new generation mirror systems for the esrf upgrade beamlines · d. baboulin 2, j. guillemin 2, o....

1
Mirror support & ex vac displacements ACKNOWLEDGEMENTS : A . V ivo, H P v an d er K leij, P . B ernard, T . M anning, J . G regoire, G . M alandrino, D . B ugnazet, M . L esourd, M . S anchez d el r io, R .Tucoulou UHV fine tune incidence Z EUROPEAN SYNCHROTRON RADIATION FACILITY 6, rue Jules Horowitz – F38043 – Grenoble cedex France – http://www.esrf.fr New Generation Mirror Systems for the ESRF Upgrade Beamlines R.Baker 1 , R. Barrett 1 , C. Clavel 1 , Y.Dabin 1 , L. Eybert-Berard 1 , T. Mairs 1 , P. Marion 1 M. Mattenet 1 , L.Zhang 1 , D. Baboulin 2 , J. Guillemin 2 , O. Lapierre 3 , Th. Roux 3 , B. Hromadka 3 1 European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38000 Grenoble, France 2 SPRETEC, 19 rue des ciments, F-38180 Seyssins 3 Symétrie, 10 Allée Ch. Babbage, F-30035 Nîmes Ex vacuum TY + RZ Stroke TY 50 mm Accuracy TY 2 μm Resolution TY 2 μm Stroke RZ 60 mrad Accuracy RZ 10 μrad Resolution RZ 20 μrad Generic design Low profile UHV compatible Theoretical angular resolution : 10 nrad Overview Large fine tune Z UHV flexure with encapsulated stepper motor drive Total stroke +/- 200 μrad Load capacity 120 kg Repeatability (bidirectional) 2 μrad Resolution (half motor step) 0.75 μrad 1 st resonant frequency (100kg load) 70 Hz 0 10000 20000 30000 40000 50000 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Stability on a long timescale 2008 Horizontal 2008 Vertical 2011 Horizontal 2011 Vertical Beam position (μm) Time (secs) Old design New design Mask cooling Mirror cooling Mirror support thermalization Scattering shield thermalisation Typical high heat load mirror cooling & thermalisation. 4 separate water circuits (absorbed power = 750W) Piezo drive RZ flexure Cooling,Thermalisation & material choice TZ Mirror Mover Up to 50mm vertical travel 150kg load capacity Generic design adapted to all ESRF upgrade mirror systems Double preloaded crossed roller bearing guides Ballscrew or satellite roller screw drive options Integrated linear encoder High stiffness over constrained concept High thermal stability, optional thermal shield Angular accuracy over 9mm travel X 15 μrad Y 9 μrad 3 μrad Linear accuracy over 9mm travel TX 3.7 μm TY 6.3 μm Linear repeatability TX over 9mm travel 0.26 μm TY over 9mm travel 0.27 μm Resonant frequency Vertical 73 Hz Horizontal 72 Hz Linear positioning TZ Accuracy over 9mm travel 1.2 μm Repeatability 0.1 μm Resolution 6 nm Reverse motion error <2 nm Material s commonly used in UHV mirror systems Material .Cp/k 2 SiC 0.16 Si 0.2 Copper 0.35 Aluminium 1.9 Brass 5.3 Mild steel 21.5 Invar 50.7 Corroplast * 220 Zerodur 355 St. St. 734 Granite 1421 Peek 1690 * pre-hardened, 400 series matensitic stainless steel. CTE = 10.3 10 -6 /°C = Coeff. of thermal expansion = Material density C p = Specific heat k = Thermal conductivity Best Worst +TZ +Z +Y +TY +X +TX Storage ring Commisioning the thermal response time Careful material choice Athermal design principles Extensive thermalisation Cooled Compton shield ESRF “SMART” mirror profile ID24 old & new mirror system settling time comparison 14 Mirrors/Multilayers based on a generic design solutions Absorbed power up to 830W The base granite is bonded to the floor for maximum stiffness. A manual pre alignment stage provides height and level adjustment of the system. Four motorised degrees of freedom are then available for fine positioning. For fine tune of incidence angle in large horizontally reflecting mirror systems 940mm Lab tests, vibration studies Small fine tune Z UHV flexure with encapsulated stepper motor drive Total stroke +/- 300 μrad Backlash 5 μrad Load capacity 30 kg Stability over 10 hours 2 μrad Repeatability (unidirectional) 0.4 μrad Resolution (half motor step) 200 nrad 1 st resonant frequency (4kg load) 127 Hz Piezo, stepper or cam drive Material choice for optimal thermal stability M=11,3Kg Top plate 3 accelerometers Base plate Granite Dynamic analysis of the flexural mirror mover Horizontal mode frequencies in different configurations Configuration Spring 0mm 21.3Kg No spring 11.3Kg Spring 3mm 11.3Kg Spring 0mm 11.3Kg No spring No load 1 st mode 230 Hz 242 Hz 246 Hz 246 Hz 454 Hz 2 nd mode 251 Hz 274 Hz 276 Hz 277 Hz 503 Hz Acceleration PSD Preloading spring O New generation Hexapods A new hexapod, developed in collaboration with Symétrie (*) will be used in cases where more than 3 precise motorized degrees of freedom are required to position optics. Stroke Resolution Repeat. TX 0 mm TY 50 mm 0.1 μm ± 0.4 μm TZ 10 mm 0.1 μm ± 0.75 μm Rx 10 mrad 0.2 μrad ± 1.5 μrad Ry 40 mrad 0.1μrad ± 1.5 μrad Rz 10 mrad 0.1 μrad ± 1.5 μrad Improvements Angular resolution by a factor 10 Thermal stability = Motor outside the jack Optimized jack length Materials Vibration stability = Stiffness increased by a factor 2 (vibration measurement in progress) 300mm Slides Central bearing 2 x crossed roller guides Nut Preloaded ballscrew Thrust bearings Rotation stage drive Brace TZ & Y units Vessel Base granite bonded to floor Intermediate granite Vessel base TY – Z jacks Top granite clamps (5 tons) (*): O.Lapierre – Th Roux – B. Hromadka

Upload: others

Post on 12-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: New Generation Mirror Systems for the ESRF Upgrade Beamlines · D. Baboulin 2, J. Guillemin 2, O. Lapierre 3,Th. Roux 3,B. Hromadka 3 1 European Synchrotron Radiation Facility, 6

Mirror support & ex vac displacements

ACKNOWLEDGEMENTS : A. Vivo, HP van der Kleij, P. Bernard, T. Manning, J. Gregoire, G. Malandrino, D. Bugnazet, M. Lesourd, M. Sanchez del rio, R.Tucoulou

UHV fine tune incidence !Z

EUROPEAN SYNCHROTRON RADIATION FACILITY

6, rue Jules Horowitz – F38043 – Grenoble cedex France – http://www.esrf.fr

New Generation Mirror Systems for the ESRF Upgrade BeamlinesR.Baker1, R. Barrett1, C. Clavel1, Y.Dabin1, L. Eybert-Berard1, T. Mairs1, P. Marion1 M. Mattenet1, L.Zhang1,

D. Baboulin2, J. Guillemin2, O. Lapierre3, Th. Roux3, B. Hromadka3

1 European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38000 Grenoble, France2 SPRETEC, 19 rue des ciments, F-38180 Seyssins3 Symétrie, 10 Allée Ch. Babbage, F-30035 Nîmes

Ex vacuum TY + RZ

Stroke TY 50 mm

Accuracy TY 2 µm

Resolution TY 2 µm

Stroke RZ 60 mrad

Accuracy RZ 10 µrad

Resolution RZ 20 µrad

• Generic design

• Low profile

• UHV compatible

• Theoretical angular resolution : 10 nrad

Overview

Large fine tune !Z UHV flexure with encapsulated stepper motor drive

Total stroke +/- 200 µrad

Load capacity 120 kg

Repeatability (bidirectional) 2 µrad

Resolution (half motor step) 0.75 µrad

1st resonant frequency (100kg load) 70 Hz

0 10000 20000 30000 40000 50000

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130 Stability on a long timescale 2008 Horizontal 2008 Vertical 2011 Horizontal 2011 Vertical

Beam

posi

tion (

µm

)

Time (secs)

Old design New design

Maskcooling

Mirror cooling

Mirror support thermalization

Scattering shieldthermalisation

Typical high heat load mirror cooling & thermalisation. 4 separate water circuits (absorbed power = 750W)

Piezo drive RZ flexure

Cooling,Thermalisation & material choice

TZ Mirror Mover

• Up to 50mm vertical travel

• 150kg load capacity

• Generic design adapted to all ESRF upgrade mirror systems

• Double preloaded crossed roller bearing guides

• Ballscrew or satellite roller screw drive options

• Integrated linear encoder

• High stiffness over constrained concept

• High thermal stability, optional thermal shield

Angular accuracy over 9mm travel

!X 15 µrad

!Y 9 µrad

! 3 µrad

Linear accuracy over 9mm travel

TX 3.7 µm

TY 6.3 µm

Linear repeatability

TX over 9mm travel 0.26 µm

TY over 9mm travel 0.27 µm

Resonant frequency

Vertical 73 Hz

Horizontal 72 Hz

Linear positioning TZ

Accuracy over 9mm travel 1.2 µm

Repeatability 0.1 µm

Resolution 6 nm

Reverse motion error <2 nm

Material s commonly used in UHV mirror systems

Material ".#$Cp/k2

SiC 0.16

Si 0.2

Copper 0.35

Aluminium 1.9

Brass 5.3

Mild steel 21.5

Invar 50.7

Corroplast * 220

Zerodur 355

St. St. 734

Granite 1421

Peek 1690

* pre-hardened, 400 series matensitic stainless steel. CTE = 10.3 10-6/°C

! = Coeff. of thermal expansion

# = Material density

Cp = Specific heat

k = Thermal conductivity

Best

Worst

+TZ

+!Z

+!Y+TY

+!X+TX

Storage ring

Commisioning the thermal response time

• Careful material choice

• Athermal design principles

• Extensive thermalisation

• Cooled Compton shield

• ESRF “SMART” mirror profile

ID24 old & new mirror system settling time comparison

14 Mirrors/Multilayers based on a generic design solutions

Absorbed power up to 830W

The base granite is bonded to the floor for maximum stiffness. A manual pre alignment stage provides height and level adjustment of the system. Four motorised degrees of freedom are then available for fine positioning.

For fine tune of incidence angle in large horizontally reflecting mirror systems

940mm

Lab tests, vibration studies

Small fine tune !Z UHV flexure with encapsulated stepper motor drive

Total stroke +/- 300 µrad

Backlash 5 µrad

Load capacity 30 kg

Stability over 10 hours 2 µrad

Repeatability (unidirectional) 0.4 µrad

Resolution (half motor step) 200 nrad

1st resonant frequency (4kg load) 127 Hz

Piezo,stepper or cam drive

Material choice for optimal thermal stability

M=11,3Kg

Top plate

3 accelerometersBase plate

Granite

Dynamic analysis of the !% flexural mirror mover

Horizontal mode frequencies in different configurations

Configuration Spring 0mm21.3Kg

No spring11.3Kg

Spring 3mm11.3Kg

Spring 0mm11.3Kg

No springNo load

1st mode 230 Hz 242 Hz 246 Hz 246 Hz 454 Hz

2nd mode 251 Hz 274 Hz 276 Hz 277 Hz 503 Hz

Acceleration PSD

Preloading spring

O

New generation Hexapods

A new hexapod, developed in collaboration with Symétrie (*) will be used in cases where more than 3 precise motorized degrees of freedom are required to position optics.

Stroke Resolution Repeat.

TX 0 mm

TY 50 mm 0.1 µm ± 0.4 µm

TZ 10 mm 0.1 µm ± 0.75 µm

Rx 10 mrad 0.2 µrad ± 1.5 µrad

Ry 40 mrad 0.1µrad ± 1.5 µrad

Rz 10 mrad 0.1 µrad ± 1.5 µrad

Improvements

• Angular resolution by a factor 10

• Thermal stability =

Motor outside the jack

Optimized jack length

Materials

• Vibration stability =

Stiffness increased by a factor 2 (vibration measurement in progress)

300mm

Slides

Central bearing

2 x crossed roller guides

Nut

Preloaded ballscrewThrust bearings

Rotation stage drive

Brace

TZ & !Y units

Vessel

Base granite bonded to floor

Intermediate granite

Vessel base

TY – !Z jacks

Top granite clamps (5 tons)

(*): O.Lapierre – Th Roux – B. Hromadka