motor design suite v12

60
+ V + V A A A M 3 ~ B A C ET1 ET2 ET3 GND VM1 VM2  AM1  AM2  AM3 Load Generator_torque T0 := 1.2 s  AMPL := -3.2k Load_torque  AMPL := 3.204 T0 := 1 s  ASM_2 LS1 := 0.1726m LS2 := 0.20222m R1 := 4.8m Oh LM := 9.81m J := 10. 5 kg m % R2 := 13.3m Oh P := 2 T Electrical Machine Design Suite

Upload: salvador-joven

Post on 30-Oct-2015

50 views

Category:

Documents


0 download

TRANSCRIPT

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 1/60

+V

+

V

A

A

A

M3 ~ B

A

C

ET1

ET2

ET3

GND

VM1

VM2

 AM1

 AM2

 AM3

Load

Generator_torque

T0 := 1.2 s

 AMPL := -3.2k

Load_torque

 AMPL := 3.204

T0 := 1 s

 ASM_2

LS1 := 0.1726m

LS2 := 0.20222m

R1 := 4.8m Oh

LM := 9.81m

J := 10.5 kg m%

R2 := 13.3m Oh

P := 2

T

Electrical Machine Design Suite

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 2/60

Quick Introduction

 Ansoft offers the most complete solution to electrical machine designin the industry through its Electrical Machine Design Suite

What is the Electrical Machine Design Suite?

Æ Five combinable tools which assist engineers in designing andanalyzing electrical machines

Æ Integrates electromagnetic, circuit, and system engineering usinga common desktop environment

The Electrical Machine Design Suite includes:

Æ RMxprt – for machine design

Æ Maxwell 2D/3D – for finite element analysis

Æ Optimetrics – for optimizationÆ Simplorer – for system analysis

Æ ePhysics – for thermal and stress analysis

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 3/60

Electrical Machine Design Suite

RMxprt

Maxwell 2DMaxwell 3D

SIMPLORER

14 types of 

motors/generators

FEA FEA

Equivalent circuits

Co-simulation

ePhysics

Optimetrics

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 4/60

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 5/60

RMxprt

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 6/60

What is RMxprt ?• Analytical Design Software for Electric Machines• User can calculate machine performance, make material and size

decisions

• Flexible design and optimization process for rotating electric

machines which perform hundreds of "what if" analyses in a matter of seconds

Machine Types• Induction Machines : Three-Phase, Single-Phase

• Synchronous Machines : Line-Start PM, Adjustable Speed PM,

Salient Pole, Non-Salient Pole

• Brush commutated: DC, Permanent Magnet DC, Universal, Claw- pole Alternator 

• Electronically commutated: Brushless PM, Switched Reluctance

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 7/60

User Inputs

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 8/60

Typical Results

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 9/60

Complete Report and Curves

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 10/60

RMxprt to Maxwell 2D link

 Automatic creation of complete transient design including:Geometry, Materials, Master/Slave Boundaries, Sources, Mesh

Operations, External Circuits, Motion, and Solution Setup

 Access this by clicking on Analysis > Setup > Create Maxwell

Design

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 11/60

RMxprt to Maxwell 3D link

Complete geometry creation

One-click FEA design

Option for periodic or full

models  Automatic update with project

variables

Geometry creation and materialassignment

General and dedicated machine

parts

Create new machine types with

arbitrary combinations

Dimension variables supported

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 12/60

Arbitrary Winding Configurations

Lap winding with

coil pitch=1Concentric

winding

Double-layer 

lap winding

Single-layer 

lap windingDC winding

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 13/60

Common Slot Type Support

squirrel-cage cores

Single/double

squirrel-cage cores

Single/double

Inner/outer AC/DC

armature cores

Inner/outer AC/DC

armature cores

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 14/60

Maxwell

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 15/60

What is Maxwell?

Magnetic and Electric Finite Element Field Solvers

Static, Quasi-Static and Transient (time-domain)

solutions Linear and non-linear, isotropic and anisotropic, and

laminated materials

Parametric and Optimization capabilities includingstatistical, sensitivity and tuning analysis

Co-simulation with Simplorer 

Direct link from RMxprt Direct link to ePhysics

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 16/60

Maxwell Desktop

Project

Manager Window

History

Tree

Window

3Dmodeler 

Window

Message

Window

sixwindows

Properties

Window

ProgressWindow

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 17/60

Powerful Geometry Utilities

¾ Geometry utilities automatically create complicated2D/3D geometries

¾ Shape optimized for minimum count, good quality mesh,

significantly enhancing meshing success rate

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 18/60

General Machine Parts

Components

for most

machines

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 19/60

Geometry Variables Sharing

with RMxprt

Maxwell geometry

changed in RMxprt

Convenient for geometry

parametric sweep and

optimization

Convenient for geometry

parametric sweep andoptimization

automatic update

with variables

Maxwell geometry

automatic update

with variables

changed in RMxprt

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 20/60

3-Tier Library Structure

System (global) level – predefined from Ansoft User Library – to be shared among several users at a company

(can be encrypted)

Personal libraries - to be used only by single user (can be

encrypted)

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 21/60

Advanced Analysis Features

Distributed Analysis – for computing farm toOptions for remote or distributed analysiscapability – can solve different rows of aparametric table on different PC’s (Tools >Options > Analysis)

Remote Solve – to solve on a single remotecomputer (must have separate license)

Optional convergence stopping criterion –use of % change of any output parameter (such as loss or torque) as an additionalconvergence stopping criterion, but does notimpact adaptive refinement

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 22/60

Double Rotor Motion

Rotor II

Rotor I

Stator 

Two Bands in Transient Solver 

For transient motion solver, two bands with two independently movingobjects now allowed

Both rotational and translational solvers can handle this

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 23/60

Multiple end connected conductors

Induction Motor with Dual Rotor Cages

squirrel cage I

squirrel cage II

For transient solver, can have for independently connected squirrelcage rotors

External Circuit Coupling

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 24/60

External Circuit Coupling Use Maxwell Circuit Editor for control and drive circuitry

Re-adjusts time step of field computation when: Switching

Sharp variations in external sources

Large change in winding inductance

fivewindows

Project and

Components

Window

Properties

Window

Schematic

Window

Message

Window

Progress

Window

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 25/60

Maxwell Co-simulation with Simplorer 

¾ 2D transient co-simulation: Maxwell V12 – Simplorer V8

¾ Improved performance with asynchronous time steps

¾ Next step is to support 3D: Maxwell V12.x – Simplorer V8.x

Maxwell SIMPLORER

Lumped field

coupling parameters

Equivalent circuit

coupling parameters

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 26/60

Dynamic Demagnetization

Source Design Target Design2-step

process

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 27/60

Dynamic Demagnetization - Results

Source H field

in the PM

Target H field

in the PM

Laminated Materials Core Loss

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 28/60

 :

 )(][

)()]([

1

1

 pc

 pc

 pca

t k 

H

HH

HHT

µ 

µ σ 

∂=

+

∂=×∇×∇

Laminated Materials Core Loss

Field Effects

Note: this can have an impact

on the torque in a motor 

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 29/60

Typical Maxwell 2D/3D Results

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 30/60

Optimetrics

What is Optimetrics ?

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 31/60

What is Optimetrics ?

¾ Optimetrics enables engineers to determine the best design variationamong a model's possible variations.

¾ Create the original model, the nominal design, and then define design

parameters that vary

¾ Optimetrics includes five unique capabilities:

1. Parametrics: Define one or more variable sweep definitions, each specifying a series of variable

values within a range. Easily view and compare the results using plot or table to determine how each

design variation affects the performance of the design.

2.

Optimization: Identify the cost function and the optimization goal. Optimetrics automatically changesthe design parameter(s) to meet the goal. The cost function can be based on any solution quantity

that can be computes, such as field values, R,L,C force, torque, volume or weight.

3. Sensitivity: Determine the sensitivity of the design to small changes in variables in the vicinity of a

design point. Outputs include: Regression value at the current variable value, First derivative of the

regression, Second derivative of the regression

4. Tuning: Variable values are changed interactively and the performance of the design is monitored.

Useful after performing an optimization in which Optimetrics has determined an optimal variable

value, and you want to fine tune the value to see how the design results are affected.

5. Statistical: shows the distribution (Histogram) of a design output like force, torque or loss caused by

a statistical variation (Monte Carlo) of input variables.

Optimetrics Module (cont )

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 32/60

Optimetrics Module (cont.)

Distributed Parametrics and Optimization

Seamless setup Integrated with force,

torque, matrix

Complete support of Transient solution

Optimetrics Module (cont )

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 33/60

Optimetrics Module (cont.)

Integrated with external circuitOptimize on ‘voltage’

in MaxwellSetup variables in

Maxwell Circuit Editor 

Optimetrics E ample

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 34/60

Optimetrics Example

Optimization of a starter-alternator pack The pack contains a motor used also as alternator 

Three-phase claw pole motor 

Permanent Magnets are added between teeth

Optimization of the Geometry

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 35/60

Optimization of the Geometry

Want to see the influence on the output torque

Tooth angle Magnet thickness Magnet length

R lt

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 36/60

Results

Transient analysis run for the optimized design

Initial Peak torque: 63.40 Nm

Optimized Peak Torque: 67.42 Nm

Initial Optimized

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 37/60

Simplorer 

What is Simplorer ?

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 38/60

What is Simplorer ?

SUM2_6

CONST

id_ref 

G(s)

GS2

I

I_PART_id

GAIN

idLIMIT

yd

UL := 9

LL := -9

GAIN

P_PART_id

KP := 0.76

12

R1 R2 R3 R450 1k 1k50

C1 C2

3.3u

3.3u

V0 := 5 V0 := 0

N0005

N0003N0004

N0002

Circuits

Block

Diagrams

State

Machines

• Multi-domain, system simulator for designing high performance systems

• Commonly used by the automotive,

aerospace/defense, and industrial

automation industries.• Integrated analysis with electromagnetic

simulation tools (Maxwell, PExprt, RMxprt,

Q3D, HFSS)

• Three Basic Simulation Engines:9 Circuits

9 Block Diagrams

9 State Machines

• Analysis Types: DC, AC, Transient• Co-simulation with Maxwell and Simulink

• Statistical Analysis and Optimization

• VHDL-AMS Capability

IMP = 0

IMP = 1IMP = 0

IMP = 1

IMP = 0 and RLine.I <= ILOW

IMP = 1 and RLine.I >= IUP

IMP = 0 and RLine.I >= IUP

IMP = 1 and RLine.I <= ILOW

SET: CS1:=-1

SET: CS2:=-1SET: CS3:=-1

SET: CS4:=-1

SET: CS1:=-1

SET: CS2:=1SET: CS3:=-1

SET: CS4:=-1

SET: CS1:=1

SET: CS2:=-1SET: CS3:=-1

SET: CS4:=-1

SET: CS1:=-1

SET: CS2:=-1SET: CS3:=-1

SET: CS4:=-1

C l t S t D i

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 39/60

Complete System Design

ThermalElectrical

Mechanical Hydraulic

Magnetic

Logic

 Analog  Digital 

Component

Subsystem

System

SIMPLORER Methodology

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 40/60

SIMPLORER Methodology

Electrical/Electronics(analog and digital circuits)

Digital Control Systems(state machine)

12

R1 R2 R3 R450

1k 1k50

C1 C2

3.3u

3.3u

V0 := 5 V0 := 0

N0005

N0003 N0004

N0002

C14.7m

MS3 ~

B A C

IGBT1 IGBT2 IGBT3

IGBT4 IGBT5 IGBT6

XOR

XOR2_DEL1

XOR

XOR2_DEL2

 AND

 AND2_DEL1

 AND

 AND2_DEL2 OR

OR2_DEL1

SUM

Carry

IMP = 0

IMP = 1IMP = 0

IMP = 1

IMP = 0 and RLine.I <= ILOW

IMP = 1 and RLine.I >= IUP

IMP = 0 and RLine.I >= IUP

IMP = 1 and RLine.I <= ILOW

SET: CS1:=-1SET: CS2:=-1

SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

 A

B

C

 Analog Control, Mechanics

(block diagram)

SUM2_6

CONST

id_ref 

G(s)

GS2

I

I_PART_id

GAIN

idLIMIT

yd

UL := 9

LL := -9

GAIN

P_PART_id

KP := 0.76

Each part of a complex technical

system is represented by the most

appropriate modeling language

Multi Domain Design

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 41/60

Multi Domain Design

Power Converter 

Electro Mechanics

Sensors

Transformer 

Control

Multitude of Domains

Multitude of Tools & Methods

MechanicsUtility

Simulator Coupling Technology

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 42/60

Simulator Coupling Technology

SimulinkMaxwell2D/3D

Electromagnetism

Electro mechanics

SIMPLORER Simulation Data Bus

Simulator Coupling Technology

MathCadC/C++

Interface

Circuit

Simulator 

Block Diagram

Simulator 

State Machine

Simulator VHDL-AMS

Simulator 

Model Database

Electrical, Blocks, States, Machines, Automotive, Hydraulic,

Mechanics, Power, Semiconductors…

Integrated Design Environment

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 43/60

Integrated Design Environment All three basic simulation types are on same desktop:

Circuits, Block Diagrams, State Machines

Power Library

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 44/60

Power Library

Power System and Cable Models

Single Phase Power Supply

Ideal Three Phase Power Supply

Three Phase Power Supply with Impedance

WIRE - Gamma Model

Wire T-Model

Inverter Topologies

Line-commutated Converters

B2 Diode Bridge

B2 Fully Controlled

B2 Half-Controlled, Symmetrical

B2 Half-Controlled, Asymmetrical

B6 Diode Bridge

Two Level Inverter Equivalent Circuit

Three Phase Two Level Inverter 

Single Phase Two Level Inverter 

Three Phase Three Level Inverter 

Single Phase Three Level Inverter 

Control Algorithms

Two Level Square Wave

Two Level Natural Sampling

Three Level Single Phase

Three Level Three Phase

Load Models

Three Level Single Phase NS

Three Level Three Phase NSFour Quadrant Current Control

Four Quadrant Natural Sampling

B6 Thyristor Bridge

B6 Bridges - Inverse Parallel ConnectionB12 Diode Bridge

B12 Thyristor Bridge Parallel Connection

B12 Thyristor Bridge Cascade

B24 Thyristor Bridge

Single Phase A.C. Chopper 

Three Phase A.C. Chopper 

DC Link

Three Phase RL Load

Logic

Dead Time

Power Library

Applications:• AC/DC Converters

• Inverters (DC/AC)

• Drive Systems

• Power Quality

• Alternative Power  

Industries:

• Industrial Automation

• Drives Manufacturers

• EV/EHV

• Power Conversion• Power Quality

+ Battery and Fuel Cell

Mechanical Elements Library

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 45/60

Mechanical Elements Library

Rotational

Mass

Translational

Mass

Coordinate Transformation

Rotational-Rotational

Rotational-Translational

Translational-Rotational

SYMP Synchronous Machine Permanent Excitation

SYMP Synchronous Machine Permanent Excitation w Damper 

Electrical MachinesDCMP DC-Machine Permanent Excitation

 ASMS Slip Ring Induction Machine

Rigidity

Rigidity

Torque Source

Ground

 Angular Velocity Source

Velocity Source

Ground

Force Source

Translational-Translational

Mechanical Systems

Applications:

• Drive Trains

• Electro-HydraulicSystems

• Electro-MechanicalSystems

• Load Variations

Industries:

• Automotive Suppliers

• Drive Manufacturers

• Industrial Automation• Defense

• Aerospace

Simplorer to Maxwell ECE Coupling

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 46/60

Simplorer to Maxwell ECE Coupling

Simplorer - Simulink Cosimulation

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 47/60

Simplorer Simulink Cosimulation

SIMPLORER v8

SIMPLORER v8SIMPLORER v8

Simulation initiated from SIMPLORERSimulation initiated from SIMPLORER

SimulinkSimulink invoked from SIMPLORERinvoked from SIMPLORER

d-q-Phase Transformation

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 48/60

d q Phase Transformation

Control Signal Generation / Phase Transformation

Vector control based on d-q transformation

¾ d-q transformation using built in math engine

¾On-time computation for phase A and B for inverter 

control based on Controller output data

ICA:

TP := 0.0002ustmax := 10.

t0a := 0

t0b := 0

t0c := 0

EQU

yalph := cos(theta_el) * yd.VAL - sin(theta_el) * yq.VAL theta_el := SYMPOD1.PHIDEG * PI / 180.

ybeta := sin(theta_el) * yd.VAL + cos(theta_el) * yq.VAL TEc := (yc / ustmax + 1) * TP / 2.

ya := yalph i1alph := SYMPOD1.I1A

yb := -0.5 * yalph + ybeta * sqrt(3.) / 2. i1beta := (SYMPOD1.I1A + 2 * SYMPOD1.I1B) / sqrt(3.)

yc := -ya - yb i1d := i1alph * cos(theta_el) + i1beta * sin(theta_el)TEa := (ya / ustmax + 1) * TP2 i1q := i1beta * cos(theta_el) - i1alph * sin(theta_el)

TEb := (yb / ustmax + 1) * TP2

theta_m := theta_el / 3.

Speed and Torque Control

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 49/60

Speed and Torque Control

Speed ControlI_nI_iq n

GAIN

GAIN Y t

GAIN

id

I

KI := 29.02k

UL := 10

LL := -10

GAIN

P_PART_n

KP := 0.1161k

Controller design using block

diagrams

¾ Speed Profile from Data

File

¾Reference Torque

Determination

ust_in

GAIN iq

ust

d-q-Current Controller 

I

 G  (    s  )    GS1

UL := 9

m_ref LL := -9 P_Iq

G(s)

GS2

I

I_id

LIMIT GAIN LIMIT

yq KP := 0.76

id_ref 

CONST

KI := 80

yd P_id

LIMIT GAIN

UL := 9 KP := 0.76LL := -9

DC Motor Drive System

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 50/60

y

L_R

L_S

L_T

ET1

ET2

ET3

CD

1m

R_R

R_S

R_T

 YtLOAD

CONTR_OUT

THRES2 := 2.5

VAL2 := 1

THRES1 := -2.5

VAL1 := -1

-16.66m

DCM.N P_GAIN

KP := 50

I_GAIN

KI := 20

LIMITER

UL := 20

LL := 0

10m

GAIN GAIN

I

LIMIT

CONST

N_REF

16.6667

0.3mM

DCM

RA := 1.2

LA := 9.5m

KE := 0.544

J := 4m

A

+ AM1D1 D2 D3

D4 D5 D6

D7

TR

CONST

CLOCK

.1m

0 50.00mT

15.00

0 0

10.00

0

0

100.00m

100.00m

50.00m

50.00m

Motor torque and

load torque

Servo Drive System

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 51/60

ET1

ET2

ET3

R1

R2

R3

L1

L2

L3

10m

10m

10m

1m

1m

1m

D1 D2 D3

D4 D5 D6

C1

4.7m

ICA:

EQU

TP := 0.0002ustmax := 10.

GAIN

n

GAIN

ust_in

GAIN iq

 Y tust

d-q-Current Controller 

Speed Control

1,3 Nm at

2000 rpm

 Yt

M_LOAD

MS3 ~ 

BA CSYMPOD1

R1 := 1 L1D := 9.2m

L1Q := 9.2m

KE := 0.334

P := 3J := 5.55m

LOAD := SYMPOD1.N*0.00065 + M_LOAD.VAL

t0a := 0

t0b := 0

t0c := 0

Synchronous Machine

permanent excitation

Control Signal Generation / Phase Transformation

Phase Currents

t [s]

20

-25

0

-20

-15

-10

-5

5

10

15

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

Reference and Actual Speed

t [s]

1k

-1k

0

-0.75k

-0.5k

-0.25k

0.25k

0.5k

0.75k

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

DC Link VoltageC1.V [V]

t [s]

0.57k

0.53k

0.53k

0.54k

0.54k

0.55k

0.55k

0.56k

0.56k

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

Position

t [s]

1.6k

-0.2k0

0.2k

0.4k

0.6k

0.8k

1k

1.2k

1.4k

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

Reference and Actual Torque

t [s]

40

-40

0

-30

-20

-10

10

20

30

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

QuickGraph92 * yd.VALyq.VAL

t [s]

8

-8

0

-6

-4

-2

2

4

6

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

G(s)

GS2

I

I_id

GAIN

id

LIMIT

yq

UL := 9

LL := -9

LIMIT

yd

UL := 9

LL := -9

GAIN

P_id

KP := 0.76

P21

z2 := 1

z5 := 0

P22

z2 := 0

z5 := 1

t - t0b >= TP

t - t0b >= TEb

t0b := t

P11

z1 := 1

z4 := 0

t0a := t

P12

z1 := 0

z4 := 1

P31

z3 := 1

z6 := 0

t0c := t

P32

z3 := 0

z6 := 1

t - t0c >= TP

t - t0c >= TEct - t0a >= TEa

t - t0a >= TP

 G  (    s  )    GS1

I

I_iq

I

I_n

KI := 29.02k

UL := 10

LL := -10

GAIN

P_PART_nLIMIT

m_ref 

KP := 0.1161k

IGBT1 IGBT2 IGBT3

IGBT4 IGBT5 IGBT6

CONST

id_ref 

KI := 80

GAIN

P_Iq

KP := 0.76

theta_el:=SYMPOD1.PHIDEG * PI / 180.

yalph:=cos(theta_el) * yd.VAL - sin(theta_el) * yq.VAL

ybeta:=sin(theta_el) * yd.VAL + cos(theta_el) * yq.VAL

ya:=yalph

yb:=-0.5 * yalph + ybeta * sqrt(3.) / 2.

yc:=-ya - yb

TEa:=(ya/ ustmax + 1) * TP2

TEb:=(yb/ ustmax + 1) * TP2

TEc:=(yc / ustmax + 1) * TP / 2.

i1alph:=SYMPOD1.I1A

i1beta:=(SYMPOD1.I1A + 2 * SYMPOD1.I1B) / sqrt(3.)

i1d:=i1alph * cos(theta_el) + i1beta * sin(theta_el)

i1q:=i1beta * cos(theta_el) - i1alph * sin(theta_el)

theta_m:=theta_el / 3.

Generator System

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 52/60

+

V

+

V

+

V

A+

A+

A+ +

V

+

V

+

V

+

V

+

V

+

V

R1

R2

R3

L1

L2

L3

R4

1n

L4

1n

ET1

ET2

ET3

TH1

TH2

TH3

TH4

vm22 vm11vm33

TH5

TH6

vm_HS_U1

vm_HS_U2

vm_HS_U3

IGAIN

alpha2

KI := -0.1k

bypass:=0

Tmax:=-500

net_in:=1 * Unom

main:=1

bypass:=1

Tmax:=-5000

net_in:=1 * Unom

Tmax:=-10000

net_in:=1 * Unom net_in:=1 * Unom

Tmax:=-15000Tmax:=-19000

net_in:=1 * Unomnet_in:=1 * Unom

(t>=0.6) (t>=2.5) (t>=3.5) (t>=4.5) (t>=4.8)

SET: := con:=0

(t>=0.65) State10_3

con:=1

net_in:=1 * Unom

Tmax:=-500

SET: := bypass:=1

(t>0.1)

soft

con:=1(t>=(0.65+T_con))

(t>=(0.65+(2*T_con)))

(t>=(0.65+(3*T_con)))

(t>=(0.65+(4*T_con)))(t>=(0.65+(6*T_con)))

(t>=(0.65+(5*T_con))) (t>=(0.65+(7*T_con)))

(t>=(0.65+(8*T_con)))

SET: ignit11:=0

vm1.V>0 and alpha.VAL<=risetime-1

t>th1+toff or vm1.V<=0

SET: ignit12:=0

SET: th1:=t

vm1.V<0 and alpha.VAL<= risetime-1

t>th1+toff or vm1.V>=0

SET: ignit31:=0

SET: th3:=t

vm3.V>0 and alpha.VAL<=risetime-1

t>th3+toff or vm3.V<=0

SET: := ignit32:=0

SET: := th3:=t

vm3.V<0 and alpha.VAL <= risetime-1

t > th3+toff or vm3.V>=0

SET: ignit21:=0

SET: th2:=t

vm2.V>0 and alpha.VAL<=risetime-1

t>th2+toff or vm2.V<=0

n_off2

SET: ignit22:=0

vm2.V<0 and alpha.VAL<=risetime-1

t>th2+toff or vm2.V>=0

EQU  Yt ICA: EQU

tignit := alpha.VAL/ (360 * freq)

freq := 50

toff := 1 / (2.1 * freq)

alpha

risetime := 120

C_com:= 10u

Unom:= 20k / 1.73

T_turbine:= -5000

VA2_1

Pmech := T_turbine * ASM_1.N / 60 * 2 * 3.14 / 3

Star 

High Voltage Low Voltage

Dy5 TFR3LP1TFR3LS1

am1 := 20k * sqrt(2) / sqrt(3)

FILE := asynchronous_wind_generator5_ssh__alpha.mdx

TPERIO := 0.5

PHASE := 0PERIO := 0

Delta

M3 ~ B

A

C

R1 := 1.13333m

R2 := 1.7m

LS1 := 0.135667m

LS2 := 84.6667u

LM := 4.33333m

I1A0 := 0

I1B0 := 0

I1C0 := 0

I2A0 := 0

I2B0 := 0

I2C0 := 0

N0 := 1.49k

PHI0 := 0

LOAD := T_turbine

Reactive power 

compensation

Soft start

bypass

Soft start curve

for alpha

<---Timedependent changing of load torque

caused by the wind

Thyristor Control

SET: := C_con:=100u

SET: := T_con:=0.05

Time dependent changing of the capacitances

in the reactive power compensation

QuickGraph1 ASM_1.N

t

1.70k

1.40k

1.60k

0 3.002.00

QuickGraph2vm1.Vvm2.Vvm3.V

t

40.00

-40.00

0

-25.00

25.00

0 3.002.00

SET: th1:=t

SET: th2:=t

DEL: ignit22 ## tignit

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 53/60

Drive System with FEA model

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 54/60

Includes: High Fidelity Machine FEA Model, Battery, Manufacture IGBTs, Closed-loop Current/Speed

Controls, Dynamic Mechanical Load and Digital Switching

GAIN

n

GAIN

u st i n

GAIN iq

 Y t

ust

d-q-Current Controller 

Speed Control

 Yt

M L OAD

Phase Transformation / Control Signal Generation by Space Vector Modulation

G(s)

GS2

I

I id

GAIN

id

LIMIT

yq

UL := 10

LL := -10

LIMIT

yd

UL := 10

LL := -10

GAIN

P id

KP := 1.96

   G   (  s   )

GS1

I

I n

KI := 29.02k

UL := 10

LL := -10

GAIN

P PART n

LIMIT

m r ef  

KP := 0.1161k

IGBT1 IGBT2 IGBT3

IGBT4 IGBT5 IGBT6

CONST

i d ref  

KI := 240

GAIN

P Iq

KP := 1.96

I

I iq

KI := 240

ICA: EQU

PI3:=pi / 3.

P18:=pi / 180.Tp:=1./fp

wu32:=sqrt(3.) / 2.

kA:=0.1

wu3:=sqrt(3.) gam1:=0.

fp:=10k

tx:=0 costhe:=cos(theta_el)

yalph:=costhe * yd.VAL - sinthe * yq.VAL

i1q:=i1beta * costhe - i1alph * sinthe

i1d:=i1alph * costhe + i1beta * sinthe

ybeta:=sinthe * yd.VAL + costhe * yq.VAL

sinthe:=sin(theta_el)

theta_el:=SYMPOD1.PHIDEG * P18

i1beta:=(SYMPOD1.I1A + 2 * SYMPOD1.I1B) / wu3

theta_m:=theta_el / 3.

i1alph:=SYMPOD1.I1A

SET: k:=k+1 SET: gam1:=gam1

SET: kr:=(k-1)*PI3

SET: kl:=k*PI3

kl <= gam1

true

t-tx >= Tp

kr <= gam1 and kl > gam1

yalph > 0 and ybeta >= 0

SET: tx :=t SET : k: =1yalph = 0 and ybeta = 0PRI := 1

(ybeta > 0 and yalph <= 0) or (yalph < 0 and ybeta <= 0)ybeta < 0 and yalph >= 0

SET: gam1:=pi-ASIN(ybeta/y)

SET: gam1:=2*pi+ASIN(ybeta/y)true

true

A126

SET: z3:=0SET: z6:=1

B345

SET: z6:=0SET: z3:=1

A234

SET: z1:=0SET: z4:=1

B246

SET: z5:=0SET: z2:=1

A135

SET: z2:=0SET: z5:=1

B156

SET: z4:=0

SET: z1:=1

A123SET: z3:=1

SET: z4:=0SET: z1:=1

SET: z6:=0

SET: z5:=0SET: z2:=1

E456 SET: z2:=0

SET: z6:=1

SET: z1:=0

SET: z3:=0

SET: z5:=1

SET: z4:=1

t-tx >= t02+tr+tl

t-tx>=t02 and k=2

t-tx >= t02+tr+tl

t-tx>=t02 and k=4

t-tx >= t02+tr+tl

t-tx>=t02 and k=6 t-tx>=t02 and k=5

t-tx >= t02+tr+tlt-tx >= t02+tr+tl

t-tx>=t02 and k=3

t-tx >= t02+tr+tl

t-tx>=t02 and k=1

B234

SET: z3:=1

SET: z6:=0

A246

SET: z4:=1

SET: z1:=0

B135SET: z4:=0

SET: z1:=1

A345

SET: z5:=1

SET: z2:=0

A156SET: z3:=0

SET: z6:=1

B126SET: z2:=1

SET: z5:=0

t-tx >= t02+tr t-tx >= t02+tr t-tx >= t02+tr t-tx >= t02+tr   t-tx >= t02+tr t-tx >= t02+tr  

E123

SET: z6:=0

SET: z4:=0

SET: z3:=1

SET: z5:=0

SET: z1:=1

SET: z2:=1

A456

SET: z4:=1

SET: z5:=1

SET: z6:=1

SET: z1:=0

SET: z3:=0

SET: z2:=0

SET: tl:=kA*y*Tp*sin(gamr)

SET: gamr:=gam1-kr 

SET: tr:= kA*y*Tp*sin(PI3 - gamr)

SET: t02:=(Tp-tr-tl)/2

k=2 or k=4 or k=6 k=1 or k=3 or k=5

SET: k:=0

true PRI := 1

t-tx >= Tp and k = 0 SET: tx:=t

SET: gam1:=ASIN(ybeta/y)

true

true

t-tx >= Tp

y:=SQRT(SQU(yalph)+SQU(ybeta))

if (y>10.) {y:=10.}

ω+

T

ECE - LINKECE - LINK

TA B C

Im β

Rotor 

V R OT1

TTheta IN

Im_IN

beta IN

Battery

- +

LBATT A1

EMI Motor Drive Analysis

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 55/60

Includes: Busbar, Cable, IGBT Package Parasitics for EMI Application

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 56/60

ePhysics

What is ePhysics ?

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 57/60

• Coupled Thermal and Stress Analysis for electromagnetic devices

• Fully integrated with other Ansoft Desktops (Models, Materials, Meshetc.)

• Three Solvers:

9 Static Thermal

9 Transient Thermal9 Static Stress

Magnetic Analysis Thermal Analysis

Thermal Solution for Motors

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 58/60

Temperature variation vs time

of the rotor yoke & coils

Features:

- Coupled Maxwell – ePhysics solution- Automatic loss mapping

- Anisotropic material properties

- Adaptive time stepping

- Advanced convective – radiative BCs

Convection &Radiation

Boundary

Conditions

Temperature distribution

Stress Solution for Motors

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 59/60

Deformation / stress due to

combined electromagnetic

and centrifugal force

distributions

Von Mises stress

Features:

- Coupled Maxwell – ePhysics solution

- Automatic force distribution mapping

- Anisotropic material properties

- Usage of load with spatial distribution

Permanent magnets,

rotor with centrifugal

force volume density with

spatial distribution

10,000 rpm

Embedded PM Motor 

7/16/2019 Motor Design Suite V12

http://slidepdf.com/reader/full/motor-design-suite-v12-5633856f5983f 60/60

Rotor 

Magnified deformation due tocentrifugal and EM forces