplify considerably.

0R G

Page 23: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

23

Transmission Lines Slide 45

Parameters for Lossless TLs

Propagation Constant, 

j j LC

Attenuation Coefficient, 

0

Phase Constant, 

LC

Characteristic Impedance, Z0

0 0 0

LZ R jX

C

0 0 0L

R XC

Transmission Lines Slide 46

Special Cases of Transmission Lines:

Weakly Absorbing Line

Page 24: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

24

Transmission Lines Slide 47

Definition of Weakly Absorbing TL

Most practical transmission lines have loss, but very low loss making them weakly absorbing.

We will define a weakly absorbing line as

and R L G C

Ensures very little conduction between the lines through the dielectric.

Ensures low ohmic loss for signals propagating through the line.

Transmission Lines Slide 48

Parameters for Weakly Absorbing TLs

Attenuation Coefficient, 

00

1

2

RGZ

Z

Conductance through the dielectric dominates attenuation in high‐impedance transmission lines.

Resistivity in the conductors dominates attenuation in low‐impedance transmission lines.

In weakly absorbing transmission lines, there usually exists a “sweep spot” for the impedance where attenuation is minimized.

Page 25: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

25

Transmission Lines Slide 49

Special Cases of Transmission Lines:

Distortionless Lines

Transmission Lines Slide 50

Definition of Distortionless TL

In a real transmission line, different frequencies will be attenuated differently because  is a function of .  This causes distortion in the signals carried by the line.

2 2 2 2 2 2 2

2

RG LC R L G C

To be distortionless, there must be a choice of R, L, G, and C that eliminates  from the expression of , effectively making independent of frequency .

The necessary condition to be distortionless is

R G

L C

Page 26: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

26

Transmission Lines Slide 51

Parameters for Distortionless TLs

Propagation Constant, 

j RG j LC

Attenuation Coefficient, 

RG

Phase Constant, 

LC

Characteristic Impedance, Z0

0 0 0

R LZ R jX

G C

0 0 0R L

R XG C

To be distortionless, we must have  .  is a measure of how quickly a signal accumulates phase.  Different frequencies have different wavelengths and therefore must accumulate different phase through the same length of line.

Transmission Lines Slide 52

Example:

Properties of RG-59 Coax

Page 27: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

27

Transmission Lines Slide 53

The Lossless Circular Coax

Attenuation Coefficient, 0

Phase Constant, 

Characteristic Impedance, Z0

0 0 0 ln 2

bZ R jX a b

a

0 0ln 02

bR X

a

Fundamental Parameters (derived in EE 3321)

2 F m

ln

1ln H m

2 4

Cb a

bL

a

a

b

and

Transmission Lines Slide 54

Typical RLGC for RG‐59 Coax at 2 GHz

The typical RG‐59 coaxial cable operating at 2.0 GHz has the following RLGC parameters:

36 mΩ m

430 nH m

10 m

69 pF m

R

L

G

C

Calculate the transmission line parameters , , , and Z0.

Classify the line as lossless, weakly absorbing, distortionless, etc.

Page 28: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

28

Transmission Lines Slide 55

Solution (1 of 3)

Our equations mostly utilize the angular frequency  instead of the ordinary frequency f.

9 1 92 2 2.0 10 s 12.5664 10 rad sf

The characteristic impedance Z0 is

0

9

9

4

36 mΩ m 12.5664 10 rad s 430 nH m

10 m 12.5664 10 rad s 69 pF m

78.94 1.92 10

R j LZ

G j C

j

j

j

Note the imaginary part of Z0 is very small indicating that our line is very low loss.

Transmission Lines Slide 56

Solution (2 of 3)

The complex propagation constant  is

9

9

4 1

36 mΩ m 12.5664 10 rad s 430 nH m

10 m 12.5664 10 rad s 69 pF m

6.23 10 68.45 m

R j L G j C

j

j

j

From this result, we read off  and .4 16.23 10 68.45 mj j

46.23 10 Np m

68.45 rad m

Np is Nepers

rad is radians

Page 29: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

29

Transmission Lines Slide 57

Solution (3 of 3)

Is the line lossless?   NO

No because R ≠ 0 and G ≠ 0.Also, we can determine this because  ≠ 0 .

Is the line weakly absorbing?   YES

?

?9

?

36 mΩ m 12.5664 10 rad s 430 nH m

0.036 5403.5

Yes

R L

?

?9

?6

10 m 12.5664 10 rad s 69 pF m

10 10 0.8671

Yes

G C

Is the line distortionless?   NO, but close

?

?

?12 12

36 mΩ m 69 pF m 430 nH m 10 m

2.48 10 4.30 10

No, but close

RC LG

Cable Loss Vs. Characteristic Impedance

As we adjust the cable dimensions (i.e. b/a), we change both its impedance and its loss characteristics.  This let’s us plot the cable loss vs. characteristic impedance for a coax with different dielectric fills.

For the air‐filled coax, we observe minimum loss at around 77 , where b/a 3.5.

A coaxial cable filled with polyethelene (r = 2.2), the minimum loss occurs at 51.2 (b/a = 3.6).

Transmission Lines Slide 58

https://www.microwaves101.com/encyclopedias/why‐fifty‐ohms

Page 30: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

30

Power Handling Vs. Characteristic Impedance

As we adjust the cable dimensions (i.e. b/a), we affect the peak voltage handling capability (breakdown) and its power handling capability (heat).

We observe the lowest peak voltage at just over 50 which we interpret as the point of best voltage handling capability.

Transmission Lines Slide 59https://www.microwaves101.com/encyclopedias/why‐fifty‐ohms

We observe the lowest peak current at around 30  which we interpret as the point of best power handling capability.

Transmission Lines Slide 60

Why 50  Impedance is Best?

Two researchers, Lloyd Espenscheid and Herman Affel, working at Bell Labs produced this graph in 1929.  They needed to send 4 MHz signals hundreds.  Transmission lines capable of handling high voltage and high power were needed in order to accomplish this.

Best for High Voltage:  Z0 = 60 Best for High Power:    Z0 = 30 Best for Attenuation:   Z0 = 75 

50  seems like the best compromise.

Data to the right was generated for an air‐filled coaxial cable.

Page 31: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

31

Transmission Lines Slide 61

Why 75  Impedance Standard for Coax?

Nobody really knows!!

The ideal impedance is closer to 50 , however this requires a thicker center conductor.  Maybe 75  is a compromise between low loss and mechanical flexibility?

Transmission Lines Slide 62

Example:

Microstrip Design

Page 32: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

32

Transmission Lines Slide 63

The Lossless Microstrip

Attenuation Coefficient, 0

Phase Constant, 

,eff

0 ,eff

1 1

2 2 1 12r r

r

r

h w

k

Characteristic Impedance, Z0

eff

0 0 0

eff

60 8 ln 1 thin lines

4

1 120 1 wide lines

1.393 0.667 ln 1.444

h ww h

w hZ R jX

w hw h w h

rh

w

Transmission Lines Slide 64

Problem Description

Typically, the manufacturing process fixes the value of dielectric constant r.  This means the impedance of microstrips is controlled solely through the ratio w/h.

For this example, design a 50 microstrip transmission line in FR‐4, which as a dielectric constant of 4.5, to operate at 2.4 GHz.

?w

h

Page 33: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

33

Transmission Lines Slide 65

Design Equations

To solve this problem, we must first derive some design equations.  To do this, we solve our microstrip equations for w/h.  This gives

0

2

0

2

1 1 0.110.23

60 2 1

60

8 2 thin lines

2

12 0.611 ln 2 1 ln 1 0.39

2

r r

r r

r

A

A

r

r r

ZA

BZ

ew h

ew

hB B B

2 wide linesw h

Transmission Lines Slide 66

Design Solution (1 of 2)

Applying our design equations, we get

1.5438

5.5831

1.8799 2 thin lines

1.8812 2 wide lines

A

B

w hw

w hh

Since the above numbers for w/h are essentially the same, we conclude that

1.88w

h

Page 34: Lecture 4a -- Transmission Lines · All two‐conductor transmission lines either support a TEM wave or a wave very closely approximated as TEM. An important property of TEM waves

9/27/2017

34

Transmission Lines Slide 67

Design Solution (2 of 2)

We learn from our manufacturing engineer that a convenient choice for substrate thickness h is 0.5 mm.  From this, to get 50  the width w of the microstrip should be

The phase constant for this line will be

1.88 1.88 0.5 mm 0.94 mmw h

eff

9 1

10

0 0

1 1

3.3941

2 2.4 10 s250.3 m

299792458 m s

50.3 m 3.3941 92.67 m

fk

c c