mattiucci s.* & nascetti g.**ging to the genus anisakis thus became the subject of our past and...

15
99 Mise au point Parasite, 2006, 13, 99-113 MOLECULAR SYSTEMATICS, PHYLOGENY AND ECOLOGY OF ANISAKID NEMATODES OF THE GENUS ANISAKIS DUJARDIN, 1845: AN UPDATE MATTIUCCI S.* & NASCETTI G.** Summary : Advances in the taxonomy and ecological aspects concerning geographical distribution and hosts of the so far genetically recognised nine taxa of the nematodes belonging to genus Anisakis (i.e. A. pegreffii, A. simplex s.s., A. simplex C, A. typica, A. ziphidarum, Anisakis sp., A. physeteris, A. brevispiculata and A. paggiae) are here summarized. Genetic differentiation and phylogenetic relationships inferred from allozyme (20 enzyme-loci) and mitochondrial (sequences of cox-2 gene) markers, are revised and compared. The two genetic analyses are congruent in depicting their phylogenetic relationships. Two main clusters are showed to exist in the obtained trees, one encompassing the species A. pegreffii, A. simplex s.s., A. simplex C, A. typica, A. ziphidarum and Anisakis sp.; while, the second including A. physeteris, A. brevispiculata and A. paggiae. The existence of two clades is also supported by their morphological differentiation in adult and larval morphology. Comparison of phylogenetic relationships among Anisakis spp. with those currently available for their cetacean definitive hosts suggests parallelism between host and parasite phylogenetic tree topologies. Preliminary data for reconstruction of a possible co-evolutionary scenario between cetacean hosts and their Anisakis endoparasites suggests that cospeciation and host-switching events may have accompanied the evolution of this group of parasites. Finally, genetic/molecular markers for the identification of the so far genetically recognized taxa of Anisakis at any life-stage and both sexes were given also in relation to human anisakiosis is discussed. Résumé : TAXONOMIE, PHYLOGÉNIE ET ÉCOLOGIE DES NÉMATODES DU GENRE ANISAKIS DUJARDIN, 1845 : MISE AU POINT On présente les connaissances actuelles sur la taxonomie et l’écologie qui concerne la distribution géographique et les hôtes des neuf espèces du genre Anisakis génétiquement identifiées à ce jour (i.e. A. pegreffii, A. simplex s.s., A. simplex C, A. typica, A. ziphidarum, Anisakis sp., A. physeteris, A. brevispiculata et A. paggiae). On montre et compare la différentiation génétique et les relations phylogénétiques par l’analyse des divers marqueurs génétiques moléculaires (20 loci isoenzymatiques, et la succession des 629 paires de bases de cox-2 de l’ADN mitochondrial). Les résultats des deux analyses concordent : elles démontrent les relations phylogénétiques des espèces d’Anisakis étudiées jusqu’à présent. Les deux analyses ont mis en évidence deux principaux clusters, l’un qui comprend A. pegreffii, A. simplex s.s., A. simplex C, A. typica, A ziphidarum, Anisakis sp., et l’autre qui comprend A. physeteris, A. brevispiculata et A. paggiae. L’existence de deux clusters est démontrée grâce aussi à la différentiation morphologique à un stade larvaire et adulte. La comparaison des relations phylogénétiques entre les espèces d’Anisakis par rapport à celles de leurs hôtes définitifs (cétacés), connues jusqu’à présent, montre un parallélisme entre les topologies des relations phylogénétiques des hôtes et des parasites. Ces données préliminaires montrent, en effet, que des phénomènes co-évolutifs ont accompagné l’histoire évolutive de ce groupe de parasites. Enfin, on fournit des marqueurs génétiques moléculaires pour l’identification des espèces d’Anisakis à n’importe quel stade de développement des deux sexes ; cela sert aussi pour l’identification génétique des larves d’Anisakis qui sont la cause de l’anisakidose humaine. KEY WORDS : Anisakis, allozyme markers, mtDNA cox-2, genetic relationships, intermediate/paratenic hosts, cetaceans, coevolution, anisakiosis. MOTS CLÉS : Anisakis, isoenzyme, mtADN cox-2, relations phylogénétiques, hôte intermédiaire, cétacés, phénomènes co-évolutifs, anisakidose. * Department of Public Health Sciences (DSSP), Section of Parasito- logy, University of Rome “La Sapienza”, Ple Aldo Moro, 5, 00185 Rome, Italy. ** Department of Ecology and Sustainable Economic Development (DECOS), Tuscia University, Via S. Giovanni Decollato, 01100 Viterbo, Italy. Correspondence: Simonetta Mattiucci. Tel.: ++39 06 49914894 – Fax: ++39 06 49914644. Email: [email protected] hosts, such as squids and fish, or directly on crusta- ceans (Smith & Wootten, 1978), that harbour larval sta- ges of the parasite. Of the 20 or so nominal species that have been des- cribed as parasites of cetaceans and pinnipeds from arctic, tropical, sub-antarctic and temperate regions of the world, Davey in his revision (1971) considered three species, only, as valid: A. simplex, A. typica and A. physeteris. Thus, several of the previously described species were considered by the author synonyms of the three above mentioned species, and the status of some remains unresolved, such as the case of A. alexandri, A. schupakovi and A. dussumierii. The sys- tematics and the taxonomic status of the species belon- INTRODUCTION T he nematodes of the genus Anisakis Dujardin, 1845 are parasites found in the stomach of marine mammals, especially cetaceans. These become infected by preying on paratenic and intermediate Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/2006132099

Upload: others

Post on 20-Feb-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

99Mise au pointParasite, 2006, 13, 99-113

MOLECULAR SYSTEMATICS, PHYLOGENY AND ECOLOGY OF ANISAKID NEMATODESOF THE GENUS ANISAKIS DUJARDIN, 1845: AN UPDATE

MATTIUCCI S.* & NASCETTI G.**

Summary:

Advances in the taxonomy and ecological aspects concerninggeographical distribution and hosts of the so far geneticallyrecognised nine taxa of the nematodes belonging to genusAnisakis (i.e. A. pegreffii, A. simplex s.s., A. simplex C, A. typica,A. ziphidarum, Anisakis sp., A. physeteris, A. brevispiculata andA. paggiae) are here summarized. Genetic differentiation andphylogenetic relationships inferred from allozyme (20 enzyme-loci)and mitochondrial (sequences of cox-2 gene) markers, are revisedand compared. The two genetic analyses are congruent indepicting their phylogenetic relationships. Two main clusters areshowed to exist in the obtained trees, one encompassing thespecies A. pegreffii, A. simplex s.s., A. simplex C, A. typica,A. ziphidarum and Anisakis sp.; while, the second includingA. physeteris, A. brevispiculata and A. paggiae. The existence oftwo clades is also supported by their morphological differentiationin adult and larval morphology. Comparison of phylogeneticrelationships among Anisakis spp. with those currently availablefor their cetacean definitive hosts suggests parallelism betweenhost and parasite phylogenetic tree topologies. Preliminary datafor reconstruction of a possible co-evolutionary scenario betweencetacean hosts and their Anisakis endoparasites suggests thatcospeciation and host-switching events may have accompaniedthe evolution of this group of parasites. Finally, genetic/molecularmarkers for the identification of the so far genetically recognizedtaxa of Anisakis at any life-stage and both sexes were given alsoin relation to human anisakiosis is discussed.

Résumé : TAXONOMIE, PHYLOGÉNIE ET ÉCOLOGIE DES NÉMATODES DUGENRE ANISAKIS DUJARDIN, 1845 : MISE AU POINT

On présente les connaissances actuelles sur la taxonomie etl’écologie qui concerne la distribution géographique et les hôtesdes neuf espèces du genre Anisakis génétiquement identifiées àce jour (i.e. A. pegreffii, A. simplex s.s., A. simplex C, A. typica,A. ziphidarum, Anisakis sp., A. physeteris, A. brevispiculata etA. paggiae). On montre et compare la différentiation génétique etles relations phylogénétiques par l’analyse des divers marqueursgénétiques moléculaires (20 loci isoenzymatiques, et la successiondes 629 paires de bases de cox-2 de l’ADN mitochondrial). Lesrésultats des deux analyses concordent : elles démontrent lesrelations phylogénétiques des espèces d’Anisakis étudiées jusqu’àprésent. Les deux analyses ont mis en évidence deux principauxclusters, l’un qui comprend A. pegreffii, A. simplex s.s., A.simplex C, A. typica, A ziphidarum, Anisakis sp., et l’autre quicomprend A. physeteris, A. brevispiculata et A. paggiae.L’existence de deux clusters est démontrée grâce aussi à ladifférentiation morphologique à un stade larvaire et adulte. Lacomparaison des relations phylogénétiques entre les espècesd’Anisakis par rapport à celles de leurs hôtes définitifs (cétacés),connues jusqu’à présent, montre un parallélisme entre lestopologies des relations phylogénétiques des hôtes et desparasites. Ces données préliminaires montrent, en effet, que desphénomènes co-évolutifs ont accompagné l’histoire évolutive de cegroupe de parasites. Enfin, on fournit des marqueurs génétiquesmoléculaires pour l’identification des espèces d’Anisakis àn’importe quel stade de développement des deux sexes ; cela sertaussi pour l’identification génétique des larves d’Anisakis qui sontla cause de l’anisakidose humaine.

KEY WORDS : Anisakis, allozyme markers, mtDNA cox-2, genetic relationships,intermediate/paratenic hosts, cetaceans, coevolution, anisakiosis.

MOTS CLÉS : Anisakis, isoenzyme, mtADN cox-2, relations phylogénétiques,hôte intermédiaire, cétacés, phénomènes co-évolutifs, anisakidose.

* Department of Public Health Sciences (DSSP), Section of Parasito-logy, University of Rome “La Sapienza”, Ple Aldo Moro, 5, 00185 Rome,Italy.** Department of Ecology and Sustainable Economic Development(DECOS), Tuscia University, Via S. Giovanni Decollato, 01100 Viterbo,Italy.Correspondence: Simonetta Mattiucci.Tel.: ++39 06 49914894 – Fax: ++39 06 49914644.Email: [email protected]

hosts, such as squids and fish, or directly on crusta-ceans (Smith & Wootten, 1978), that harbour larval sta-ges of the parasite.Of the 20 or so nominal species that have been des-cribed as parasites of cetaceans and pinnipeds fromarctic, tropical, sub-antarctic and temperate regions ofthe world, Davey in his revision (1971) consideredthree species, only, as valid: A. simplex, A. typica andA. physeteris. Thus, several of the previously describedspecies were considered by the author synonyms ofthe three above mentioned species, and the status ofsome remains unresolved, such as the case of A.alexandri, A. schupakovi and A. dussumierii. The sys-tematics and the taxonomic status of the species belon-

INTRODUCTION

The nematodes of the genus Anisakis Dujardin, 1845are parasites found in the stomach of marinemammals, especially cetaceans. These become

infected by preying on paratenic and intermediate

Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/2006132099

Page 2: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

ging to the genus Anisakis thus became the subject ofour past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed, the taxo-nomy of Anisakis species has traditionally relied onadult (According to Davey’s revision, these includedlength and shape of ventriculus, length and shape ofmale spicules, and arrangements of male caudalpapillae), and larval morphology (length of ventricu-lus, presence/absence of caudal spine) (Berland, 1961). In the past 18 years, our knowledge of the epidemio-logy of the parasites of the genus Anisakis has grownsubstantially with the development of the genetic/mole-cular techniques. These methodologies, in some casescombined with morphological studies, have demonstra-ted that the revision by Davey (1971) failed to recognize“true” species within the genus Anisakis, demonstra-ting that some of the morphospecies, considered in thepast as cosmopolitan and euriecious species are, onthe contrary, a complex of morphologically sibling, butreproductively isolated gene pools, thus correspondingto biological species. A prime example is A. simplexwhich, so far, contains three sibling species, A. sim-plex s.s. Nascetti et al., 1986, A. pegreffii Campana-Rouget et Biocca, 1980 (Nascetti et al., 1986), andA. simplex C (Mattiucci et al., 1997). These membersare genetically characterized at nuclear level by allo-zyme markers (Nascetti et al., 1986; Mattiucci et al.,1997), by RFLP of ITS-DNA (D’Amelio et al., 2000;Nadler et al., 2006), and at mitochondrial level, bymtDNA cox-2 sequence analyses (Valentini et al., 2006).The same genetic (allozyme) markers have been veryuseful in the disclosing of new species, such asA. ziphidarum Paggi et al., 1998a and A. paggiae Mat-tiucci et al., 2005, and in genetically characterizingA. typica from various hosts and geographic areas(Mattiucci et al., 2002). The discovery of a complex ofsibling species within A. physeteris Baylis, 1920 are ana-logous results. Adult specimens morphologically reco-gnized as A. physeteris were genetically characterizedon the base of several allozyme markers (Mattiucci etal., 1986) and reproductive isolation from A. brevispi-culata Dollfus, 1968 sympatrycally detected in thesame definitive host, the pigmy sperm whale, wasdemonstrated (Mattiucci et al., 2001), thus it was pos-sible to define the taxonomic status of A. brevispicu-lata, a species considered by Davey (1971) as asynonym of A. physeteris. In addition, the new species,A. paggiae (Mattiucci et al., 2005) was found to belongto the same complex of species (Valentini et al., 2006).The same markers (allozymes) have demonstrated thatA. simplex s.s., A. pegreffii, A. simplex C, A. typica andA. ziphidarum are Type I larval morphotype, while A.physeteris, A. brevispiculata and A. paggiae are Type II(Orecchia et al., 1986; Mattiucci et al., 2002, 2005).Herein, we present the current understanding of thetaxonomy and molecular systematics of this group

MATTIUCCI S. & NASCETTI G.

100 Mise au pointParasite, 2006, 13, 99-113

and review information on their ecology. Indeed,genetic (nuclear and mitochondrial markers) and eco-logical data on the species of Anisakis so far reco-gnized, are reported and summarized. The relevanceof some morphological characters at both adult andlarval stages, after the recognition of biological speciesby genetic markers within the genus Anisakis is dis-cussed, and larval identifications are provided. Hosts(definitive and intermediate) of the species of Anisakisgenetically recognised are listed, as are the geographicranges so far recorded. Host-parasite association coe-volutionary aspects between Anisakis spp. and theircetacean hosts are detected.

MOLECULAR SYSTEMATICS OF ANISAKIS SPP.

The inconsistency in morphological characters ofAnisakis species impeded development of a cre-dible scheme of their phylogeny. This prompted

the need to classify these nematodes by genetic and/orbiochemical methods. Thus, beginning in the late 1980s,researchers started to evaluate their taxonomy, andgenetic differentiation and relationships between taxaof this genus (Nascetti et al., 1986; Mattiucci et al., 1986;Nadler et al., 1990, 1995).Today, the existence of two main clades is clearly shown,by genetic studies, in the genus Anisakis: one encom-passing the species showing the larval stage indicatedas Anisakis Type I (sensu Berland, 1961), and a secondsharing the larval morphology Anisakis Type II (sensuBerland, 1961). The first clade includes the species ofA. simplex complex (i.e. A. simplex s.s., A. pegreffii,A. simplex C), A. typica, A. ziphidarum and Anisakis sp.The second includes the species A. physeteris, A. brevis-piculata and A. paggiae (Mattiucci et al., 2005; Valentiniet al., 2006).

GENETIC DIFFERENTIATION AND PHYLOGENETICRELATIONSHIPS OF THE SPECIES OF ANISAKIS

At allozyme level, the values of Nei’s (1972) standardgenetic distance (DNei) based on allele frequencies aregiven in Table I. At the interspecific level, among thenine genetically characterized species of Anisakis, thehighest genetic identity was observed between thethree sibling species of the A. simplex complex (ave-rage INei = 0.68, range 0.66-0.70). Values of INei rangingfrom 0.001 to 0.034 were found when comparingA. physeteris and A. brevispiculata with either theA. simplex complex (average INei = 0.003, range 0.001-0.012) or A. typica (average INei = 0.019, range 0.008-0.034). A. paggiae showed the lowest level of geneticdifferentiation with respect to A. brevispiculata DNei =0.79, rather than to A. physeteris DNei = 1.06; while Ani-

Page 3: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

MOLECULAR SYSTEMATICS, PHYLOGENY AND ECOLOGY OF ANISAKIS SPP.

101Mise au pointParasite, 2006, 13, 99-113

sakis sp. was found genetically correlated to A. ziphi-darum DNei = 0.68, however, well distinct from it, withwhich its was detected in sympatry in the same defi-nitive hosts (Table I).At mtDNA level, genetic divergence among the consi-dered taxa, estimated by p-distance, inferred fromsequence analysis (629 bp) of the cox2 gene rangedfrom p = 0.055 between sibling species of the A. sim-plex complex, to p = 0.12, between morphologically dif-ferentiated species, i.e. A. ziphidarum and A. typica(Table I). The highest level was detected when com-paring A. physeteris, A. brevispiculata, and A. paggiaeversus A. simplex complex (on average p = 0.13) or ver-sus A. typica (on average p = 0.14). Sequence data fromthe newly identified Anisakis sp. poorly aligned withother Anisakis species but was most similar to A. ziphi-darum (p = 0.08) (Valentini et al., 2006) (Table I).To date, most work performed on nematode phylo-genetic studies within this genus, has been done usingunweighted pair group method using arithmetic ave-rages (UPGMA-based methods). Among the first exten-sive dendrograms, were those generated by Mattiucciet al, 1997 and Paggi et al., 1998a. Recently (Mattiucciet al., 2005), distance methods based on Neighbour-Joining (NJ) analysis of the allozyme data, providedtrees showing the same topology to those generatedby UPGMA. The phenetic clustering (UPGMA) inferredfrom Genetic Identity (INei, Nei 1972) values from allo-zyme data (20 enzyme-loci), depicting the genetic rela-tionships among the nine taxa of Anisakis, is reportedin Fig. 1A. It showed remarkable congruence in sup-

porting a topology of the species so far included inthe genus Anisakis, showing the existence of two mainclades within the genus, thus demonstrating a stronggenetic heterogeneity within the genus.Recently (Valentini et al, 2006), trees produced bymethods employing parsimony (MP) analysis (Fig. 1B),Neighbour-Joining (NJ) and Bayesian analysis (BA) aswell, inferred from the mtDNA cox2 gene sequencesof the all currently recognised species of Anisakis, alsoshowed high congruence with the UPGMA and NJtrees from allozyme data analysis, and bootstrap ana-lysis highly supported the topology obtained. Indeed,mitochondrial and allozyme data analyses showedremarkable congruence in depicting the existence ofthe two clades with that including A. physeteris, A. bre-vispiculata and A. paggiae placed at the base of thetree (Fig. 1). However, they raised questions about theposition occupied by A. typica within the first clade.In fact, some discrepancies among the phylogeneticanalyses resulted in the unresolved placement ofA. typica within either a subclade with A. ziphidarumand Anisakis sp., or within a clade containing the A. sim-plex complex (Fig. 1A and B). However, low boots-trap values appeared in all the trees suggesting thatfurther analyses on A. typica collected from more indi-viduals, other geographic areas, and perhaps additionalhosts are needed to clarify its phylogenetic positionwith respect to the species of A. simplex complex andA. ziphidarum. It should be noted, however, that itsplacement within the clade 1 as the A. simplex com-plex is always supported (Valentini et al., 2006).

A B

.simplex s.s.

A.pegreffii

A.simplex C

A.typica

INei

A. simplex C

A. pegreffii

A. typica

A. ziphidarum

Anisakis sp.

A. physeteris

A. brevispiculata

A. paggiae

0.8 1 0.6 0.4 0.2

100

8372

A. pegreffii

A. simplex C

A. ziphidarum

A. typica

Anisakis sp.

A. physeteris

A. brevispiculata

A. paggiae

A. simplex s.s.

Pseudoterranova ceticola(outgroup)

CLADE IA. simplex s.s.

CLADE II

0

Fig. 1. – Genetic relationships among Anisakis spp. depicted by: A) UPGMA tree, based on INei (Nei, 1972) values from allozyme data (byBIOSYS-2, Software, Swofford & Selander, 1989); B) Strict consensus tree of Maximum Parsimony (MP) analysis inferred from mtDNA cox2,over 71 most parsimonious trees (CI = 0.5725, HI = 0.4275, RI = 0.8842, RC = 0.5062) (187 parsimony-informative characters). Bootstrapvalues were calculated over 1,000 replicates; percentages ≥ 70 % are shown at the internal nodes.

Page 4: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

MATTIUCCI S. & NASCETTI G.

102 Mise au pointParasite, 2006, 13, 99-113

An

isa

kis

A.

A.

sim

ple

x s

s.A

. p

egre

ffii

A.

sim

ple

x C

A.

typ

ica

A.

zip

hid

aru

msp

.A

. p

hys

eter

isbre

visp

icu

lata

A.

pa

ggia

e

A.

sim

plex

s.s

.0.0

10

0.04

00.

060.

130.

110

0.12

00.

130

0.15

00.

130

A.

pegr

effi

i0.

400

0.0

01

0.06

0.12

0.11

00.

120

0.13

00.

150

0.13

0(0

.38-

0.42

)A

. si

mpl

ex C

0.36

00.

370

–0.

120.

120

0.12

00.

130

0.15

00.

130

(0.3

60-0

.364

)(0

.36-

0.37

)A

typ

ica

1.16

01.

450

1.14

–0.

120

0.11

00.

130

0.16

00.

140

(1.1

3-1.

19)

(1.4

4-1.

45)

A.

ziph

ida

rum

1.64

01.

990

1.62

1.67

0.0

04

0.08

00.

120

0.13

00.

100

(1.5

7-1.

70)

(1.9

8-2.

00)

(1.6

0-1.

69)

An

isa

kis

sp.

2.04

02.

630

1.92

1.62

0.68

0.0

02

0.14

00.

140

0.12

0(1

.98-

2.08

)(2

.61-

2.64

)(1

.82-

2.02

)(1

.58-

1.65

)(0

.67-

0.68

)A

. ph

yset

eris

6.90

08.

300

7.40

4.77

∞∞

0.0

02

0.10

00.

110

(6.2

4-8.

13)

(7.2

5-9.

17)

(7.3

7-7.

43)

(4.7

6-4.

79)

A.

brev

ispi

cula

ta4.

106.

115.

543.

49∞

∞0.

950

0.0

14

0.11

0(4

.39-

5.03

)(5

.56-

6.43

)(5

.10-

5.97

)(3

.39-

3.58

)(0

.93-

0.96

)(0

.76-

0.83

)A

. pa

ggia

e∞

∞∞

∞∞

∞1.

060

0.79

00.

002

(1.0

8-1.

06)

(0.7

6-0.

83

A.

sim

plex

s.s

.0.

02 (

±0.

00)

––

––

––

––

A.

pegr

effi

i0.

04 (

±0.

01)

0.01

0.00

)–

––

––

––

A.

sim

plex

C0.

06 (

±0.

01)

0.06

0.01

)0.

01 (

±0.

00)

––

––

––

A.

typi

ca0.

13 (

±0.

01)

0.12

0.01

)0.

12 (

±0.

01)

0.01

0.00

)–

––

––

A.

ziph

ida

rum

0.11

0.01

)0.

11 (

±0.

01)

0.12

0.01

)0.

12 (

±0.

01)

0.01

0.00

)–

––

–A

nis

aki

ssp

.0.

12 (

±0.

01)

0.12

0.01

)0.

12 (

±0.

01)

0.11

0.01

)0.

08 (

±0.

01)

0.01

0.00

)–

––

A.

phys

eter

is0.

13 (

±0.

01)

0.13

0.01

)0.

13 (

±0.

01)

0.13

0.01

)0.

12 (

±0.

01)

0.14

0.01

)0.

01 (

±0.

00)

––

A.

brev

ispi

cula

ta0.

15 (

±0.

01)

0.15

0.01

)0.

15 (

±0.

01)

0.16

0.01

)0.

13 (

±0.

01)

0.14

0.01

)0.

10 (

±0.

01)

0.02

0.00

)–

A.

pagg

iae

0.13

0.01

)0.

13 (

±0.

01)

0.13

0.01

)0.

14 (

±0.

01)

0.10

0.01

)0.

12 (

±0.

01)

0.11

0.01

)0.

11 (

±0.

01)

0.01

0.00

)

Tab

le I

. –

Ave

rage

and r

ange

s of

Nei

’s (

1972

) va

lues

of

stan

dar

d g

enet

ic d

ista

nce

(D

Nei,

Nei

, 19

72,

bel

ow

the

dia

gonal

) bet

wee

n t

he

spec

ies

of

An

isa

kis

so f

ar g

enet

ical

ly s

tudie

d.

DN

ei,

intra-

spec

ific

val

ues

are

giv

en a

long

the

dia

gonal

(ra

nge

s in

par

enth

esis

). p

-dis

tance

(ab

ove

the

dia

gonal

) va

lues

infe

rred

from

629

bp m

tDN

Aco

x2per

form

ed u

sing

MEG

A2.

1 pro

gram

(K

um

aret

al.,

200

1).

Dat

a from

Mat

tiucc

i et

al.,

200

5, V

alen

tini

eta

l., 2

006,

and p

rese

nt

pap

er.

Page 5: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

ECOLOGICAL DATA OF ANISAKIS SPECIES

ANISAKIS SPP. INCLUDED IN CLADE 1

According to the genetic data, five species (A. sim-plex sensu stricto, A. pegreffii, A. simplex C,A. typica, A. ziphidarum) are included in this

clade, and one new gene pool recently evidenced, andindicated as Anisakis sp. (Valentini et al., 2006 and ourdata not published). A synopsis of ecological aspectsof each species, including host preference and geo-graphical aspects, is presented below.

The Anisakis simplex complex

Three species are so far included in the A. simplexcomplex: they are A. simplex s.s., A. pegreffii, A. sim-plex C. Their definitive hosts (cetaceans) and inter-mediate/paratenic (squids and fish) identified to dateare listed in Tables II and III.

• A. simplex s.s. (Nascetti et al., 1986)A. simplex s.s. is widespread between 35° N and theArctic Polar Circle; it is present in both the western andeastern Atlantic and both western and eastern watersof the Pacific Ocean (Mattiucci et al., 1997; 1998; Paggiet al., 1998b; Abollo et al., 2001) (Fig. 2). The southernlimit of this species in the north east Atlantic Oceanare the waters around the Gibraltar area. A. simplex s.s.is occasionally present also in the western part of theMediterranean waters due to the migration of pelagicfish species in the far western Mediterranean Seawaters (Alboran Sea) (Mattiucci et al., 2004; and 2006)(Fig. 2). A. simplex s.s. has been so far recorded in nine

species of cetacean hosts. Four squid and 26 fish spe-cies were so far found harbouring larvae of this spe-cies along its geographical range. A sympatric area bet-ween A. simplex s.s. and A. pegreffii was identifiedalong the Spanish and Portuguese Atlantic coast (Mat-tiucci et al., 1997, 2004, 2006; Abollo et al., 2001) andin the Alboran Sea (Mattiucci et al., 2004, 2006). A. sim-plex s.s. also occurs with A. simplex C in the easternPacific Atlantic Ocean, where it has been identified insome definitive hosts along the East Pacific coast (Mat-tiucci et al., 1997, 1998; Paggi et al., 1998) (Tables II,III and Fig. 2). Although it has sympatric and syntopicoccurrence in mixed infections at both larval and adultstages with other Anisakis species (Mattiucci et al.,2004, 2005), reproductive isolation between A. simplexs.s. and both A. pegreffii and A. simplex C was provedby the lack of adult F1 hybrids, and/or backcrossgenotypes clearly demonstrated at nuclear level (Mat-tiucci et al., 1997, 2005).

• A. pegreffii (Nascetti et al., 1986)Previously indicated as A. simplex A (Nascetti et al.,1986), A. pegreffii is the dominant species of the genusAnisakis in the Mediterranean Sea, being widespreadin all the fish species so far examined. Indeed, it ispresently the most important aetiological agent ofinfection in pelagic and demersal fish of the Mediter-ranean waters. It appears also widely distributed in theAustral Region between 35° N and 55° S. In the Atlanticwaters its upper limit of geographical range is repre-sented by the Iberian coast of the NE Atlantic (Mat-tiucci et al., 1997, 2004; Abollo et al., 2001). It has beennot reported so far from the west part of Atlantic Ocean

MOLECULAR SYSTEMATICS, PHYLOGENY AND ECOLOGY OF ANISAKIS SPP.

103Mise au pointParasite, 2006, 13, 99-113

A. simplex s.s. A. pegreffii A. simplex C

LOCATION CODE EA IC WA EP SA CM IC SA EP SA

DEFINITIVE HOST SPECIES

CetaceansNeobalaenidaeCaperea marginata - - - - - - - - - - - - - - • -- - -

BalaenopteridaeBalaenoptera acutorostrata • -- -- - - - - - - - - - - - - - -

MonodontidaeDelphinapterus leucas - - - - • -- - - - - - - - - - - - -

DelphinidaeDelphinus delphis - - • -- - - - - - - • -- - - - -Globicephala melaena - - • -- - - • -- - - - - - - •Lagenorhynchus albirostris • - - - - - - - - - - - - - - - - - -Lissodelphis borealis - - - - - - - - - - - - - - - - – --Orcinus orca - - - - - - • -- - - - - - - - - - -Pseudorca crassidens - - - - - - • -- - - - - - - • --Stenella coeruleoalba - - • -- - - - - - - - - - - - - - -Tursiops truncatus - - - - - - - - - - • -- • -- - -

PhocoenidaePhocoena phocoena - - - - - - • -- - - - - - - - - - -

Table II. – Definitive hosts so far evidenced for the species of A. simplex complex (data from Nascetti et al., 1986; Mattiucci et al., 1997,1998, 2005; Paggi et al., 1998c, and present paper). Codes: EA: North-east Atlantic; IC: Iberian Atlantic Coast; WA: West Atlantic; EP: North-east Pacific; CM: Central Mediterranean Sea; SA: South Africa.

Page 6: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

MATTIUCCI S. & NASCETTI G.

104 Mise au pointParasite, 2006, 13, 99-113

A.

sim

ple

x s

.s.

A.

peg

reff

iiA

. si

mp

lex

C

LOCATIO

NCO

DE

EA

SIBS

ICW

AEP

JABE

SAM

AW

MAZ

CM

EM

WM

ICEA

FASA

MA

NZ

AZ

BR

NZ

TA

SA

I NTERM

ED

IATE

HO

STSP

ECIE

S

Cep

hal

op

od

sSe

piid

aeSe

pia

off

icin

ali

s--

----

•--

----

----

----

----

----

----

----

----

----

----

--O

mm

astrep

hid

aeTod

aro

psis

ebl

an

ae

----

--•

----

----

•--

----

----

--•

----

•--

----

----

----

Om

ma

stre

phes

sa

gitt

atu

s--

----

•--

----

----

----

----

----

----

----

----

----

----

--O

mm

ast

reph

es a

ngo

len

sis

----

----

----

----

----

----

----

----

----

•--

----

----

----

Ille

x co

ind

etti

i--

----

•--

----

----

----

----

----

----

----

----

----

----

--Fis

hPle

uro

nec

tidae

Hip

pogl

ossu

s h

ippo

glos

sus

----

----

----

--•

----

----

----

----

----

----

----

----

----

Scophth

alm

idae

Lepi

dor

hom

bus

bosc

ii--

----

•--

----

----

----

----

----

•--

----

----

----

----

--Bra

mid

aeB

ram

a b

ram

a--

----

----

----

----

----

----

----

----

--•

----

----

----

--Car

angi

dae

Tra

chu

rus

cape

nsi

s--

----

----

----

----

----

----

----

----

--•

----

----

----

--Tra

chu

rus

med

iter

ran

eus

----

----

----

----

----

----

•--

----

----

----

----

----

----

Tra

chu

rus

pict

ura

tus

----

----

----

----

----

--•

----

----

----

----

--•

----

----

Tra

chu

rus

tra

chu

rus

•--

--•

----

----

--•

•--

••

••

----

--•

•--

----

----

Em

mel

ichth

yidae

Em

mel

ich

thys

nit

idu

s n

itid

us

----

----

----

----

----

----

----

----

----

•--

----

----

----

Gem

pyl

idae

Th

yrsi

tes

atu

n--

----

----

----

----

----

----

----

----

--•

----

----

----

•Pin

guip

edid

aeP

ara

perc

is c

olia

s--

----

----

----

----

----

----

----

----

----

--•

----

•--

--Sc

om

bridae

Scom

ber

japo

nic

us

----

----

----

----

----

--•

----

----

----

----

--•

----

----

Scom

ber

scom

bru

s•

----

•--

----

----

----

--•

----

•--

----

----

----

----

--Th

un

nu

s th

ynn

us

----

----

----

•--

----

----

•--

----

----

----

----

•--

----

Spar

idae

Spon

dyl

ioso

ma

ca

nth

aru

s--

----

•--

----

----

----

----

----

----

----

----

----

----

--Trich

iuridae

Lepi

dop

us

cau

da

tus

----

----

----

----

----

----

•--

----

----

•--

----

----

----

Xip

hiid

aeX

iph

ias

gla

diu

s--

----

----

----

----

----

--•

----

----

----

----

----

----

--Sc

orp

aenid

aeSc

orpa

ena

scr

ofa

----

--•

----

----

----

----

----

--•

----

----

----

----

----

Sebas

tidae

Hel

icol

enu

s d

act

ylop

teru

s--

----

----

----

----

----

--•

----

----

--•

----

----

----

--Trigl

idae

Eu

trig

la g

urn

ard

us

----

--•

----

----

----

----

----

----

----

----

----

----

----

Bel

onid

aeB

elon

e be

lon

e--

----

•--

----

----

----

----

----

•--

----

----

----

----

--

(con

tin

ues

)

Page 7: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

MOLECULAR SYSTEMATICS, PHYLOGENY AND ECOLOGY OF ANISAKIS SPP.

105Mise au pointParasite, 2006, 13, 99-113

(con

tin

ued

)

A.

sim

ple

x s

.s.

A.

peg

reff

iiA

. si

mp

lex

C

LOCATIO

NCO

DE

EA

SIBS

ICW

AEP

JABE

SAM

AW

MAZ

CM

EM

WM

ICEA

FASA

MA

NZ

AZ

BR

NZ

TA

SA

Scom

ber

esoci

dae

Scom

bere

sox

sau

rus

----

----

•--

----

----

----

----

----

----

----

----

----

----

Gad

idae

Bor

eoga

du

s sa

ida

----

--•

----

----

----

----

----

----

----

----

----

----

----

Ga

du

s m

orh

ua

----

••

----

----

----

----

----

----

----

----

----

----

----

Mic

rom

esis

tiu

s po

uta

ssou

----

--•

----

----

----

----

•--

--•

----

----

----

----

----

Th

era

gra

ch

alc

ogra

mm

a--

----

----

••

•--

----

----

----

----

----

----

----

----

--Tri

sopt

eru

s lu

scu

s--

----

•--

----

----

----

----

----

----

----

----

----

----

--Lo

tidae

Mol

va d

ypte

rygi

a--

----

•--

----

----

----

----

----

----

----

----

----

----

--B

rosm

e br

osm

e•

----

----

----

----

----

----

----

----

----

----

----

----

--M

erlu

ccid

aeM

erlu

cciu

s ca

pen

sis

----

----

----

----

----

----

----

----

----

•--

----

----

----

Mer

lucc

ius

hu

bbsi

----

----

----

----

----

----

----

----

--•

----

----

----

----

Mer

lucc

ius

mer

lucc

ius

•--

--•

----

----

--•

----

••

••

•--

--•

----

----

----

Moridae

Pse

ud

oph

ycis

ba

chu

s--

----

----

----

----

----

----

----

----

----

--•

----

•--

--O

phid

iidae

Gen

ypte

rus

cape

nsi

s--

----

----

----

----

----

----

----

----

--•

----

----

----

--Lo

phiid

aeLo

phiu

s pi

sca

tori

us

----

--•

----

----

----

----

----

----

----

----

----

----

----

Loph

ius

vom

erin

us

----

----

----

----

----

----

----

----

----

•--

----

----

----

Tra

chic

hth

yidae

Hop

lost

eth

us

atla

nti

cus

----

----

----

----

----

----

----

----

----

----

----

----

•--

Hop

lost

eth

us

med

iter

ran

eus

----

----

----

----

----

----

•--

----

----

----

----

----

----

Salm

onid

aeO

nco

rhyn

chu

s go

rbu

sch

a--

•--

----

----

----

----

----

----

----

----

----

----

----

--O

nco

rhyn

chu

s ke

ta--

•--

----

----

----

----

----

----

----

----

----

----

----

--Sa

lmo

sala

r--

----

--•

----

----

----

----

----

----

----

----

----

----

--Clu

pei

dae

Clu

pea

ha

ren

gus

•--

•--

--•

----

----

----

----

----

----

----

----

----

----

Etr

um

eus

wh

iteh

ead

i--

----

----

----

----

----

----

----

----

--•

----

----

----

--Engr

aulid

aeEn

gra

uli

s en

cra

sico

lus

----

----

----

----

----

----

•--

----

----

----

----

----

----

Congr

idae

Con

ger

con

ger

----

--•

----

----

----

----

•--

----

----

----

----

----

----

Dat

a from

: N

asce

tti

et a

l., 1

986;

Mat

tiucc

i et

al.,

199

7; P

aggi

et

al.,

199

8c;

Mat

tiucc

i et

al.,

200

4, 2

006;

and p

rese

nt

pap

er.

Tab

le I

II.

– In

term

edia

te h

ost

spec

ies

so f

ar d

etec

ted f

or

the

spec

ies

of

the

A.

sim

plex

com

ple

x. C

odes

: EA:

North-e

ast

Atla

ntic

; BS:

Bal

tic S

ea;

IC:

Iber

ian A

tlantic

Coas

t; W

M:

Wes

t M

edite

r-ra

nea

n;

WA:

Wes

t Atla

ntic

; EP:

North-e

ast

Pac

ific

; JA

: Ja

pan

Sea

; SI

: Sa

khal

in I

slan

ds;

BE

: Ber

ing

Sea;

MA:

Mau

rita

nia

n C

oas

t; AZ:

Azo

res

Isla

nds;

CM

: Cen

tral

Med

iterr

anea

n S

ea;

FA:

Falk

-la

nd I

slan

ds;

SA:

South

Afric

a; N

Z:

New

Zea

land;

EM

: Eas

t M

edite

rran

ean S

ea;

BR:

Bra

zil

Atla

ntic

Coas

t; TA:

Tas

man

Sea

.

Page 8: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

(our unpublished data) (Fig. 2). The genetic homoge-neity between Mediterranean populations and thosefrom Austral region seems to be maintained by the highlevels of gene flow observed in this species (Nm =15.0), allowing the hypothesis of its wide occurrencealso in other areas of the southern hemisphere. Todate, it has been recorded as parasite at adult stage inthree species of oceanic dolphins as definitive hosts,in 28 species of fish, and in two squids (Tables II, III).Among them, two definitive and 11 intermediate werefound to be shared with A. simplex s.s., in the contactarea of the Iberian Atlantic coast waters (Fig. 2). Whe-reas, two definitive and five intermediate hosts areshared by A. pegreffii and A. simplex C, in the australregion of New Zealand waters, the South African coastand the Southern Pacific Chilean coast (Table III andFig. 2).

• A. simplex C Mattiucci et al., 1997A. simplex C shows, to date, a discontinuous range,including Pacific Canada, Chile, New Zealand waters,and the Atlantic South African coast. A. simplex C wasidentified so far at adult stage from three marine mam-

mals and at larval stages it syntopically occurred withA. pegreffii in five fish species (Tables II, III and Fig. 2).

• A. typica (Diesing, 1860)According to the data from A. typica genetically stu-died, its range extends from 30° S to 35° N in warmertemperate and tropical waters (Table IV and Fig. 2)(Mattiucci et al., 2002). In these areas it was found atadult stage in six dolphin species and at larval stagesin 10 fish species. A. typica was recently identified alsoin the striped dolphin, Stenella coeruleoalba and in theEuropean hake, Merluccius merluccius from the eas-tern Mediterranean Sea (Cyprus). Its presence in thesewaters could be the result of “lesseptian migration”(through the Suez Channel) (Mattiucci et al., 2004) of itsintermediate hosts from the Indian Ocean. Indeed, itis the only species to date responsible for the infectionsin fish species of these waters (Table IV and Fig. 2).

• A. ziphidarum Paggi et al., 1998A. ziphidarum was detected in the beaked whales,Mesoplodon layardii and Ziphius cavirostris from theSouth Atlantic Ocean (South Africa coast). Subsequently,

MATTIUCCI S. & NASCETTI G.

106 Mise au pointParasite, 2006, 13, 99-113

A. simplex s.s A. pegreffii A. simplex C A. typica A. ziphidarum Anisakis sp. A. physeteris

A. brevispiculata A. paggiae

CS

EA

Fig. 2. – Geographical range of Anisakis spp. genetically characterised.

Page 9: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

it was also recorded in the Mediterranean Sea, alsoparasite of Z. cavirostris. Since its first morphologicaldescription and genetic characterization, it has beenrecently genetically identified at adult stage also inother species of beaked whale, such as M. mirus andM. grayi in south Atlantic waters and in Mesoplodonsp. and Ziphius cavirostris from the Caribbean waters.Thus, its geographical range seems to be wide (Fig. 2)and related to that of its definitive hosts. Scanty dataare so far available concerning its infection in fishand/or squid. It is responsible for the low prevalenceof infection in some fish species (Mattiucci et al., 2004)that are reported in Table IV.

• Anisakis sp. Valentini et al., 2006Anisakis sp. has been detected only at larval (L4) stagein the beaked whales Mesoplodon mirus and M. grayi fromSouth African and New Zealand waters (Table IV andFig. 2). This gene pool has been found reproductively iso-lated from the sympatric species A. ziphidarum occurring

in the same hosts and geographic location. It is consideredmore closely related to A. ziphidarum rather than to theother species so far genetically characterized. Althoughevidenced only at adult stage, the third stage larva of thisso far undescribed taxon shares the morphotype Type I,and it was rarely identified in some fish species of NorthEast Atlantic waters (data not published).

ANISAKIS SPP. INCLUDED IN CLADE 2Three species of Anisakis share so far, at larval stage,the morphology known as Type II (sensu Berland,1961). These species represent a complex of sibling spe-cies that could be genetically well recognised at bothnuclear and mitochondrial level. They are A. physeteris,A. brevispiculata and A. paggiae. A summary of eachfollows.

• A. physeteris (Baylis, 1920)Its main definitive host is the sperm whale, Physetermacrocephalus; no adults genetically identified have

MOLECULAR SYSTEMATICS, PHYLOGENY AND ECOLOGY OF ANISAKIS SPP.

107Mise au pointParasite, 2006, 13, 99-113

A. typica A. ziphidarum Anisakis sp.

LOCATION CODE BR AZ SC FL CS MA EM MA AZ CM SA FL AZ SA NZ IC

DEFINITIVE HOST SPECIES

CetaceansZiphiidaeMesoplodon densirostris - - - - - - - - - - - - - - - - - - - - • -- - - - - - - - -Mesoplodon europaeus - - - - - - - - - - - - - - - - - - - - - - • -- - - - - - -Mesoplodon grayi - - - - - - - - - - - - - - - - - - - - - - - - - - • -- - -Mesoplodon layardii - - - - - - - - - - - - - - - - - - - - • -- - - - - - - - -Mesoplodon mirus - - - - - - - - - - - - - - - - - - - - - - - - - - • • --Ziphius cavirostris - - - - - - - - - - - - - - - - - - • • -- - - - - - - - -

DelphinidaeGlobicephala macrorhynchus - - - - - - • -- - - - - - - - - - - - - - - - - - - - - - -Sotalia fluviatilis • -- - - - - - - - - - - - - - - - - - - - - - - - - - - - -Stenella attenuata -- - - - - • • -- - - - - - - - - - - - - - - - - - - - -Stenella coeruleoalba -- - - - - - - - - - - • -- - - - - - - - - - - - - - - - -Steno bredanensis - - - - - - - - • -- - - - - - - - - - - - - - - - - - - - -Tursiops truncatus - - - - - - • • -- - - - - - - - - - - - - - - - - - - - -

INTERMEDIATE HOST SPECIES

FishCarangidaeTrachurus picturatus - - • -- - - - - - - - - - - - - - - - - - - - - - - - - - -Trachurus trachurus - - - - - - - - - - - - • -- - - - - - - - - - - - - • --

CoryphaenidaeCoryphaena hippurus - - - - • -- - - - - - - - - - - - - - - - - - - - - - - - -

ScombridaeAuxis thazard • -- - - - - - - - - - - - - - - - - - - - - - - - - - - - -Euthynnus affinis - - - - • -- - - - - - - - - - - - - - - - - - - - - - - - -Sarda orientalis - - - - • -- - - - - - - - - - - - - - - - - - - - - - - - -Scomber japonicus - - • -- - - - - - - - - - - • -- - - - - - - - - - - - -Scomberomorus commerson -- - - • -- - - - - - - - - - - - - - - - - - - - - - - - -Thunnus thynnus • -- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

TrichiuridaeAphanopus carbo -- - - - - - - - - - - - - - - - - - - - - - - • -- - - - -

MerluccidaeMerluccius merluccius - - - - - - - - - - • • • -- - - - - - - - - - - - - •

Table IV. – Definitive and intermediate host species so far detected for A. typica, A. ziphidarum and Anisakis sp. (Data from Mattiucci etal., 2002; Paggi et al., 1998a, and present paper). Codes: IC: Iberian Atlantic Coast; MA: Mauritanian Coast; AZ: Azores Islands; SA: SouthAfrica; EM: East Mediterranean Sea; BR: Brazil Atlantic Coast; SC: Somali Coast; NZ: New Zealand; FL: Florida Coast; CS: Caribbean Sea.

Page 10: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

been recorded in other cetacean hosts. Type II larvaeof A. physeteris were genetically identified in very fewhost species and rarely occurring out of those exami-ned during the study for Anisakis spp., thus sugges-ting that other intermediate hosts (mainly squid) areinvolved in the life-cycle of this parasite (Mattiucci etal., 2001, 2004).

• A. brevispiculata Dollfus, 1966A. physeteris was found genetically well distinct andreproductively isolated (DNei = 0.80) from the speciesA. brevispiculata (synonymised by Davey, 1971).

• A. paggiae Mattiucci et al., 2005To the same cluster recently it has been recentlydemonstrated by both nuclear (Mattiucci et al., 2005)and mitochondrial markers (Valentini et al., 2006) tobelong the species A. paggiae, whose genetic diffe-rentiation with respect to A. physeteris and A. brevispi-culata was respectively, DNei = 1.0 and DNei = 0.79.A. paggiae was found as parasite, as adults, the pygmysperm whale, Kogia breviceps, and of the dwarf spermwhale, K. sima (Table V) from both Florida and thesouth African Atlantic coast. Scanty data are so far avai-lable to identify the intermediate hosts in the life cycleof A. paggiae and A. brevispiculata. Very few larvaeof Type II have been identified as belonging to thesespecies in fish from Atlantic waters (Table V), thus sug-gesting that other hosts, not yet detected, are involvedin the life-cycles of these Anisakis species. Some mor-phological characters of diagnostic value available in

male and female adult specimens were found to helpin distinguishing A. paggiae from A. physeteris andA. brevispiculata (Mattiucci et al., 2005).

RECONCILIATION OF GENETICSAND MORPHOLOGY

The high genetic heterogeneity of the Anisakisspp. is supported by morphology of the speciesbelonging to this genus as well, where two

major clades can be delineated as follows: i) the ventri-culus, at adult stage, is short, never sigmoid and broa-der than long in the species A. physeteris, A. brevispi-culata and A. paggiae (Mattiucci et al., 2005), and longerthan broad and often sigmoid in shape in the speciesincluded in clade 1; ii) male spicules that are short,stout and of similar length can be observed in A. phy-seteris, A. brevispiculata and A. paggiae (Mattiucci etal., 2005), long and often unequal (equal in A. ziphi-darum, see Paggi et al., 1998) in clade 1; iii) Type IIlarval morphology (sensu Berland, 1961) is characte-ristic of A. physeteris, A. brevispiculata and A. paggiae(Mattiucci et al., 2001, 2004, 2005) (clade 2), whereasType I morphology (sensu Berland, 1961) can be foundin the species of the A. simplex complex, A. typica,A. ziphidarum and Anisakis sp. (clade 1).The species of the A. simplex complex are so far mor-phologically indistinguishable at both adult and larval

MATTIUCCI S. & NASCETTI G.

108 Mise au pointParasite, 2006, 13, 99-113

A. physeteris A. brevispiculata A. paggiae

LOCATION CODE CM MA WM IC AZ EM SA IC FL MA AZ SA FL IC AZ

DEFINITIVE HOST SPECIES

CetaceansPhyseteridaePhyseter macrocephalus • -- - - - - - - - - - - - - - - - - - - - - - - - - - -

KogiidaeKogia breviceps - - - - - - - - - - - - • • • -- - - • • -- - -Kogia sima -- - - - - - - - - - - - - - - - - - - - - - - • -- - -

INTERMEDIATE HOST SPECIES

CephalopodsOmmastrephidaeOmmastrephes sagittatus • -- - - - - - - - - - - - - - - - - - - - - - - - - - -

FishTrichiuridaeAphanopus carbo -- - - - - - - • -- - - - - - - - - • -- - - - - •

XiphiidaeXiphias gladius • -- - - • -- - - - - - - - - - - - - - - - - - - - -

CarangidaeTrachurus trachurus • -- - - - - - - - - - - - - - - - - - - - - - - - - - -

MerluccidaeMerluccius merluccius • • • • -- • -- - - - - • -- - - - - • --

Table V. – Definitive and intermediate hosts species so far detected for A. physeteris, A. brevispiculata and A. paggiae. (Data from Mat-tiucci et al., 1986, 2001, 2005, and present paper). Codes: CM: Central Mediterranean sea; MA: Mauritanian Coast; WM: west Mediterraneansea; IC: Iberian Atlantic coast; AZ: Azores Island; BR: Brazil Atlantic coast; SA: South African coast; FL: Florida coast; EM: east Mediterra-nean sea.

Page 11: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

MOLECULAR SYSTEMATICS, PHYLOGENY AND ECOLOGY OF ANISAKIS SPP.

109Mise au pointParasite, 2006, 13, 99-113

stage; consequently, only genetic and molecular methodscan be used reliably to identify them at all the deve-lopmental stages. On the contrary, both A. typica andA. ziphidarum are distinguishable at their male adultstage, but not so far at larval stage (Mattiucci et al.,2002; Paggi et al., 1998). A morphological key for therecognition of adult specimens of the species includedin clade 2 (i.e. A. physeteris, A. brevispiculata and A. pag-giae) was also given in Mattiucci et al., 2005.

HOST-PARASITE ASSOCIATIONAND COEVOLUTION

The presence of two main clusters in the genusAnisakis is supported also by ecological data andspecific host-parasite relationships. The sperm

whales (i.e. Physeteris catodon, Kogia breviceps andK. sima) are hosts so far recorded for A. physeteris,A. brevispiculata and A. paggiae (Table V) those wormsincluded in the second clade (Fig. 2). These hosts werenever found parasitized by other species of Anisakisspp. The sole exception so far, is one individual ofP. macrocephalus from the Mediterranean Sea, foundharbouring three adult specimens of A. pegreffii out ofthe 320 specimens of A. physeteris genetically identi-fied in syntopy. Oceanic dolphins in the Delphinidae,Arctic dolphins in the Monodontidae, and porpoisesin the Phocoenidae are hosts of the species of theA. simplex complex and of A. typica (Mattiucci et al.,1997, 1998, 2002, 2005).The beaked whales Ziphius cavirostris, Mesoplodonlayardii, M. mirus and M. grayi are hosts of A. ziphida-rum (Paggi et al., 1998 and present data) and Anisakissp., both partitioned into the second clade. Moreover,although some Anisakis spp., such as A. ziphidarumand A. paggiae and/or A. brevispiculata are found inthe same sympatric areas, as the warm temperate tro-pical water basin, such as the Caribbean and Floridacoasts of the Atlantic Ocean, however they were neveridentified in the same cetacean species (Tables IV, Vand Fig. 2)Phylogenetic relationships proposed elsewhere (Valen-tini et al., 2006) and reviewed here for species of genusAnisakis seem to align with that of their cetaceanhosts (Milinkovitch, 1995; Nikaido et al., 2001) (Fig. 3).The phylogeny of cetaceans proposed by Milinkovitch(1995) based on mtDNA (12S, 16S, and cytb partialsequences) and myoglobin sequences, and by Nikaidoet al. (2001) based on retroposon analysis indicate abranching order of the cetacean lineages where thesperm whale and the pygmy sperm whales (Physete-ridae and Kogiidae) represent basal taxa, followed bythe beaked whales, and freshwater and marine dol-phins as the most derived ones.

In accordance with that analysis, the branching orderproposed for the Anisakis taxa showed that nematodesfrom the sperm whale and the pygmy sperm whales(A. physeteris, A. brevispiculata and A. paggiae) alwaysoccupy a basal lineage followed by those parasitizingthe beaked whales (A. ziphidarum and Anisakis sp.)(Fig. 3). The species from the “oceanic dolphins” (thedefinitive hosts of the A. simplex complex) consistentlyappear as the most derived ones, suggesting some levelof parallelism or that co-evolutionary events could haveaccompanied the speciation of these endoparasiticnematodes and their definitive hosts (Fig. 3).Clearly, a broader dataset is needed to confirm co-spe-ciation and/or host-switching events.

CONCLUDING REMARKS

From the evaluation of almost 20 years of geneticdata on these nematodes, several facts haveconsistently emerged in most Anisakis phylogene-

tic trees, supported so far by allozymes and mitochon-drial markers.First, an overall high congruence was found betweenthe tree topologies obtained from the mitochondrialdatasets, and the phenetic clustering gathered fromnuclear datasets (allozyme data) (as shown in Fig. 1). Second, that there are ecological, genetic/molecular,and some morphological distinctions between the Ani-sakis species showing larval morphotype I and thosehaving morphotype II, although the monophyly depic-ted by the tree topology of the first group is not yetsolved. However, there is a strong bootstrap supportfor monophyly among the species of the Anisakis sim-plex complex.Third, allozyme clustering depicted the species A. phy-seteris, A. brevispiculata and A. paggiae as a sister group,highly supported, with respect to the other Anisakistaxa, and this was evidenced by the mtDNA-cox2sequences as well. Indeed, A. physeteris, A. brevispi-culata and A. paggiae are likely candidates to form thebasal clade of the group of Anisakis species showingType I derived morphology.Among the genetic markers so far applied in the studyof molecular systematics of Anisakis spp. populations,allozymes have been demonstrated the most suitableto prove reproductive isolation between taxa belongingto this genus. This was also largely demonstrated inother anisakid nematodes belonging to other genera,such as Contracaecum and Pseudoterranova, showingthe existence of several sibling species in most of themorphospecies belonging to these genera (Nascetti etal., 1993; Orecchia et al., 2004; Paggi et al., 1991; Mat-tiucci et al., 2001, 2003).Alleles at diagnostic enzyme-loci among the distinctAnisakis spp. are given for easy and reliable identifi-

Page 12: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

MATTIUCCI S. & NASCETTI G.

110 Mise au pointParasite, 2006, 13, 99-113

A.

sim

ple

x s.

s.

A.

peg

reff

ii

A.

sim

ple

x C

A.

typ

ica

A.

zip

hid

aru

m

An

isa

kis

sp.

A.

ph

yset

eris

A.

bre

visp

icu

lata

A.

pa

gg

iae

Pse

ud

ote

rra

no

va c

etic

ola

(ou

tgro

up

)

Host

s fo

r A

nis

aki

s sp

p.

10

0

96

99

71

65

94

do

lph

ins

zip

hii

ds

ph

yse

teri

ds

HOST

PARASITE

Mag

o 19

Isi1

4Is

i38

Isi3

8M

ago2

4M

ago2

5M

ago3

2

Mag

o8M

ago1

3

Mag

o21

Mag

o22

Spe

rm8

Spe

rm28

Spe

rm47

Ban

do1

SP

316

PM

72P

M52

M11

Hum

p20

Hum

p203

aaa7

92

Sp9

Sp2

Tup2

4Tu

p35

Am

211

Am

z13

Ban

do1

71

100

96

94

65

99

Fig.

3.

– The

pat

tern

of

host

and A

nis

aki

spar

asite

ass

oci

atio

ns.

Phyl

oge

net

ic a

nal

ysis

for

host

(ce

tace

ans)

(ad

apte

d f

rom

Nik

aido e

ta

l., 2

001)

, m

apped

with

the

genet

ic r

elat

ionsh

ips

of

An

i-sa

kis

spp.

Conse

nsu

s N

eigh

bour

Join

ing

(NJ)

tre

e, b

ased

on C

aval

li-Sf

orz

a an

d E

dw

ards

chord

dis

tance

val

ues

fro

m a

llozy

me

dat

a, u

sing

PH

YLI

P (

Fels

este

in,

1995

and r

efer

ence

ther

ein).

Boots

trap

val

ues

ove

r 50

0 re

plic

ates

are

giv

en (

modifie

d f

rom

Val

entin

i et

al.,

200

6).

Lines

dep

ict

the

obse

rved

host

-par

asite

ass

oci

atio

ns;

the

dotted

-lin

e in

dic

ates

poss

ible

host

-sw

itchin

gev

ents

.

F

E

D

C

B

LKJ

A

I

G

H

Page 13: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

MOLECULAR SYSTEMATICS, PHYLOGENY AND ECOLOGY OF ANISAKIS SPP.

111Mise au pointParasite, 2006, 13, 99-113

cation of the worms of their sexes and at any stage oftheir life-history (Table VI). They proved to be veryuseful in the identification of a large numbers of Ani-sakis larvae, recently collected from some fish speciesfrom several localities of their distribution range, sho-wing the detection of significant differences in the dis-tribution of different species of Anisakis. This madepossible the use of these Anisakis as biological tagsof different stocks of fish species in European waters(Mattiucci et al., 2004, 2006).On the other hand, the precise and easy identificationat species level of Anisakis larvae has also a majorimpact in the diagnosis of human infections by Anisa-kis spp. larvae (Anisakiosis) (Moschella et al., 2004 andcitations therein). It acquires importance in the assess-ment of their relative epidemiological role, especiallyin those areas where different Anisakis species aresympatric and also syntopic in the same host species.This finding becomes important when the fish speciesare of high commercial value and/or commonly consu-med by humans (Mattiucci et al., 2004, 2006).Despite the numerous observations on the definitiveand intermediate hosts were so far collected on the dif-ferent species of Anisakis genetically characterised,their distribution in several geographical areas remainunclear. Specimens of Anisakis spp. have not been col-lected yet from these areas and data in their cetaceanhosts is patchy. Nevertheless, the preliminary data forreconstruction of a possible coevolutionary scenariobetween cetacean hosts and their Anisakis endopara-sites suggests that cospeciation and host-switchingevents may have accompanied the evolution of thisgroup of parasites. Indeed, the genetic relationships ofthe considered Anisakis taxa, compared with those sofar available for their cetacean definitive hosts first evi-

denced parallelism between host and parasite phylo-genetic tree topologies.Finally, molecular systematics on further populationsof Anisakis spp. collected from other hosts and geo-graphic areas and their phylogenetic analysis carriedout on other target genes as well, will provide sup-porting evidences on the evolutionary history of thisgroup of marine ascaridoid nematodes.

ACKNOWLEDGEMENTS

We thank very much our colleagues and friendswho have co-authored our published papersin this field. Their work and collaboration,

over almost 20 years of researches, made it possible tojointly discover part of the fascinating world of Ani-sakis. We also look forward to further cooperativework. A first draft of this paper was presented, asinvited lecture, at the meeting “Nematode ParasitesSymposium: genetic diversity, virulence genes, diagnosisand control methods” organized by AFSSA, LERPAZ,UMR BIPAR, Maison-Alfort, France, 26th November2004. We are grateful to Pr Jean Dupouy-Camet whogive us the opportunity to write this revision. Theauthors wish to thank Valeria Farina and SimoneDamiano for the help in preparing data and figures.

REFERENCES

ABOLLO E., GESTAL C. & PASCUAL S. Anisakis infestation inmarine fish and cephalopods from Galician waters: anupdated perspective. Parasitology Research, 2001, 87, 492-499.

A. A. A. A. A. Anisakis A. A. brevi- A.Locus simplex s.s. pegreffii simplex C typica ziphidarum sp. physeteris spiculata paggiae

Iddh 100 100 90, 100, 105 95 95 105 97, 103 97 97Mdh-1 100 100 80,90 79 78 78 105 105 105Icdh 93, 100 93, 100 93, 100 93, 100 93, 100 93 95 ,105 110, 114 1056Pgdh 97, 100 93, 100 97, 100 86, 93 95 110 76, 86 93, 100 88Gapdh 100 100 100, 108 120 120 120 115 98 110Sod-1 92 100 100 98 98 120 97 90 90Np 100 100 100,110 90 110 100,125 60 70 80Aat-2 88, 93 100 105, 110 95, 110 120 95, 105 97 85 80Adk-2 105 100 100 95 90 98 97 103 93fEst-2 100 100 100 130, 140 125 125 115 90 90Pep B 70, 80 100 70, 80 70 62, 70 70 75 60 105Pep C-1 90 100 92 98 108 108 105 95 80Pep C-2 96 100 92, 96 96 90 90 108 102 105Mpi 100 100, 103 100 83, 90 105 115 93, 98 80, 88 115Gpi 100 100 100 88 97 106 90, 98 90, 98 103Pgm-2 100 100 100 110 113 108 106 106 106

Table VI. – Alleles at diagnostic loci between the species of Anisakis so far genetically characterised (data from: Mattiucci et al., 1997,1998, 2001, 2002, 2005, and present paper).

Page 14: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

MATTIUCCI S. & NASCETTI G.

112 Mise au pointParasite, 2006, 13, 99-113

BAYLIS H.A. On the classification of the Ascaridae. I. The sys-tematic value of certain characters of the alimentary canal.Parasitology, 1920, 12, 253-264.

BERLAND B. Nematodes from some Norwegian marine fishes.Sarsia, 1961, 2, 1-50.

CAVALLI-SFORZA L.L. & EDWARDS A.W.F. Phylogenetic analysis:models and estimation procedures. American Journal ofHuman Genetics, 1967, 19, 233-257.

D’AMELIO S., MATHIOPOULOS K., SANTOS C.P., PUGACHEV O.N.,WEBB S.C., PICANCO M. & PAGGI L. Genetic markers in ribo-somal DNA for the identification of members of the genusAnisakis (Nematoda: Ascaridoidea) defined by polymerasechain reaction-based restriction fragment length polymor-phism. International Journal for Parasitology, 2000, 30,223-226.

DAVEY J.T. A revision of the genus Anisakis Dujardin, 1845(Nematoda: Ascaridida). Journal of Helminthology, 1971,45, 51-72.

DOLLFUS R.P.H. Helminthofauna de Kogia breviceps (Blainville,1838) cetace odontocete. Annales de la Société de ScienceNaturelle de Charete-Maritime, 1966, 4, 3-6.

FELSESTEIN J. PHYLIP: Phylogeny inference package, ver.3.572., 1995, Seattle. WA: University of Washington.

MATTIUCCI S., ABAUNZA P., RAMADORI L. & NASCETTI G. Geneticidentification of Anisakis larvae in European hake fromAtlantic and Mediterranean waters for stock recognition.Journal of Fish Biology, 2004, 65, 495-510.

MATTIUCCI S., FARINA V., CAMPBELL N., MACKENZIEE K., RAMOS

P., PINTO A.L. , ABAUNZA P. & NASCETTI G. Anisakis spp.larvae (Nematoda: Anisakidae) from Atlantic horse mac-kerel: their genetic identification and use as biological tagsfor host stock identification. Fisheries Research, 2006 (inpress).

MATTIUCCI S., CIANCHI R., NASCETTI G., PAGGI L., SARDELLA N.,TIMI J., WEBB S.C., BASTIDA R., RODRIGUEZ D. & BULLINI L.Genetic evidence for two sibling species within Contra-caecum ogmorhini Johnston & Mawson, 1941 (Nematoda:Anisakidae) from otariid seals of boreal and austral regions.Systematic Parasitology, 2003, 54, 13-23.

MATTIUCCI S., NASCETTI G., BULLINI L., ORECCHIA P. & PAGGI L.Genetic structure of Anisakis physeteris and its differen-tiation from the Anisakis simplex complex (Ascaridida: Ani-sakidae). Parasitology, 1986, 93, 383-387.

MATTIUCCI S., NASCETTI G., CIANCHI R., PAGGI L., ARDUINO P.,MARGOLIS L., BRATTEY J., WEBB S.C., D’ AMELIO S., ORECCHIA P.& BULLINI L. Genetic and ecological data on the Anisakissimplex complex with evidence for a new species (Nema-toda, Ascaridoidea, Anisakidae). Journal of Parasitology,1997, 83, 401-416.

MATTIUCCI S., NASCETTI G., DAILEY M., WEBB S.C., CIANCHI R. &BULLINI L. Evidence for a new species of Anisakis Dujardin,1845: morphological description and genetic relationshipsbetween congeners (Nematoda: Anisakidae). SystematicParasitology, 2005, 61, 157-171.

MATTIUCCI S., PAGGI L., NASCETTI G., PORTES SANTOS C.,COSTA G., DI BENEDITTO A.P., RAMOS R., ARGYROU M., CIANCHI

R. & BULLINI L. Genetic markers in the study of Anisakistypica (Diesing, 1860): larval identification and genetic rela-

tionships with other species of Anisakis Dujardin, 1845(Nematoda: Anisakidae). Systematic Parasitology, 2002,51, 159-170.

MATTIUCCI S., PAGGI L., NASCETTI G., ABOLLO E., WEBB S.C., PAS-CUAL S., CIANCHI R. & BULLINI L. Genetic divergence andreproductive isolation between Anisakis brevispiculataand Anisakis physeteris (Nematoda: Anisakidae). Interna-tional Journal for Parasitology, 2001, 31, 9-14.

MATTIUCCI S., PAGGI L., NASCETTI G., ISHIKURA H., KIKUCHI K.,SATO N., CIANCHI R. & BULLINI L. Allozyme and morpholo-gical identification of Anisakis, Contracaecum and Pseu-doterranova from Japanese waters (Nematoda, Ascari-doidea). Systematic Parasitology, 1998, 40, 81-92.

MILINKOVITCH M.C. Molecular phylogeny of cetaceans promptsrevision of morphological transformations. Trends in Eco-logy and Evolution, 1995, 10, 328-334.

MOSCHELLA C.M., MATTIUCCI S., MINGAZZINI P., DE ANGELIS G.,ASSENZA M., LOMBARDO F., MONACO S., PAGGI L. & MODINI C.Intestinal Anisakiasis in Italy: case report. Journal of Hel-minthology, 2004, 78, 271-273.

NADLER S.A. Molecular approaches in studying helminth popu-lation genetics and phylogeny. International Journal forParasitology 1990, 20, 11-29.

NADLER S.A. Microevolution and genetic structure of parasitepopulations. Journal of Parasitology, 1995, 81, 395-403.

NASCETTI G., CIANCHI R., MATTIUCCI S., D’AMELIO S., ORECCHIA P.,PAGGI L., BRATTEY J., BERLAND B., SMITH J.W. & BULLINI L.Three sibling species within Contracaecum osculatum(Nematoda, Ascaridida, Ascaridoidea) from the AtlanticArctic-boreal region: reproductive isolation and host pre-ferences. International Journal for Parasitology, 1993, 23,105-120.

NASCETTI G., PAGGI L., ORECCHIA P., SMITH J.W., MATTIUCCI S. &BULLINI L. Electrophoretic studies on the Anisakis simplexcomplex (Ascaridida: Anisakidae) from the Mediterraneanand North East Atlantic. International Journal for Parasi-tology, 1986, 16, 633-640.

NEI M. Genetic distance between populations. AmericanNaturalist, 1972, 106, 283-295.

NIKAIDO M., MATSUNO F., HAMILTON H., BROWNEL JR. R.L., CAO Y.,DING W., ZUOYAN Z., SHELDOCK A.M., FORDYCE R.E., HASE-GAWA M. & OKADA N. Retroposon analysis of major ceta-cean lineages: The monophyly of toothed whales and theparaphyly of the river dolphin. Proceeding of NaturalAcademy of Sciences USA, 2001, 98, 7384-7389.

ORECCHIA P., MATTIUCCI S., D’AMELIO S., PAGGI L., PLOTZ J.,CIANCHI R., NASCETTI G., ARDUINO P. & BULLINI L. Two newmembers in the Contracaecum osculatum complex (Nema-toda, Ascaridoidea) from the Antarctic. International Jour-nal for Parasitology, 1994, 24, 367-377.

ORECCHIA P., PAGGI L., MATTIUCCI S., NASCETTI, G., SMITH J.W.& BULLINI L. Electrophoretic identification of larvae andadults of Anisakis (Ascaridida: Anisakidae). Journal ofHelminthology, 1986, 60, 331-339.

PAGGI L., NASCETTI G., CIANCHI R., ORECCHIA P., MATTIUCCI S.,D’AMELIO S., BERLAND B., BRATTEY J., SMITH J.W. & BULLINI L.Genetic evidence for three species within Pseudoterranovadecipiens (Nematoda, Ascaridida, Ascaridoidea) in the North

Page 15: MATTIUCCI S.* & NASCETTI G.**ging to the genus Anisakis thus became the subject of our past and ongoing studies using both genetic/mole-cular and morphological approaches. Indeed,

MOLECULAR SYSTEMATICS, PHYLOGENY AND ECOLOGY OF ANISAKIS SPP.

113Mise au pointParasite, 2006, 13, 99-113

Atlantic and Norwegian and Barents Seas. InternationalJournal of Parasitology, 1991, 21, 195-212.

PAGGI L., MATTIUCCI S., ISHIKURA H., KIKUCHI K., SATO H., NAS-CETTI G., CIANCHI R. & BULLINI L. Molecular genetics in ani-sakid nematodes from the Pacific Boreal Region, in: HostResponse to International Zoonoses, Springer-Verlag, Aca-demic Press, Tokyo, 1998b, 81-103.

PAGGI L., NASCETTI G., WEBB S.C., MATTIUCCI S., CIANCHI R. &BULLINI L. A new species of Anisakis Dujardin, 1845 (Nema-toda, Anisakidae) from beaked whales (Ziphiidae): allo-zyme and morphological evidence. Systematic Parasitology,1998a, 40, 161-174.

PAGGI L., MATTIUCCI S., D’AMELIO S. & NASCETTI G. Nematodidel genere Anisakis in pesci, cefalopodi e cetacei del MarMediterraneo e dell’Oceano Atlantico e Pacifico. BiologiaMarina Mediterranea, 1998c, 5 (3), 1585-1592.

SMITH J.W. & WOOTTEN R. Anisakis and Anisakiasis. Advancesin Parasitology, 1978, 16, 93-163.

SWOFFORD D.L. & SELANDER R.B. BIOSYS-1 Software version1.7. Champaign III: Natural History Surey, 1989, 31 pp.

VALENTINI A., MATTIUCCI S., BONDANELLI P., WEBB S.C., MIGNUCCI-GIANNONE A.A., COLOM-LLAVINA M.M. & NASCETTI G. Geneticrelationships among Anisakis species (Nematoda: Anisa-kidae) inferred from mitochondrial cox-2 sequences, andcomparison with allozyme data. Journal of Parasitology,2006, 92 (1), 156-166.

Reçu le 14 janvier 2006Accepté le 23 mars 2006