lpmmc, cnrs and université grenoble-alpes

41
Dipole modes in a split trap Marco Cominotti, Frank Hekking, Anna Minguzzi LPMMC, CNRS and Université Grenoble-Alpes

Upload: others

Post on 16-Oct-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LPMMC, CNRS and Université Grenoble-Alpes

Dipole modes in a split trap

Marco Cominotti, Frank Hekking, Anna MinguzziLPMMC, CNRS and Université Grenoble-Alpes

Page 2: LPMMC, CNRS and Université Grenoble-Alpes

Interacting 1D Bose gases with ultracold atoms

● Interactions due to atom-atom collisions in a waveguide

(3D s-wave scattering length)

● Effective 1D interactions [M.Olshanii, 1998]

● Hamiltonian (Lieb-Liniger with external potential)

Dimensionless interaction strength :

interaction energy/kinetic energy

Page 3: LPMMC, CNRS and Université Grenoble-Alpes

● No Bose-Einstein condensation in uniform 1D system – phase fluctuations increase at increasing interactions

● Duality : density fluctuations decrease at increasing interactions

Hannover, 2001

M. Cazalilla, JPhysB 2001

K = Luttinger parameter, depending on interaction strength

Important quantum fluctuations

● Strongly interacting TG regime reached in experiments with ultracold gases (David Weiss talk)

Page 4: LPMMC, CNRS and Université Grenoble-Alpes

1D interacting Bose gas with a barrier● An interacting fluid adjusts in proximity of a barrier :

– healing of a Bose-Einstein condensate near a wall

– Friedel oscillations of a Fermi gas near an impurity

– a moving barrier drags the fluid

– in an infinite, interacting system, the barrier may be very important or negligible depending on interaction strength [Kane and Fisher] → barrier renormalization

Den

sity

pro

file

Distance

Den

sity

pro

file

Distance

Page 5: LPMMC, CNRS and Université Grenoble-Alpes

Transport across a barrier in interacting quantum gases 

→ Finite, inhomogeneous systems ←→ Arbitrary interactions ←

Our idea : sloshing dipole mode to probe barrier healing and renormalization in a confined geometry

Page 6: LPMMC, CNRS and Université Grenoble-Alpes

Plan● Dipole mode : excitation protocol, type of confinement

● Dipole mode frequency – integrable and nonintegrable cases

● Main result :

→ Two nontrivial effects at strong interactions : barrier renormalization and a parity effect ←

→ Benchmark of inhomogenenous Luttinger Liquid theory ←

Page 7: LPMMC, CNRS and Université Grenoble-Alpes

Collective excitations in quantum gases : high-precision tool

Collective-modes frequencies are measured with high precision → information on– equation of state– superfluidity, vortices– scale invariance– beyond mean-field effects

Altmeyer et al PRL 98, 040401 (2007)

Ferrier-Barbut et al Science 345, 1035 (2014)

Chevy et al PRL 88, 250402 (2002)

Page 8: LPMMC, CNRS and Université Grenoble-Alpes

Kohn's theorem for the dipole mode

● In a purely harmonic trap the dipole sloshing mode has frequency

● holds for arbitrary interactions

● not a compressional mode :

● simmetry preperty, consequence of the harmonic- trap geometry : equivalent to looking at the system from an oscillating accelerated frame

A. Minguzzi PRA 64, 033604 (2001)

Page 9: LPMMC, CNRS and Université Grenoble-Alpes

Exciting the dipole mode in a split trap :  quench protocol

● t<0 : 1D interacting bosons at equilibrium in a split trap (harmonic trap + thin barrier)

● t=0 : sudden shift of the split-trap position

● t>0 : time evolution ?

Page 10: LPMMC, CNRS and Université Grenoble-Alpes

Quench dynamics for small trap displacement

Follow the center-of mass position 

at increasing barrier strength:

→ additional harmonics

→ frequency shift of the dipole mode – violation of the Kohn's theorem due to the presence of the barrier

with

Ideal gas solution 

Page 11: LPMMC, CNRS and Université Grenoble-Alpes

Large particle numbers and weak interactions : Gross-Pitaevskii

equation● Neglect quantum fluctuations – in 1D always an

approximation

● Initial state : numerical evolution in imaginary times under the pre-quench Hamiltonian

● Dynamics : numerical evolution in real times under the post-quench Hamiltonian (shifted trap)

Page 12: LPMMC, CNRS and Université Grenoble-Alpes

Weak interactions regime ● Density profiles at increasing interaction strength

Page 13: LPMMC, CNRS and Université Grenoble-Alpes

Weak interactions regime ● Density profiles at increasing interaction strength

● Dipole frequency at increasing interaction strength :

tends to the bare harmonic value due to barrier screening 

Page 14: LPMMC, CNRS and Université Grenoble-Alpes

Weak interactions regime ● Density profiles at increasing interaction strength

● Dipole frequency at increasing interaction strength :

tends to the bare harmonic value due to barrier screening 

?

Page 15: LPMMC, CNRS and Université Grenoble-Alpes

Infinitely strong interactions : exact solution for the full dynamics

Time-dependent Bose-Fermi mapping [Girardeau,Wright, PRL (2000)]:

→ the cusp condition is preserved in the dynamics

Note : exact solution of the quench dynamics for arbitrary– barrier strength – time evolution – trap shift

Needs the solution of the time-dependent single-particle problem : analytical expression [Busch et al, J. Phys. B 36, 2553 (2003)]

Page 16: LPMMC, CNRS and Université Grenoble-Alpes

Center-of-mass evolution of a Tonks-Girardeau gas

Exact quantum evolution in time – small displacement, various barrier strengths

v

N=8

the dipolar frequency increases at increasing the barrier strength

focus on (small barrier)

Page 17: LPMMC, CNRS and Université Grenoble-Alpes

Tonks-Girardeau regime :...prediction of parity effect

Dipole-mode frequency for a weak barrier

for HO confinement, one of the two last orbital vanishes in x=0 → parity effect : – for N odd : – for N even :

Page 18: LPMMC, CNRS and Université Grenoble-Alpes

Tonks-Girardeau regime :...prediction of parity effect

Dipole-mode frequency for a weak barrier

for HO confinement, one of the two last orbital vanishes in x=0 → parity effect : – for N odd : – for N even :

Transport occurs at the Fermi surface for a strongly correlated Bose gas  – parity effect as signature of fermionization

Page 19: LPMMC, CNRS and Université Grenoble-Alpes

Strong interactions : Luttinger Liquid theory

● Effective low-energy theory – quantum hydrodynamics→ bosonic field operator

● Fields for phase and density fluctuations

● Non-linear dependence of the fields in the density operator

● Density and phase are canonically conjugate

Page 20: LPMMC, CNRS and Université Grenoble-Alpes

Inhomogeneous Luttinger ● Slowly varying inhomogeneity : use the local-density approximation

for the harmonic confinement

● position-dependent Luttinger parameters

● to proceed analytically, Ansatz for the equation of state

Page 21: LPMMC, CNRS and Université Grenoble-Alpes

Normal modes for the inhomogeneous Luttinger liquid

● Mode expansion

● Diagonal Hamiltonian :

● Mode amplitudes

● Solution : Gegenbauer polynomials; dispersion :

Page 22: LPMMC, CNRS and Université Grenoble-Alpes

Barrier renormalization with Luttinger-Liquid theory

● The barrier is very localized → cannot be treated with LDA

● Integrating out the higher-energy density fluctuation modes :

from the LL expression for the density operator

Page 23: LPMMC, CNRS and Université Grenoble-Alpes

Barrier renormalization with Luttinger-Liquid theory

● The barrier is very localized → cannot be treated with LDA

● Integrating out the higher-energy density fluctuation modes :

● Barrier renormalization by quantum fluctuations of the density:

● Ueff decreases at decreasing interactions● The exponent is different from the

homogeneus case !

Page 24: LPMMC, CNRS and Université Grenoble-Alpes

Barrier renormalization with Luttinger-Liquid theory

● The barrier is very localized → cannot be treated with LDA

● Integrating out the higher-energy density fluctuation modes :

● Parity effect :

Page 25: LPMMC, CNRS and Université Grenoble-Alpes

Dipole mode frequency vs interaction strength

● Main result – from Gross-Pitaevskii, Tonks Girardeau and Luttinger liquid theory

Phase-density duality : at increasing interactions, barrier renormalization decreases

Cominotti, Hekking, Minguzzi, arXiv:1503.07776

The frequency shift is a direct measure of the competition of barrier screening and renormalization by quantum fluctuations

Ideal gas limit

Tonks-Girardeau exact result

Page 26: LPMMC, CNRS and Université Grenoble-Alpes

Numerical approach  for small trap displacement

Dipole-mode frequency from perturbation theory :

Ground and first-excited state from numerical diagonalization – arbitrary interactions

Page 27: LPMMC, CNRS and Université Grenoble-Alpes

 Exact diagonalization methodDetermine to high accuracy the ground- and first- excited state of the many-body Hamiltonian

Number of particles limited to N< 10

● represented on the basis of the single particle problem

● truncated Hilbert space :

Importance of Luttinger Liquid theory to treat larger N – need of benchmark

Page 28: LPMMC, CNRS and Université Grenoble-Alpes

 Dipole mode frequency vs interaction strength

Exact diagonalization results for N=4 and 5

● Parity effect at large interactions : an effect of correlations● Nontrivial frequency shift with interaction strength ...

→ barrier screening and renormalization

Tonks-Girardeau exact result

Ideal gas limit

Cominotti, Hekking, Minguzzi, arXiv:1503.07776

Page 29: LPMMC, CNRS and Université Grenoble-Alpes

Effect of non-centered barrier● Dipole-mode frequency from Tonks-Girardeau and Luttinger

liquid theory

Cominotti, Hekking, Minguzzi, arXiv:1503.07776

centered barrier, frequency vs interaction strength

non-centered barrier, frequency vs distance from center

Page 30: LPMMC, CNRS and Université Grenoble-Alpes

Effect of non-centered barrier● Dipole-mode frequency from Tonks-Girardeau and Luttinger

liquid theory

Cominotti, Hekking, Minguzzi, arXiv:1503.07776

Oscillatory behaviour vs barrier distance, 'particle-counting effect' – well accounted for by the Luttinger-liquid theory

centered barrier, frequency vs interaction strength

non-centered barrier, frequency vs distance from center

Page 31: LPMMC, CNRS and Université Grenoble-Alpes

...and at finite temperature ?● Exact solution for the quench dynamics at finite temperature

using the thermal Bose-Fermi mapping● Dipole frequency from a Fourier analysis of

Cominotti, Hekking, Minguzzi, arXiv:1503.07776

Both even-like and odd-like contributions

Page 32: LPMMC, CNRS and Université Grenoble-Alpes

Spectral function at finite T● Understanding the frequency contributions to the center-of-

mass motion at finite temperature

Linear response theory:

from exact dynamical evolution (on a finite time)

Parity effect still visible at finite temperature !

Page 33: LPMMC, CNRS and Université Grenoble-Alpes

Conclusions ● Dipole frequency as a powerful tool to explore effects of

quantum fluctuations 

● Competition between barrier screening at weak interactions and renormalization at strong interactions

● Parity effect due to onset of strongly correlated regime & fermionization

Page 34: LPMMC, CNRS and Université Grenoble-Alpes

Outlook

● Beyond small shift / weak barrier regime :

– damping ?

– dynamics at long times ?

– phase slips ? [found in lattice model : I. Danshita, PRL 2013]

● Fermions, multimode,...

Page 35: LPMMC, CNRS and Université Grenoble-Alpes

Other recent Grenoble results

Current amplitude vs interaction strength – nonmonotonous → screening vs barrier renormalization

M. Cominotti et al PRL 113, 025301 (2014)

● Persistent currents for 1D bosons under a gauge field– ground state energy vs Coriolis flux

Page 36: LPMMC, CNRS and Université Grenoble-Alpes

Other recent Grenoble results● Dynamic structure factor and drag force of a strongly

interacting 1D Bose gas at finite temperature 

G. Lang, F.W.J. Hekking and AM Phys. Rev. A, 91 063619 (2015)

● Close to the backscattering point

● Exact vs Luttinger liquid approach

● Temperature-dependent Luttinger parameters

Page 37: LPMMC, CNRS and Université Grenoble-Alpes

Other recent Grenoble results● Exciton polaritons in semiconductors : out-of-

equilibrium quantum fluids

Wavevector (k||)0

laser

f

f 00

Ene

rgy

Wavevector |k||| (µm-1)

 

 

­10 ­5 0

2794

2796

2798

2800

2802

2804

2806

2808

2810

2812

2814

0

1

2

3

4

5

6

 

 

20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1

1.2

­0.1

­0.05

0

0.05

0.1

Pla

s (µ

W) Heating

Cooling

Frid

ge p

ower

Pfr

(pW

)

Temperature (K)

laser

● Laser cooling of a solid – polariton excitation absorbs phonons

S. Klembt et al, Phys Rev. Lett. 114, 186403 (2015)

Page 38: LPMMC, CNRS and Université Grenoble-Alpes

Other recent results

F. Cartarius, G. Morigi, AM Phys Rev. A 90, 053601 (2014)

● Linear-zig-zag structural transition for dipolar gases● at opening transverse confinement : weakly first order

structural transition and intermediate soliton solutions● different from ion-trap (Coulomb) case

Page 39: LPMMC, CNRS and Université Grenoble-Alpes

Thank you !

Page 40: LPMMC, CNRS and Université Grenoble-Alpes

Scaling of parity gap with size● The parity effect vanishes in the thermodynamic limit

● From the Tonks-Girardeau solution : 

Effective barrier : similar results at larger N with a larger barrier

Page 41: LPMMC, CNRS and Université Grenoble-Alpes

Other recent Grenoble results

● Dynamical depinning of a Tonks-Girardeau gas from an optical lattice – a study of the exact time evolution for a finite system, link to GGE

time

Den

sity

pro

file

at x

=L/

3O

ne-b

ody

dens

ity m

atrix

F. Cartarius, E. Kawasaki, AM, arXiv:1505.01009

Equilibrium, no lattice – power law

Quench dynamics following a lattice turn off – exponential