low- vs. high-glycemic load diet: effects on postprandial

42
Low- vs. high-glycemic load diet: effects on postprandial plasma free fatty acid levels Sarah Yanez A thesis Submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2016 Committee: Michael Rosenfeld Michelle Averill Program Authorized to offer degree: Nutritional Sciences

Upload: others

Post on 25-Mar-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Low-vs.high-glycemicloaddiet:effectsonpostprandialplasmafreefattyacidlevels

SarahYanez

Athesis

Submittedinpartialfulfillmentofthe

requirementsforthedegreeof

MasterofScience

UniversityofWashington

2016

Committee:

MichaelRosenfeld

MichelleAverill

ProgramAuthorizedtoofferdegree:

NutritionalSciences

©Copyright2016SarahYanez

UniversityofWashington

Abstract

Low-vs.high-glycemicloaddiet:effectsonpostprandialplasmafreefattyacids

SarahMichelleYanez

Co-chairsofthesupervisorycommittee:MichaelRosenfeld,PhDSchoolofPublicHealth

MichelleAverill,PhD

NutritionalSciencesProgramandDepartmentofEnvironmentalandOccupationalHealth

Introduction:Low-glycemicloaddietsarecommonlyprescribedforbloodglucosemanagement.Currently,however,itisnotclearastowhetherthediethasanyimplications,positiveornegative,oncardiovascularhealthinhealthyindividuals.Methods:UsingdatacollectedfromtheCarbohydratesandRelatedBiomarkers(CARB)Study,conductedattheFredHutchinsonCancerResearchCenter,weanalyzedtheeffectsofahigh-vs.low-glycemicloaddietonfastinglipidsandpostprandialplasmafreefattyacidlevelsinhealthy,non-insulinresistant,adults.Participantswererandomizedtocompleteeitherahigh-orlow-glycemicloaddietfor28days,followedbyawashoutperiodof28days,andthencompletetheoppositedietfor28days.Results:Wefoundthatahigh-vs.low-glycemicloaddietdidnothaveanysignificanteffectonplasmafreefattyacidlevelsintheeighthourtimeperiodfollowingatestbreakfast.Conclusions:Glycemicloaddoesnotappeartoaffectcardiovascularhealthintheshort-term,however,furtherresearchisneededtodetermineanylong-termimplications.Basedonourfindings,wecannotsupportarecommendationthatalow-GLdietisprotectiveagainstcardiovasculardiseaseinhealthyindividuals.

INTRODUCTIONANDBACKGROUND

GLYCEMICINDEXANDGLYCEMICLOAD

GLYCEMICINDEX

Theconceptofglycemicindex(GI)wasfirstintroducedasamethodtoclassify

carbohydrate-containingfoodsbytheirabilitytoraisebloodglucoselevels.29,62GIis

calculatedasthechangeinbloodglucoseafteracarbohydrate-containingfooditem

iseaten,dividedbythechangeinbloodglucoseafteranequalmassofbreadis

eaten,multipliedby100.6,30GIhasbeenstandardizedtobethecomparisonofthe2-

hourpost-prandialglucoseresponseof50gofacarbohydratefoodwiththatof50g

ofwhitebreadorglucose,andisrepresentedbytheareaundertheglucose

responsecurve.32,53Thus,GIisanindicatoroftheintestinalabsorptionof

carbohydrates;low-GIfoodsareabsorbedmoreslowlyandinduceaslower

glycemicresponsethanhigh-GIfoods,whicharerapidlyabsorbedinthe

intestines.10,23,32Whencarbohydrate-containingfoodsofdifferingGIaremixed

togetherinameal,theGIofthemealisarelativemedianoftheindividual

carbohydratefoodGIs.65

GLYCEMICLOAD

Glycemicload,aconceptrelatedtoGI,isarepresentationofboththequantityand

thequalityofcarbohydrateconsumed.GLiscalculatedastheproductofthefood’s

carbohydratecontentanditsGIvalue.39,64GLisawaytosummarizethecombined

effectsoftotalcarbohydrateintakeandoveralldietaryGI.38Alow-GLdietdoesnot

necessarilymeanthatlow-GIfoodswereconsumed.38SinceGLisdependentupon

boththeamountofcarbohydrateandtheGIofthefoodsconsumed,either

decreasedconsumptionoftotalcarbohydrateorimprovedqualityofcarbohydrate,

GI,canlowerGLofthediet.68Thus,thelong-termhealthimplicationsofareduced

GLdietmaybedifferentdependingonwhetherthelowerGLisduetoreduced

carbohydrateintake,reducedGI,oracombinationofthetwo.

BIOLOGICALRESPONSESTOGI/GL

Traditionally,lowGIfoodsorlowGLdietshavebeenrecommendedinthesettingof

glycemiccontrol,aslowGIfoodconsumptionisthoughttoresultinlowerandmore

stablebloodglucoseandinsulinlevels.16TotalmealGLhasbeenshownto,

moderatelywell,predictserumglucoseandinsulinresponsespostprandially.24A

positiveassociationbetweenmealGLlevelsandserumglucoseandinsulin

responseshasbeendemonstrated,indicatingthat,forfoodswithequalGIs,asthe

amountofcarbohydrateincreases,therewillbeaproportionallyconstantincrease

inthebloodglucoseandinsulinresponses.24

However,currentevidencesupportingalinkbetweendyslipidemiaandGLis

lacking.SomestudieshavefoundthatGLhasnoeffectonplasmalipidlevels,16,24,32,64

somehavefoundaninverserelationshipbetweenGLandcirculatingplasma

lipids,53,60andsomehavefoundimprovedlipidstatuswithlowGLdiets.13,39,40,56

INSULIN

EFFECTSOFGI/GL

Thereisepidemiologicalandclinicalevidencesupportingthatdietsignificantly

influencesinsulinsensitivityinobeseand/orinsulinresistantindividuals;23

specifically,thatalowGLdietincreasesinsulinsensitivity.15Otherpreviousstudies

havefoundsimilarresults,andfurtherconcludedthathighGLdiets,overtime,

contributeastateofpancreaticβ-celldysfunctionandadefectiveinsulin

response.10,60,68Adietwithahighcompositionofcarbohydratefoodsinduces

compensatoryhyperinsulinemia.64,72However,ifaheightenedinsulinresponseis

requiredoveranextendedperiodoftime,theabilityofβ-cellstoproduceand

secreteinsulindeclines.Chronicallyhighglucoseintake,pairedwithdecreasing

insulinsecretion,ultimatelyresultsinβ-celldeathandreducedpancreaticcellmass.

Thelong-termconsequenceisglucoseintoleranceanddiabetes.28TheFAO/WHO

hasmadearecommendation,basedonevidencesupportingtheefficacyofalowGI

orGLdietinimprovingglycemiccontrol,10toreducedietaryGIfortheprevention

andmanagementofmetabolicdisease.19However,somestudieshavenotfound

conclusiveevidencethatdifferencesinGIconsumptionleadtodifferencesininsulin

response.16,32IthasbeensuggestedthatGI/GLmaybemostusefulinitsabilityto

regulateglucoseresponsespostprandially,notnecessarilytheassociatedinsulin

response.16

INCRETINEFFECT

Theincretineffectisaphenomenoninwhichoralglucoseadministrationhasbeen

demonstratedtoelicitagreaterinsulinresponsethanintravenousglucose

administration.48Thishasrecentlybeenexplainedbytheactivityofinsulin-

mediatingmoleculessecretedbythegut.

Incretinsarepeptidehormonesthatareproducedentero-endocrinecellsinthe

smallintestinalmucosa.48Theincretinsglucose-independentinsulinotropic

polypeptide(GIP)andglucagon-likepeptide(GLP-1)aresecretedinresponseto

nutrientingestionandactonpancreaticβ-cellsforinsulinsecretion.2,28GIPand

GLP-1havelowbasalplasmaconcentrationsandhaveaninsulinsecretoryresponse

onlyatlevelsthatcorrelatetoacertainlevelofhyperglycemia;theyarethus

ineffectiveatelicitinganinsulinresponsewithlowamountsofdietaryglucose.48

Thisultimatelyservestomaintainacertainbloodglucoseleveldespiteingestionof

awiderangeofcarbohydrateloads.2Theinsulinresponsetothesehormones

accountsforapproximately70%ofpostprandialinsulinsecretion.28Thissuggests

thattheeffectofGIoninsulinresponsesisadditionaltotheeffectofincretins;the

postprandialinsulinresponseisnotentirelydependentupontheGIofthefood

consumed.

Theincretineffecthasbeendemonstratedtobedefectorcompletelyabsentin

individualswithimpairedglucosetolerance,hyperglycemia,anddiabetes.48Inone

study,plasmalevelsofincretinsdonotappeartodifferbetweenhealthyand

diabeticpersons,implyingthatadefectorabsenceoftheincretineffectisamarker

ofbetacelldysfunctionandthereducedsecretionofinsulin.2Thishypothesishas

beenconfirmedbyotherrecentinvestigations.28,49Oneofthesestudies,however,

hasalsoconcludedthatobesesubjectswithnormalglucosetolerancealsohavean

impairedincretineffect,likelyduetoreducedGLP-1secretioninthegut.28This

supportscurrentliteraturethatobesitycontributestoinsulinresistance,butwith

additionaldataregardingthemechanisms.

SHORT-TERMBIOLOGICALEFFECTS:SERUMFREEFATTYACIDS

Itiswellknownthatinsulinhasasignificanteffectontheactivitiesoflipasesthat

regulateFFAavailability:lipoproteinlipasefoundinadiposetissue,hormone-

sensitivelipase,andadiposetriglyceridelipase.60Inthepresenceofhighlevelsof

insulin,whenlipoproteinlipaseactivityisincreasedandhormone-sensitivelipase

andadiposetriglyceridelipaseactivitiesaresuppressed,thecombinedeffectis

improvedclearanceofFFAsfromthebloodstream.31

Lipoproteinlipasehydrolyzestriglyceridesfromcirculatinglipoproteins,either

chylomicronsfromtheintestinesorverylow-densitylipoproteins(VLDL)fromthe

liver.Thisresultsintheproductionoffattyacids.Inadiposetissue,insulinincreases

lipoproteinlipaseactivityandthusincreasestheproductionoffattyacids,whichare

eitheroxidizedforenergyorrepackagedastriglyceridesforstorage.26Conversely,

insulinasaninhibitoryeffectonthelipoproteinlipasefoundinskeletalmuscle,

servingtodirectfattyacidstoadiposetissueforstorage.Thehormoneglucagon,

releasedduringtimesoflowavailablebloodglucoseforenergy,isresponsiblefor

increasinglipoproteinlipaseactivityinmuscletissue.20Theresultistheincreased

abilityofmuscletissuetomobilizefattyacidsforenergyproductionwhenthe

preferredsubstrate,glucose,isunavailable.Theultimateeffectofincreased

lipoproteinlipaseactivityisfavorableuptakeofFFAsfromthecirculation.60

Hormone-sensitivelipaseandadiposetriglyceridelipasearefoundinadiposetissue

andbothservetohydrolyzestoredtriglyceridesintoFFAforreleaseintothe

circulation.35,72Whileitwasthoughtforquitesometimethathormone-sensitive

lipasewastheprimaryenzymeinthehydrolysisoftriglyceridesinadiposetissue,it

hasbeendiscoveredthatadiposetriglyceridelipaseisinfactthecatalystforthe

reactionandhasthemoresignificanteffectontheoverallrateoffattyacid

production.65Adiposetriglyceridelipaseishighlyexpressedinadiposetissueand

highlyspecificfortriglycerides.Itremovesthefirstfattyacidfromatriglyceride

molecule,initiatingitscatabolism.73Insulinsuppressestheactivitiesofthese

molecules,althoughthroughtwodifferentmechanisms.Adiposetriglyceridelipase

isregulatedbyinsulinatthetranscriptionallevel;highlevelsofinsulinreducethe

productionofthelipase.33Insulindoesnot,however,haltproductionofhormone-

sensitivelipase,itsimplydecreasesitslevelofactivity.63Increasedlevelsofinsulin

causethecombinedeffectsofhormone-sensitivelipaseandadiposetriglyceride

lipase:reductionoftriglyceridehydrolysisanddecreasedliberationofFFAintothe

circulation.

INSULINSIGNALINGANDLIPIDMETABOLISM

Figure1.Normallipidmetabolism(black)vs.lipidmetabolisminastateofinsulinresistance(red).Insulinhasinhibitory(-)andenhancing(+)effectsonmanystagesoflipidmetabolism.Insulinplaysanimportantroleinnutrientuptakeinthepostprandialperiod.

Dietarycarbohydratesareabsorbedintheintestinesandtransportedthroughthe

bloodstreamasglucose.Whileglucoseuptakebytheliverisindependentofinsulin

action,theconversionofglucosetofattyacidsisinsulin-dependent.Glucoseis

convertedtopyruvatethroughglycolysis,andthentoacetyl-coAthroughthe

insulin-stimulatedactionofpyruvatedehydrogenase.18Acetyl-coAisthenconverted

intofattyacids,inwhichtheenzymefattyacidsynthaseisupregulatedbyinsulin.

Fattyacidsaresubsequentlyesterifiedintotriglyceridesandpackagedintovery

low-densitylipoprotein(VLDL)fortransportthroughthecirculationsystem.18VLDL

iscarriedtoadiposetissuefordepositionoffattyacidsviatheinsulin-stimulated

actionoflipoproteinlipase(LPL).6ExtractionofthefattyacidsleavesaVLDL

remnant,whichthenbecomesanintermediate-densitylipoprotein(IDL).TheseIDL

moleculeslosetriglyceridesinthebloodstreamandformlow-densitylipoproteins

(LDL).44Therate-limitingstepofLDLsynthesisisindirectlyregulatedbyinsulin.3-

hydroxy-3-methylglutaryl-coAreductaseistheresponsibleenzymeandismost

activewhenbloodglucoselevelsarehigh.48Increasedinsulinclearanceofblood

glucosedecreasestheenzyme’sactivityandthuscholesterolproduction.

Dietaryfats,ontheotherhand,areemulsifiedintheintestinesforabsorption,and

thenpackagedintochylomicronsfortransportthroughthecirculationbeforebeing

depositedinadiposetissue.AgainthroughtheactionsofLPL,stimulatedbyinsulin,

triglyceridesareextractedfromthechylomicrons.6Inadiposetissue,deposited

triglyceridesarehydrolyzedintofreefattyacids,aprocessinhibitedbytheactionof

insulin.Additionally,thefattyacid-triglyceridecycleensuresconservationof

triglyceridestorageinadiposetissuethroughtheconsistentre-esterificationoffree

fattyacidstotriglycerides.6,69

Inastateofinsulinresistance,serumlipidlevelsarenegativelyaltered.HSLactivity

isincreasedinadipocytes,increasingtriglyceridehydrolysisandbuild-upoffree

fattyacids.6Thesearethentransportedtotheliver,wheretheincreasedavailability

offattyacidsfortriglyceridesynthesisincreasestheproductionandsecretionof

VLDL.WhenthethresholdforserumVLDLisreached,formationofHDLbytheliver

decreaseswhileformationofLDLincreases.Theendresultisdyslipidemia.69

FREEFATTYACIDS

RELATIONSHIPTOGI/GL

Asdemonstratedinthefigureabove,FFAsenterthecirculationthroughthe

hydrolysisofbothtriglyceridesinadiposetissueandglucoseintheliver.However,

highcirculatinglevelsofFFAshaveyettobedefinitivelylinkedtoadiethighin

carbohydratesorglycemicload.Thecurrentevidencedescribingarelationship

betweenGIorGLandFFAlevelsvarieswidely.Somestudiesdeterminingthat

plasmaFFAlevelswereincreasedbyalowGLdiet,13,35somehavefoundnoeffectof

GIorGLonFFAlevels,16,24andstillothershavefoundthatFFAconcentrationsare

suppressedbyhighGImeals.41,53

Asdiscussedpreviously,insulinactstobothincreaselipoproteinlipaseactivityfor

theuptakeofFFAtoadiposefromthecirculationanddecreasetheactivitiesof

hormone-sensitivelipaseandadiposetriglyceridelipaseforthereductionofFFA

liberationfromadiposetissueintothecirculation.Throughtheseactions,an

increasedinsulinresponseduetoahighglycemicloadmealcouldlikelymediatethe

FFAresponsesothatthereiseithernodifferenceinplasmalevelsorverylittle

differencepostprandially.56However,inthelatepostprandialperiod

(approximatelyfourtosixhoursafterthemeal),lowbloodglucoselevelstriggera

counter-regulatoryresponseandglucagonisreleased.Glucagonstimulates

gluconeogenicandglycogenolyticpathwaysinordertoproduceglucoseandrestore

normalbloodlevels,concurrentlyelevatingFFAlevels.41Inthisway,ahigh-GLmeal

mayactuallycauseFFAlevelstoriseversusthemoreattenuatedhormoneresponse

elicitedbyalow-GLmeal.Again,thisresultwouldonlybeseeninthelaterhours

afteratestmeal.

EFFECTSONCARDIOVASCULARHEALTH

ThereareseveralmechanismsbywhichhighFFAlevelsmightimpact

cardiovascularhealth.AnincreasedamountofFFAisavailabletotheliverfor

increasedtriglycerideproductionandVLDLsecretion.39,60,70Highserumtriglyceride

levelasbeendiscoveredtobeanindependentriskfactorforcoronaryheartdisease

(CHD),afteradjustmentforLDLandHDLcholesterollevels,age,bloodpressure,

smoking,diabetes,familyhistoryofmyocardialinfarction,andanginapectoris.1,12,42

Whileitisnotnecessarilythetriglycerideitselfthatleadstoheartdisease,high

levelsoftriglyceridesindicatehighlevelsofhighcholesterol-containingremnant

lipoproteinsthatthendepositthatcholesterolintoarterialwalls.51,75

HighlevelsofFFAsarealsobelievedtocontributetoinsulinresistance.55FFAlevels

surpassingstoragecapacityinadiposetissuearedepositedinothertissues,like

skeletalmuscleandliver,35,58throughtheinhibitionofinsulinsignaling.FFAs

completewithglucoseasanenergysubstrateinskeletalmuscle,alteringthe

partitioningoffatbetweenadipocytesandmuscle.58Theexactmechanismbywhich

FFAsaffectglucosetransportandutilizationhasyettobeclearlyidentified.8Insulin

resistanceitselfisassociatedwithhighratesofcholesterolsynthesis.54

Lastly,highlevelsofFFAsmaythemselvespredictcardiovascularmortality.55The

myocardiumappearstobenegativelyaffectedbyhighlevelsofFFAs,asincreased

useasametabolicsubstrateappearstohaveunfavorablealterationsatthecellular

level,resultingininefficientglucosemetabolism.47Thishasbeendemonstratedto

haveproarrhythmiceffects,increaseischemicdamage,andcontributetothe

developmentofheartfailure.27,52

GLYCEMICLOADANDCARDIOVASCULARHEALTH

CURRENTEVIDENCE

Asofyet,theliteratureisunabletodeterminewhateffects,ifany,glycemicloadhas

oncardiovascularhealth.Whilelow-GIdietsarefrequentlyrecommendedto

diabeticpatientswiththeintentofimprovingglycemiccontrolandinsulin

sensitivity,thereislittleevidencetosupportimprovementoflipidprofiles.Thereis

evenfewerdatatodescribetheeffectsofthisdietonnon-diabeticindividuals.9

SomestudieshavefoundthatGLhasnoeffectonplasmalipidlevels,13,24,32,64some

havefoundaninverserelationshipbetweenGLandcirculatingplasmalipids,50,57

andsomehavefoundimprovedlipidstatuswithlowGLdiets.13,40,42,62

Studyresultshavevariedbasedupongender,nationality,age,andBMI

classification.Inmiddle-agedandolderSwedish,dietaryGI/GLhadnosignificant

associationwithcardiovascularillness.67AnotherstudydoneinItalywith

overweight,oldermenandwomenfoundapositiveassociationbetweendietaryGI

andincidenceofmyocardialinfarction,butnoassociationbetweendietaryGI/GL

andincidenceofcardiovasculardiseaseoritsriskfactors.37Ameta-analysis

evaluatedstudiesoftheassociationsofGIandGLwithcoronaryheartdisease

eventsandfounddiscrepanciesbetweennationalitiesandsex;DanishandBlack

AmericanmendemonstratedpositivebenefitswithconsumptionoflowerGIfoods,

andoverallonlywomen,notmen,showedanincreaseinrelativeriskofcoronary

heartdiseasewiththeconsumptionofhighGIfoods/ahighGLdiet.66

However,therehavebeenstudiesshowingasignificantpositiveassociation

betweendietaryGLandtheriskofcardiovasculardisease.Variousstudieshave

shownthatlow-GIdietsresultinlowertriglycerideandlipoproteincholesterol

levels,aswellasalowerratiooftotalcholesteroltohigh-densitylipoproteinlevels,

indicatorsofcardiovascularhealth.41OneofthefirststudiesregardingGIindicated

thatitmighthaveabeneficialimpactonbloodlipids.30IncreaseddietaryGLwas

showntobeassociatedwithandincreaseinthecardiovasculardiseaseriskfactor

high-densitylipoprotein(HDL)inBrazilianmiddle-agedmen.16InUSwomen,GI

wasfoundtobeastrongindicatorofcoronaryheartdiseaserisk,independentof

carbohydratecomplexity.40

ACochranereviewassessingtheprescriptionoflowGIdietsforcardiovascular

healthdidnotfindanyevidencefromrandomizedcontrolledtrialstoshowaneffect

oflowGIdietsoncoronaryheartdisease.Someweakevidenceforminoreffectson

someCHDriskfactorswasfound;therewassomeevidenceofareductionintotal

cholesterolwithlowGIdietsandborderlinesupportforadecreaseinLDLwithlow

GIdiets.32Obesitywasidentifiedasaknownriskfactorforcoronaryheartdisease,

thereforeenergy-restricteddietsbasedonlowGIfoodsmightproducethegreatest

weightlossandthusthegreatestcardiovascularprotection.Thesedietsalsomay

improveinsulinsensitivityinobeseindividuals,therebyimprovingcholesterol

profiles.46

Thereisaneedforwell-designed,adequatelypowered,randomizedcontrolledtrials

ofsignificantdurationtobetterunderstandthefulleffectsofGIorGLonlipid

profilesandcardiovascularhealth.Currently,thereisinsufficientevidencethat

healthcareprovidersshouldrecommendalow-GLdietoverothertherapeuticdiets

forthepreventionofheartdiseaseinhealthy,non-insulinresistantindividuals

METHODS

STUDYPOPULATION

ParticipantsintheCarbohydratesandRelatedBiomarkers(CARB)study,conducted

attheFredHutchinsonCancerResearchCenter,(FHCRC)includedhealthy,non-

smokingmenandwomenbetweentheagesof18and45yearsoldfromtheSeattle

area.SpecialrecruitmenteffortsweregivenforAfricanAmericanandHispanic

populations.Priortoenrollment,potentialparticipantsweregivenaneligibility

questionnaire,excludingthosewho:(1)hadphysician-diagnoseddiseasesrequiring

dietaryrestrictionsormodifications;(2)hadaBMIbetween25and28,inorderto

demonstrateanysignificantdifferencesinoutcomesbetweenhealthyweightand

obeseindividuals;(3)werecurrentlypregnantorlactating,orhadplanstobecome

pregnant;(4)regularlytookhormones,anti-inflammatorymedications,orother

medicationsthatmightinterferewithoutcomemeasures;(5)usedtobaccoor

consumed>2drinksperday;(6)restrictedtheireatingorhadfoodallergies;and

(7)hadimpairedfastingglucose,definedasfastingbloodglucoselevels≥5.6

mmol/L.Enrolledparticipantswerealsoaskedtodiscontinuetheuseofanydietary

supplements.ApprovalwasobtainedfromtheInstitutionalReviewBoardandthe

ClinicalTrialsOfficeoftheFHCRCandallparticipantsprovidedwritten,informed

consent.50

RESEARCHDESIGN

89participantswereenrolledinthestudybetweenJune2006andJuly2009.

ParticipantswereblockrandomizedbytheBMIgroup(18.5-24.9kg/m2or28.0-

40.0kg/m2)andsextotheorderofexperimentaldiets.61Participantswereassigned

tobothalow-andhigh-GLdiet,inacross-overdesign,for28consecutivedayseach,

witha28daywashoutperiodinbetweendietsduringwhichparticipantsconsumed

theirhabitualdiets(Figure2).62AsubsetofCARBstudyparticipantswaschosento

participateinapostprandialstudy(CARB-PPL).Thisincluded20participantswho

consumedastandardizedtestbreakfastandremainedatthefacilityforpost-

prandialtesting.61ItistheCARB-PPLsamplesthatwereusedinthisanalysis.

Participantswereinstructedtoconsumeonlythefoodandbeveragesprovided

duringthefeedingperiods;coffeeandtea(creamersandsweetenerswereprovided

bythestudy)werepermittedatstablecontinuouslevels.61Participantsateonemeal

eachday,MondaythroughFriday,attheHumanNutritionLabatFHCRCunder

supervisionbystudystaff.Aftertheeveningmeal,participantswereprovidedwith

breakfast,lunch,andsnackforthefollowingday.Followingtheeveningmealon

Friday,participantswereprovidedwithallfoodtobeconsumedovertheweekend

aswellasMonday’sbreakfastandlunch.Allfoodthatremainedunconsumedwas

returnedtothelabwherestaffweighedandrecordedit.Participantsalsocompleted

adailychecklistconfirmingconsumptionoftheday’sfoods,alongwithconsumption

ofnon-studyfoods.60

STUDYDIETS

Bothhigh-andlow-GLdietsweredesignedtobeweight-maintaining.3-daydiet

recordswereobtainedfromparticipantsinordertoestimatehabitualenergy

intake.ThisdatawasusedinconjunctionwiththeMifflinequationtoestimate

energyneeds.50A7-daymenurotationforeachdietwasgeneratedusingProNutra

(Version3.2,Viocare).Macronutrientcontentwasidenticalbetweeneachdiet,with

15%ofdailyenergycomingfromprotein,30%ofdailyenergycomingfromfat,and

55%ofdailyenergycomingfromcarbohydrates.Fibercontentdifferedbetweenthe

twodietswith55g/dayinthelowGLdietversus28g/dayinthehighGLdiet.The

lowGLdietwasdefinedatGL125,andhighwas250.61Participantweightswere

takenthreetimesperweekandenergyadjustmentsweremadein200kcal

incrementsasnecessarytomaintainbaselineweight.62Thetestbreakfastsforthe

postprandialstudywerealsodesignedtobesimilartothe28-daydietsinoverall

macronutrientcontentandmatchtheGLprofileofthediettreatment.61

Figure2.Cross-overdesignofstudydiets.

SAMPLECOLLECTIONANDANALYSIS

Samplecollectionsweredoneinthemorningsofthefirstandlastdaysofthediet

periods.50Ondayonea12-hourfastingblooddrawwastakenandonday28,from

the20postprandialstudyparticipants,apostprandialblooddrawwascollected

followingbreakfast,at0,30,60,120,180,240,270,300,330,360,420,and480

minutesafterthestartofthemeal(Figure3).Afterbeingallowedtoclotfor

approximately30-45minutes,bothserumandplasmawerespunandaliquoted.

Sampleswereimmediatelystoredat-20°C,andplacedforstorageina-80°Cfreezer

bytheendoftheday.ThesamplesprovidedbytheCARB-PPLstudyforthislipid

analysishadnotbeenpreviouslythawed.Plasmasampleswereanalyzedatthe

UniversityofWashington’sNutritionObesityResearchCenteranalyticalcoreand

lipidpanelsweregenerated.

FFAsweremeasuredonaRocheCobasMiraPlusChemistryAnalyzerusingreagent

fromGenzyme/Wako.Afterbeingallowedtothawforapproximately30minutes,

sampleswereanalyzedatroomtemperature.

Figure3.Timesofpostprandialblooddraws.

STATISTICALANALYSIS

Theoverallgoalofthisstudywastotesttheeffectsofa28-daylow-vs.high-GLdiet

interventiononthepostprandialresponsesofserumlipids,specificallyfreefatty

acids.Wecalculatedareaunderthecurve(AUC)ofpost-prandialFFA

measurementsusingtrapezoidalapproximation.In30and60minutetimeperiods,

accordingtowhenblooddrawsweretaken,wecalculatedtheAUCforthe

postprandialperiodsafterbreakfastandafterlunch.WerepeatedtheAUCanalysis

separatelyforeachthenormalweightandoverweight/obesegroupsforthetotal

timeperiod,beforelunch,andafterlunch.Apairedt-testwasdoneforeachofthe

AUCanalysesinordertodetermineifasignificantp-valueexistedbetweenthediet

sets.

Fastinglipidpanelsdrawnonthe28thdayofeachdietperiodwereanalyzedusinga

2-waypairedANOVA.

RESULTS

Table1.Characteristicsofstudyparticipantsn=20 Agerange(y) 19-44Male/Female(n) 10,10BMI(n) 18.5-24.9kg/m2

("Normal"weightgroup)10

28-40kg/m2

("Overweight/obese"weightgroup)10

Ethnicity(self-reported) Non-Hispanicwhite 8Hispanic 7AfricanAmerican 4Asian/PacificIslander/NativeAmerican 1

Blockrandomizationoftheparticipantsensuredthattheparticipantgroupwas

composedofequalpartsmalesandfemalesandnormalweightand

overweight/obeseweightgroups.Therewerefivewomenandfivemencomprising

boththenormalandoverweight/obeseweightgroups.Onaverage,the

overweight/obeseweightgroupwasslightlyolderthanthenormalweightgroup(P

<0.001).Ethnicitydidnotvaryacrossweightgroups.Baseduponself-reporteddata

fromthedailyfoodcheck-offformsandreturnedfood,itappearedthat97%of

participantsconsumedmorethan90%oftheprovidedfoods.Nosignificant

differenceinadherencebystudydietwasdetermined.

Table2.Meanenergyandmacronutrientcontentof2400kcalhigh-andlow-GLreferencedietsa

High-GLdietn=7days

Low-GLdietn=7days

Dietarydescriptor mean±SD mean±SDEnergy(kcal/day)b 2398±8 2396±6Protein(g/day) 90±1 90±0Energyfromprotein(%usingtotalcarb) 15±0.2* 14±0.4*Energyfromprotein(%usingavailablecarb)c 15±0.2 16±0.2Fat(g/day) 80±0 81±1Energyfromfat(using%totalcarb) 30±0.3* 29±0.8*Energyfromfat(using%availablecarb) 31±0.2 31±0.6Totalcarbohydrate(g/day) 341±6* 361±15*Energyfromtotalcarbohydrate(%) 56±0.5* 57±1.1*Energyfromavailablecarbohydrate(%) 54±0.8 53±0.8Dietaryfiber(g/day) 24±5* 49±8*GI/day 78±5* 34±1*GL/day 244±14* 117±3*

aDatafromProNutra:MetabolicDietStudyManagementSystem(ViocareTechnologies)and/ortheNutritionDataSystemforResearch(version2005,NutritionCoordinatingCenter,UniversityofMinnesota)bTotalenergycalculatedassumsof4kcal/gprotein,9kcal/gfat,and4kcal/gtotalcarbohydrate.cTotalenergycalculatedusingavailablecarbohydrate.Asterisk(*)nexttoP-value,0.05forpairedt-testscomparinghigh-andlow-GLdiets.

Table2showstheplanneddailymeanmacronutrientcontent,dietaryGI,dietaryGL,

anddistributionofenergyforbothhigh-andlow-GL2400-kcalreferencediets.All

dietsateachenergylevelweresimilartothereferencedietshown.Fibercontent

washigherinthelow-GLdiet.Increasedfiberintakehasbeenshowntoreducetotal

cholesterolandapoBlevelsrelativetoHDL-cholesterolandApoA1levels,thus

reducingtheriskofcoronaryheartdisease.(29)Thepercentavailablecarbohydrate

doesnotfactorthefibercontentintoenergycalculations,asfiberisonlyavailable

forenergyafterfermentation.AvailablecarbohydrateisrecommendedbytheFAO

asausefulconceptforenergyevaluation.Necessaryenergyadjustmentsforweight

maintenancethroughoutthestudydidnotsignificantlydifferbydiettypeorfeeding

period.Thetestbreakfastconsumedforpostprandialanalysiswasconstructedtobe

composedofmacronutrientratiosconsistentwiththestudydiets.

Table3.Endofdietperiodfastinglipidpanelresults(n=20)

High-GL Low-GL

mg/dL Mean±SD Mean±SDCholesterol 142±29 140±33Triglyceride 84±51 93±73HDL 41±10 40±9LDL 85±23 81±24ApoA1 130±21 130±20ApoB 73±19 73±21Fastingbloodsamplesfrom20participantsweredrawnonday28ofeachdiet

period,beforeconsumptionofthetestbreakfast.TherewasnoeffectofGLon

fastingtotalcholesterol,HDLcholesterol,LDLcholesterol,ApoA1,andApoBlevels.

Table4.Totalparticipant(n=20)areaunderthecurve,plasmafreefattyacids BeforeLunch

mEq/LAfterlunchmEq/L

TotalTimemEq/L

High-GL 1.00±0.28 1.34±0.41 2.33±0.54Low-GL 1.02±0.36 1.48±0.52* 2.53±0.79

The“beforelunch”timeperiodisdefinedastimepoints0:00through4:00,andthe

“afterlunch”timeperiodastimepoints4:00through8:00.

Atspecifictimeperiods,thehigh-vs.low-GLdietdidnothaveanysignificanteffect

onplasmaFFAlevels.

Figure1.Mean±SDFFAlevels(mEq/L)oftheCARB-PPLparticipantsatthetimeofeachblooddraw.Betweenthehigh-GL(solidblueline)andthelow-GL(solidredline)diets,thereisnotasignificancedifferenceincirculatingFFAlevelsacrosstheeighthourtimeperiod.

00.10.20.30.40.50.60.70.80.91

0:00 0:30 1:00 2:00 3:00 4:00 4:30 5:00 5:30 6:00 7:00 8:00

mEq/L

TimeofBloodDraw

Figure4.EffectsofHigh-vs.Low-GLDietonPlasmaFreeFattyAcidAverage:Total

TimePeriod

High-GL Low-GL

Lunch

Breakfast

Figure2.Mean±SDFFAlevels(mEq/L)oftheCARB-PPLparticipantsatthetimeofeachblooddrawinthetimeperiodbeforealunchmealisconsumed(0:00to4:00).TrapezoidalapproximationsdidnotdeterminesignificanceinthedifferencebetweenFFAlevelsforthetwostudydiets,high-GL(solidblueline)andlow-GL(solidredline).

00.10.20.30.40.50.60.70.80.91

0:00 0:30 1:00 2:00 3:00 4:00

mEq/L

TimeofBloodDraw

Figure5.EffectsofHigh-vs.Low-GLDietonPlasmaFreeFattyAcidAverage:Pre-

LunchTimePeriod

Low-GL High-GL

LunchBreakfast

Figure3.Mean±SDFFAlevels(mEq/L)oftheCARB-PPLparticipantsatthetimeofeachblooddrawinthetimeperiodafteralunchmealisconsumed(4:00to8:00).TrapezoidalapproximationsdidnotidentifysignificanceinthedifferencebetweenFFAlevelsforthetwostudydiets,high-GL(solidblueline)andlow-GL(solidredline)atanyoftheindividualtimepoints.

00.10.20.30.40.50.60.70.80.91

4:00 4:30 5:00 5:30 6:00 7:00 8:00

mEq/L

TimeofBloodDraw

Figure6.EffectsofHigh-vs.Low-GLDietonPlasmaFreeFattyAcidAverage:Post-

LunchTimePeriod

Low-GL High-GL

Lunch

Table5.Areaunderthecurve,FFA:normalvs.overweight/obeseparticipants

n=10 Pre-Lunch(mEq/L)

Post-Lunch(mEq/L)

TotalTimePeriod(mEq/L)

NormalWeightBMI18.5-24.9kg/m2

High-GL 1.31±0.28 2.29±0.92 3.57±1.0Low-GL 1.25±0.37 2.26±1.00 3.51±1.30Overweight/ObeseBMI25-40kg/m2

High-GL 1.40±0.50 1.98±0.50 3.38±0.78Low-GL 1.45±0.57 2.34±0.72 3.29±1.18

WeanalyzedtheFFAresponseofthetwoweightgroups,normaland

overweight/obese,forthetwostudydietsseparatelybecauseofthepotential

impactthatadiposebiologymayhaveonFFAclearance.TherewasnoeffectofGL

onpostprandialFFAlevelsbetweenthetwoweightgroups.

0

0.2

0.4

0.6

0.8

1

0:00 0:30 1:00 2:00 3:00 4:00 4:30 5:00 5:30 6:00 7:00 8:00

mEq/L

TimeofBloodDraw

Figure7.EffectsofHigh-vs.Low-GLDietonPlasmaFreeFattyAcidAverage,Normalvs.Overweight/ObeseWeight

Groups:TotalTimePeriod

Low-GL,Normalweight Low-GL,Overweight/Obese

High-GL,Normalweight High-GL,Overweight/Obese

Lunch

Breakfast

Figure4.Mean±SDFFAlevels(mEq/L)oftheCARB-PPLparticipantsatthetimeofeachblooddrawintheeight-hourperiodfollowingthetestbreakfast.

DISCUSSIONThisrandomized,cross-over,controlledfeedingstudytestedtheeffectofhigh-GLvs.

low-GLexperimentaldietsonpost-prandialplasmaFFAlevels.Theresultsofour

analysisshowedthatahigh-vs.low-GLdietdidnothaveanysignificanteffecton

fastinglipidsorpost-prandialplasmaFFAlevelsintheeighthoursfollowingatest

breakfastmeal.However,thereisacomplexrelationshipbetweendietary

carbohydratesandbloodlipidlevels.WhileGLdoesnotappeartoaffectbloodlipid

levels,andbyextensioncardiovascularhealth,intheshort-term,furtherresearchis

neededtodetermineanylong-termimplications.Thecurrentstateofresearchdoes

notsupporttherecommendationofalow-GLdietforcardiovasculardisease

preventionovertherecommendationofother,proventherapeuticdiets.

ApreviouslypublishedstudyinvestigatingtheeffectsofGLoninsulinresponse

foundthatahigh-GLtestmealresultedinanincreasedinsulinresponseas

comparedtoalow-GLtestmeal(Figure8).61

Figure8.Meanconcentrations(±SD)offastingandpost-prandialplasmainsulininhealthyandoverweight-obeseparticipantswhowerefasting(time0)andthenconsumedahigh-(solidlinewithcloseddiamonds)andlow-(dottedwithopensquares)glycemicloadmeal.TakenfromRuncheyetal,2013.

ItcouldbeexpectedthatahigherinsulinresponsewouldmediatetheFFAresponse;

theFFAresponsetoahigh-GLmealwouldthusbethesameorlowerthanthattoa

low-GLmeal.FFAuptakefromthecirculationintoadiposetissueisinsulin-

dependentthroughtheactionoflipoproteinlipase.25ThestorageofFFAinadipose

tissueastriglyceridesisalsoinsulin-dependentthroughtheactionsofhormone-

sensitivelipaseandadiposetriglyceridelipase.35,72However,whiletheactionof

insulinonhormone-sensitivelipaseisimmediate,itsactiononthemorecrucial

enzyme,adiposetriglyceridelipase,istranscriptive.33Thus,thetrueeffectsof

insulinonplasmaFFAlevelswouldnotbevisibleintheearlypostprandialperiod.

Thefourhourpostprandialtimeperiodmonitoredintheinsulinstudyisinadequate

inindetermininganycarryovereffectofGLoninsulin,alsomakingitimpossibleto

comparetheobservedpost-lunchplasmaFFAlevelsofthisstudytoaninsulin

response.

WealsoexploredthepossibledifferenceinFFAresponsebetweenthenormal

weightandoverweight/obesegroups.WedidnotfindthatGLhadadifferenteffect

onpostprandialplasmaFFAlevelsbetweenthetwoweightgroups.Wecanthen

postulatethatadiposityalonedoesnothaveaneffectonplasmaFFAlevels.The

participantsofthisstudywerenotinsulinresistant,thereforetheirinsulinresponse

wasthesameastheirnormalweightcounterparts.Theinsulinstudysimilarlydid

notobserveeffectsofadiposityoninsulinresponse.59

STRENGTHSANDLIMITATIONS

Thisstudywasacrossoverdesignwithtwo28-daycontrolleddietinterventions

differingsubstantiallyinGL.Itwasalsouniqueinthatthedietswereindividualized

toberealistic,isocaloric,andweigh-maintainingdespitebeinghigh-orlow-GL.

Therewereseveralsignificantlimitationstothisstudy.Therewasasmallsample

sizeforthepostprandialarmofthestudy;thesamplesizewasevensmallerwhen

participantsweredividedbyweightgroup.Participantswerealsosampledfroma

populationgroupthatmetveryspecificenrollmentcriteria.Allparticipantswere

healthyandinsulin-responsive,withnormalglycemiccontrol.Thiswasnota

population-basedparticipantgroup,thusresultsarelikelynotgeneralizable.

Becausevolunteerswithinsulinresistancewerenotincludedinthisstudy,wewere

unabletoexploretheeffectsofGLonbloodlipidsinthoseindividuals.Therewasno

differenceinpancreaticfunctionbetweenourweightgroups,andthereforeno

expected,orobserved,differenceininsulinresponse.Ourparticipantswerealso

limitedtothenormalandveryoverweightorobese.Beingoverweightisthoughtto

beprotectiveagainstmanychronicdiseasesandtheirriskfactors,yetwewere

unabletoexploredifferencesinFFAresponseamongtheseindividualscomparedto

theotherweightgroups.

Thedietlengthof28daysonlyallowedustointerprettheshort-termeffectsofGL

onpostprandialFFAlevels.Insulinresistancedevelopingduetoachronicallyhigh

carbohydrateintakeandstressonthepancreaticβ-cellsisnotdiscernableinafour-

weekspan.AstudyoflongerdurationwouldbeneededtodetermineifGLdirectly

contributestothedevelopmentofinsulinresistance,contributingindirectlyto

unfavorablelipidprofilesandthedevelopmentofcardiovasculardisease.

FUTUREDIRECTIONS

Thereisaneedforarandomizedcontrolledtrialofdurationlongerthan12weeks

todeterminetheeffectsofGLonbloodlipids,specificallyplasmaFFAlevels,andthe

riskofcardiovasculardisease.Thereiscurrentlylittle,ifany,evidencetosupport

thatalow-GLdietcouldbeprotectiveagainstthedevelopmentofcardiovascular

disease.

StudiesexploringtheeffectsofGLonbloodlipidprofilesbetweenindividualswith

insulinresistancearenecessarytodeterminehearthealthimplications.Wecould

thenmoreappropriatelydeterminewhetheralow-GLdietisbeneficialtoboth

insulinresistantandhealthindividuals,oronlytheformer.Wewouldalsobeable

toexploretheeffectsofGLversusanothertherapeuticdietthatperhapsprovides

protectivebenefitsinclusiveofbutnotlimitedtoGL.

CLINICALIMPLICATIONS

Basedonthisstudyandthecurrentstateoftheliterature,itcannotbe

recommendedthathealthcareproviderscounselalow-GLdietforthepreventionof

cardiovasculardiseaseinahealthypatientpopulationoverotherproven

therapeuticdiets.ThisstudydoesnotsupportarecommendationfortheuseofGL

inpreventingcardiovasculardiseaseinhealthyindividualsasneitherlow-norhigh-

GLdietswereshowntobeprotectiveagainstcoronaryheartdiseaseinregardsto

FFA.

REFERENCES

1. AssmannG,PCullen,andHSchulte.TheMunsterHeartStudy(PROCAM)–

resultsoffollow-upat8years.EurHeartJ.1998;19:A2-A11.

2. AulingerBA,TPVahl,RLPrigeon,DAD’Alessio,andDAElder.Theincretineffectinobeseadolescentswithandwithouttype2diabetes:impairedorintact?AmJPhysiol.2016;310(9):E774-E781.

3. BarclayAW,PPetocz,JMcMillan-Price,VMFlood,TPrvan,PMitchell,andJC

Brand-Miller.Glycemicindex,glycemicload,andchronicdiseaserisk–ameta-analysisofobservationalstudies.AmJClinNutr.2008;87(3):627-637.

4. BehallKM,DJScholfield,IYuhaniak,andJCanary.Dietscontaininghigh

amylosevs.amylopectinstarch:effectsonmetabolicvariablesinhumansubjects.AmJClinNutr.1989;49:337-44.

5. BeulensJWJ,LMdeBruijne,RPStolk,PHMPeeters,MLBots,DEGrobbee,and

YTvanderSchouw.Highdietaryglycemicloadandglycemicindexincreaseriskofcardiovasculardiseaseamongmiddle-agedwomen:apopulation-basedfollow-upstudy.JAmCollegeCario.2007;50(1):14-21.

6. BickertonAST,RRoberts,BAFielding,LHodson,EEBlaak,AJM

Wagenmakers,MGilbert,FKarpeandKNFrayn.Preferentialuptakeofdietaryfattyacidsinadiposetissueandmuscleinthepostprandialperiod.Diabetes.2007;56(1):168-176.

7. BjörntorpP.“Portal”adiposetissueasageneratorofriskfactorsfor

cardiovasculardiseaseanddiabetes.ArteriosclerThrombVascBiol.1990;10:493-496.

8. BodenGandGIShulman.Freefattyacidsinobesityandtype2diabetes:

definingtheirroleinthedevelopmentofinsulinresistanceandbeta-celldysfunction.EuroJClinInvestigation.2002;32(s3):14-23.

9. BouchéC,SWRizkalla,JLuo,HVidal,AVeronese,NPacher,CFouquet,V

Lang,andGSlama.Five-week,low-GIdietdecreasestotalfatmassandimprovesplasmalipidprofileinmoderatelyoverweight,non-diabeticmen.DiabetesCare.2002;25(5):822-828.

10. BrounsF,BjorckI,FraynKN,GibbsAL,LangV,SlamaG,andWoleverTMS.

Glycaemicindexmethodology.NutrResRev.2005;18(1):145-171..

11. BurgerKNJ,JWJBeulens,JMABoer,AMWSpijkerman,andDLvanderA.Dietaryglycemicloadandglycemicindexandriskofcoronaryhearddiseaseandstrokeindutchmenandwomen:theEPIC-MORGENstudy.PLOSOne.2011;6(10):e25955

12. CastelliWP.Epidemiologyoftriglycerides–aviewfromFramingham.AmJ

Cardiol.1992;70:H3-H9.

13. Castro-QuezadaI,Sanchez-VillegasA,EstruchR,Sala-SalvadoJ,CorellaD,SchroderH,Alvarez-PerezJ,Ruiz-LopezMD,ArtachoR,RosE,BulloM,CovasMI,Ruiz-GutierrezV,Ruiz-CanelaM,Buil-CosialesP,Gomez-GraciaE,LapetraJ,PintoX,ArosF,FiolM,Lamuela-RAventosRM,Martinez-GonzalezMA,Serra-MajemL,onbehalfofthePREDIMEDStudyInvestigators.AhighdietaryglycemicindexincreasestotalmortalityinaMediterraneanpopulationathighcardiovascularrisk.PLOSONE.2014;9(9).

14. ChaneyS.Overviewoflipidmetabolism.Lecture,UNCMedicalSchool.20

September2005.

15. ClappJF,LopezB.Low-versushigh-glycemicindexdietsinwomen:effectsoncaloricrequirement,substrateutilization,andinsulinsensitivity.MetabolicSyndromeandRelatedDisorders.2007;5(3):231-241.

16. CocatePG,PereiraLG,JCBMarins,PRCecon,JBressan,andRCGAlfenas.

Metabolicresponsestohighglycemicindexandlowglycemicindexmeals:acontrolledcrossoverclinicaltrial.NutrJ.2011;10:1.

17. CullenP.Evidencethattriglyceridesareanindependentcoronaryheart

diseaseriskfactor.AmJCardiol.2000;86(9):943-949.

18. DimitriadisG,PMitrou,VLambadiari,EMaratou,andSARaptis.Insulineffectsinmuscleandadiposetissue.DiabetesResearchandClinicalPractice.2011;93:S52-S59.

19. FAO.Carbohydratesinhumannutrition.ReportofaJointFAO/WHOExpert

Consultation(FAOFoodandNutritionPaper66).FoodandAgricultureOrganization:Rome.1998.

20. FareseJrRV,TJYost,andRHEckel.Tissue-specificregulationoflipoprotein

lipaseactivitybyinsulin/glucoseinnormal-weighthumans.Metabolism.1991;40(2):214-216.

21. FlemingPandMGodwin.Low-glycaemicindexdietsinthemanagementof

bloodlipids:asystematicreviewandmeta-analysis.FamilyPractice.2013;30:485-491.

22. FraynKN.Adiposetissueandtheinsulinresistancesyndrome.Proceedingsofthenutritionsociety.2001;60(3):375-380.

23. FrostG,LeedsAA,DoreCJ,MadeirosS,BradingS,andDornhorstA.

GlycaemicindexasadeterminantofserumHDL-cholesterolconcentration.Lancet.1999;353(9158):1045-1048.

24. GalganiJ,AguirreC,DiazE.Acuteeffectofmealglycemicindexandglycemic

loadonbloodglucoseandinsulinresponsesinhumans.Nutritionjournal.2006;5:22.

25. GoldbergIJ,RHEckel,andNAAbumrad.Regulationoffattyaciduptakeinto

tissues:lipoproteinlipase-andCD36-mediatedpathways.JLipidRes.2009;50:S86-S90.

26. GoldbergIJ.Lipoproteinlipaseandlipolysis:centralrolesinlipoprotein

metabolismandatherogenesis.JLipidRes.1996;37:693-707.

27. HendricksonSC,JDLouis,JELowe,andSAbdel-aleem.Freefattyacidmetabolismduringmyocardialischemiaandreperfusion.MolCellBiochem.1997;166:85-94.

28. JoãoAL,FReis,andRFernandex.TheincretinsystemABCsinobesityand

diabetes:noveltherapeuticstrategiesforweightlossandbeyond.ObesityReviews.2016;17(7):553-572.

29. JenkinsDJ,WoleverTM,KalmuskyJ,GiudiciS,GiordanoC,WongGS,BirdJN,

PattenR,HallM,BuckleyG.LowglycemicindexcarbohydratefoodsinthemanagementAmericanJournalofClinicalNutrition.1985;42:604-617.

30. JenkinsDJ,WoleverTM,TaylorRH,BarkerH,FieldenH,BaldwinJM,Bowling

AC,NewmanHC,JenkinsAL,GoffDV.Glycemicindexoffoods:Aphysiologicalbasisforcarbohydrateexchange.TheAmericanJournalofClinicalNutrition.1981;34:362-366.

31. JohnsI,LGoff,LJBluck,BAGriffin,SAJebb,JALovegrove,TASanders,G

Frost,andADornhorst.Plasmafreefattyacidsdonotprovidethelinkbetweenobesityandinsulinresistanceorbeta-cellhysfunction:resultsoftheReading,Imperial,Surrey,Cambridge,Kings(RISCK)study.DiabetMed.2014;31(11):1310-1315.

32. KellySAM,FrostG,WhittakerV,andSummerbellCD.Lowglycaemicindex

dietsforcoronaryheartdisease.CochraneDatabaseSystRev.2004;18(4):CD004467.

33. KershawEE,JKHamm,LAWVerhagen,OPeroni,MKatic,andJSFlier.Adiposetriglyceridelipase.Diabetes.2006;55(1):148-157.

34. KiensB,HLithell,KJMikines,andEARichter.Effectsofinsulinandexercise

onmusclelipoproteinlipaseactivityinmananditsrelationtoinsulinaction.JClinInvest.1989;84(4):1124-1129.

35. KiensBandEARichter.Typesofcarbohydrateinanordinarydietaffect

insulinactionandmusclesubstratesinhumans.AmJClinNutr.1996;63(1):47-53.

36. KoutsariCandMDJensen.Thematicreviewseries:patient-oriented

research:freefattyacidmetabolisminhumanobesity.JLipRes.2006;47:1643-1650.

37. LevitanEB,MAMittleman,andAWolk.Dietaryglycemicindex,dietary

glycemicloadandmortalityamongmenwithestablishedcardiovasculardisease.EurJClinNutr.2009;63(4):439.

38. LiH,LiuH,ChenJ,LiL,WansH,LiJ,andWangL.Relationshipbetween

glycemicloadandbloodlipidlevelinhospitalizedadultchinese.IranJPublicHealth.2015;44(30):318-324.

39. LiuS,MansonJE,MeirMJ,HolmesMD,HuFB,HankinsonSE,andWilletWC.

Dietaryglycemicloadassessedbyfood-frequencyquestionnaireinrelationtoplasmahigh-density-lipoproteincholesterolandfastingplasmatriacylglycerolsinpostmenopausalwomen.AmJClinNutr.2001;73(3):560-566.

40. LiuS,WilletWC,StampferMJ,HuFB,FranzM,SampsonL,HennekensCH,

andMansonJE.Aprospectivestudyofdietaryglycemicload,carbohydrateintake,andriskofcoronaryheartdiseaseinUSwomen.AmJClinNutr.2000;71(6):1455-1461.

41. LudwigDS.Theglycemicindex:physiologicalmechanismsrelatingto

obesity,diabetes,andcardiovasculardisease.JAMA.2002;287(18):2414-2423.

42. ManninenV,LTenkanen,PKoskinen,JKHuttunen,MMänttäri,OPHeinonen,

andMHFrick.JointeffectsofserumtriglycerideandLDLcholesterolandHDLcholesterolconcentrationsoncoronaryheartdiseaseriskintheHelsinkiHeartStudy.Circulation.1992;85:37-45.

43. ManzellaD,MBarbieri,MRRizzo,ERagno,NPassariello,AGambardella,R

Marfella,DGiugliano,andGPaolisso.Roleoffreefattyacidsoncardiac

autonomicnervoussysteminnoninsulin-dependentdiabeticpatients:effectsofmetaboliccontrol.JCinEndocrinolMetab.2001;86:2768-2774.

44. Martin-SanzP,JEVance,andDNBrindley.Stimulationofapoliprotein

secretioninvery-low-densityandhigh-densitylipoproteinsfromculturedrathepatocytesbydexamethasone.BiochemJ.1990;271:575-583.

45. MeadJR,SAIrvine,andDPRamji.Lipoproteinlipase:structure,function,

regulation,androleindisease.JMolMed.2002;80(12):753-769.

46. MirrahimiA,RJdeSouza,LChiavaroli,JLSievenpiper,JBeyene,AJHanley,LSAugustin,CWKendall,andDJJenkins.Associationsofglycemicindexandloadwithcoronaryheartdiseaseevents:asystematicreviewandmeta-analysisofprospectivecohorts.JAmHeartAssoc.2012;1(5):e000752.

47. MurrayAJ,REAnderson,GCWatson,GKRaddda,andKClarke.Uncoupling

proteinsinhumanheart.Lancet.2004;364:1786-1788.

48. NessGCandCMChambers.Feedbackandhormonalregulationorhepatic3-hydroxy-3-methylglutarylcoenzymeAreductase:theconceptofcholesterolbufferingcapacity.ProceedingsoftheSocietyforExperimentalBiologyandMedicine.2000;224(1):8-19.

49. NauckMAandJJMeier.Theincretineffectinhealthyindividualsandthose

withtype2diabetes:physiology,pathophysiology,andresponsetotherapeuticinterventions.LancetDiabetesandEndocrinology.2016;4(6):525-536.

50. NeuhouserML,YSchwarz,CWang,KBreymeyer,GCoronado,CYWant,K

Noar,XSong,andJWLampe.Alow-glycemicloaddietreducesserumc-reactiveproteinandmodestlyincreasesadiponectininoverweightandobeseadults.JNutr.2012;142(2):369-374.

51. NordestgaardBG,MBenn,PSchnohr,andATybærg-Hansen.Nonfasting

triglyceridesandriskofmyocardialinfarction,ischemicheartdisease,anddeathinmenandwomen.JAMA.2007;298(3):299-308.

52. OliverMFandLHOpie.Effectsofglucoseandfattyacidsonmyocardial

ischemiaandarrhythmias.Lancet.1994;343;155-158.

53. OppermanAM,VenterCS,OosthuizenW,ThompsonRL,andVorsterHH.Meta-analysisofthehealtheffectsofusingtheglycaemicindexinmeal-planning.Br.J.Nutr.2004;92:367–381.

54. PihlajamäkiJ,HGylling,TAMiettinen,andMLaakso.Insulinresistnaceisassociatedwithincreasedcholesterolsynthesisanddecreasedcholesterolabsorptioninnormoglycemicmen.JLipidRes.2004;45:507-512.

55. PilzS,JScharnagl,BTiran,USEelhorst,BWellnitz,BOBoehm,JRSchaefer,

andWMarz.Freefattyacidsareindependentlyassociatedwithall-causeandcardiovascularmortalityinsubjectswithcoronaryheartdisease.JClinEndocrinolMetab.2006;91(7).

56. RadulianG,ERusu,ADragomir,andMPosea.Metaboliceffectsoflow

glycemicindexdiets.NutrJ.2009;8(5).

57. ReshefL,RWHanson,andFJBallard.Apossiblephysiologicalroleforglyceroneogeneisinratadiposetissue.JBiolChem.1970;245(22):5970-5984.

58. ReshefL,YOlswang,HCassuto,BBlum,CMCroniger,SCKalhan,SMTilghman,andRWHanson.Glyceroneogenesisandthetriglyceride/fattyacidcycle.JBiolChem.2003;278:30413-30416.

59. RizkallaSW,TaghridL,LaromiguiereM,HuetD,BoillotJ,RigoirA,ElgrablyF,

SlamaG.Improvedplasmaglucosecontrol,whole-bodyglucoseutilization,andlipidprofileonalow-glycemicindexdietintype2diabeticmen:Arandomizedcontrolledtrial.DiabetesCare.2004;27:1866-1872.

60. RobertsonMD,HendersonRA,VistGE,RumseyRD.Extendedeffectsof

eveningmealcarbohydrate-to-fatratioonfastingandpostprandialsubstratemetabolism.AmJClinNutr.2002;75:505-510.

61. RuncheySS,PollakMN,ValstaLM,CoronadoGD,SchwarzY,BreymeyerKL,

WangC,WangCY,LampeJW,NeuhouserML.Glycemicloadeffectonfastingandpost-prandialserumglucose,insulin,igf-1andigfbp-3inarandomized,controlledfeedingstudy.Europeanjournalofclinicalnutrition.2012;66:1146-1152.

62. RuncheySS,LMValsta,YSchwarz,CWang,XSong,JWLampe,andML

Neuhouser.Effectoflow-andhigh-glycemicloadoncirculatingincretinsinarandomizedclinicaltrial.Metabolism.2013;62(2):188-195.

63. SaltielARandCRKahn.Insulinsignalingandtheregulationofglucoseand

lipidmetabolism.Nature.2001;414(6865):799-806.

64. ShikanyJM,TinkerLF,NeuhouserML,MaY,PattersonRE,PhillipsLS,LiuS,andReddenDT.Associationofglycemicloadwithcardiovasculardiseaseriskfactors:theWomen’sHealthInitiativeObservationalStudy.Nutr.2010;26(6):641-647.

65. SchweigerM,RSchreiber,GHaemmerle,ALass,CFledelius,PJacobsen,H

Tornqvist,RZechner,andRZimmermann.Adiposetriglyceridelipaseandhormone-sensitivelipasearethemajorenzymesinadiposetissuetriacylglycerolcatabolism.JBiolChem.2006;281:40236-40241.

66. ThomasDE,EJElliott,andLBaur.Lowglycemicindexorlowglycemicload

dietsforoverweightandobesity.CochraneDatabaseSyst.Rev.2007;18(3):CD0055105.

67. VanDamRM,AWVisscher,EJFeskens,PVerhoef,andDKromhout.Dietary

glycemicindexinrelationtometabolicriskfactorsandincidenceofcoronaryheartdisease:theZutphenElderlyStudy.EurJClinNutr.2000;54(9):726-731.

68. VanSchothorstEM,BunshotenA,SchrauwnP,MensinkRP,andKeijerJ.

Effectsofahigh-fat,low-versushigh-glycemicindexdiet:retardationofinsulinresistanceinvolvesadiposetissuemodulation.FASEBJ.2009;23(4):1092-1101.

69. WilcoxG.Insulinandinsulinresistance.ClinBiochemRev.2005;26(2):19-

39.

70. WoleverTMandJenkinsDJ.Theuseoftheglycemicindexinpredictingthebloodglucoseresponsetomixedmeals.AmJClinNutr.1986;43:167-172.

71. WoleverTMSandMehlingC.Long-termeffectofvaryingthesourceor

amountofdietarycarbohydrateonpostprandialplasmaglucose,insulin,triacylglycerol,andfreefattyacidconcentrationsinsubjectswithimpairedglucosetolerance.AmJClinNutr.2003;77(3):612-621.

72. ZhangZ,LanzaE,Kris-EthertonPM,ColburnNH,BagshawD,RovineMJ,

UlbrechtJS,BobeG,ChapkinRS,HartmanTJ.Ahighlegumelowglycemicindexdietimprovesserumlipidprofilesinmen.Lipids.2010;45(9):765-775.

73. ZimmermannR,JGStrauss,GHaemmerle,GShoiswohl,RBirner-

Gruenberger,MRiederer,ALass,GNeuberger,FEisenhaber,AHermetter,andRZechner.Fatmobilizationinadiposetissueispromotedbyadiposetriglyceridelipase.Science.2004;306(5700):1383-1386.