no tejido 1

24
Tela no Tejida Tela no Tejida Dr. Jimmy Lam Dr. Jimmy Lam Instituto de Textiles & Prendas de Instituto de Textiles & Prendas de vestir vestir

Upload: willycalsina

Post on 15-May-2017

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: No tejido 1

Tela no TejidaTela no Tejida

Dr. Jimmy LamDr. Jimmy LamInstituto de Textiles & Prendas de vestirInstituto de Textiles & Prendas de vestir

Page 2: No tejido 1

Non-woven• Introduction• Web formation methods• Bonding Systems• Discussion

Page 3: No tejido 1

Introduction• Fabrics can be made from fibres as well

as from yarns.• Conventional fabric production:

– Fibre Yarn Fabric (knitting or weaving)• Non-woven production

– Fibre Fabric• It eliminates the yarn production process

and makes the fabric directly from fibres.

Page 4: No tejido 1

Introduction (2)• The great advantages in non-woven fabrics is the

speed with which the final fabric is produced.• All yarn preparation steps are eliminated, and

the fabric production itself is faster than conventional methods.

• To produce 500,000 meters of woven sheeting requires 2 months of yarn preparation, 3 months of weaving on 50 looms and 1 month for finishing and inspection.

• Non-woven fabric can deliver the same quantity of sheeting within 2 months from order.

Page 5: No tejido 1

Introduction (3)• Not only are production rate are

higher for nonwovens, but the process is more automated, requiring less labour than even most modern knitting or weaving systems.

• The nonwoven process is also efficient in its use of energy.

Page 6: No tejido 1

Production RateFabric production method

Rate of fabric production

Weaving 1 m/min

Knitting 2 m/min

Nonwoven 100 m/min

Page 7: No tejido 1

Applications• Nonwoven fabrics can be engineered to

give a wide variety of properties.• Nevertheless, their aesthetic properties

(handle, drape, appearance) are such that they are not in direct competition with conventional fabrics in the outerwear market.

• Woven and knitted fabrics will not be replaced by nonwovens in the near futrue.

• Currently, the main areas of growth in nonwovens are in geotextiles, medical and hospital uses, disposable products and filters.

Page 8: No tejido 1

Making Non-woven products

• There are normally two steps for making non-woven products.

• They are:1. Web formation; and2. Bonding systems.

Page 9: No tejido 1

Web formation• A nonwoven fabric is basically a

web of fibres held together in some way.

• The web may be made of staple fibres or filaments, or from portions of polymer film.

Page 10: No tejido 1

Web formation from Web formation from Staple FibresStaple Fibres

Page 11: No tejido 1

Web from staple fibres Carding for parallel-laid web (1)

• Carding is a time-honoured way of making web from staple fibres.

• In a carded web the fibres are aligned more or less parallel to each other and to the direction in which the card produces the web. Such web is stronger when pulled lengthwise than crosswise because there is more friction between the fibre in lengthwise direction.

• Carded webs are usually thin, they may be too thin for some nonwoven end-uses. To increase the final thickness, a number of webs can be layered.

Page 12: No tejido 1

PhotosParallel-laid web from

carded fibres

Page 13: No tejido 1

Webs from staple fibresCross-laid web (2)

• To increase the strength of web in both lengthwise and crosswise directions, cross laid web is used.

• To achieve this, the fibres which make up the web will be orientated equally in both lengthwise and crosswise directions.

Page 14: No tejido 1

PhotosCross Laid-web

The properties of cross-laid webs do not vary with direction as much as do those of straight-laid web

Page 15: No tejido 1

Web from staple fibresRandom web (3)

• The Rando-Webber creates such a randomly orientated web by blowing the fibres about in a stream of air and then sucking them onto the surface of a perforated drum to form a layer.

• This randomizing process produces a remarkably uniform web from staple fibres.

• Dry-laid (air-laid card) webs account for three-quarters of non-woven produced

Page 16: No tejido 1

PhotosRandom Webs

The Rando-Webber gives a randomly orientated web, with noDirectionality in its properties

Page 17: No tejido 1

Other Web formation methods

• Apart from carding methods (dry-laid), webs from short staple fibres are created by

1. Wet laying;2. Electrostatic web formation; and3. Spraying.

Page 18: No tejido 1

Wet-layingPaper-making from

web• Wet laying is used in paper-making. The

pulped fibres are mixed with water and then scooped into uniform layers on wire screens or on rotating, perforated drums.

• Short, pulped acrylic fibres are made into a wet-laid web from a salt solution. As the water evaporates, the salt chemically bonds the fibres into a strong, synthetic, water proof paper.

Page 19: No tejido 1

Web formed byelectrostatic laying

• In electrostatic laying, fine fibres are given a static electric charge between the plates of a condenser, and are then allowed to fall on a moving belt to form a randomly orientated but uniform web.

Page 20: No tejido 1

Spraying method• Short thermoplastic fibres can be

SPRAYED onto a belt to produce a random web.

• The are subsequently fused by the application of heat and pressure.

Page 21: No tejido 1

Webs from filamentWebs from filament

Page 22: No tejido 1

Webs from filament• It is possible to tangle filaments together to

form a web. Such webs are much stronger than web made from staple fibres.

• Freshly extruded filaments are allowed to drop in curls and spiral onto a moving belt.

• The belt may contain patterns outlined in pins to form lace-like patterns.

• The thermoplastic filaments are welded to each other to form a strong fabric suitable for curtains, tablecloths.

• Sometimes, the filaments are textured before web formation, this allows greater extensibility of the fabric in use.

Page 23: No tejido 1

New web formation method

• Spun-laced webs is a new method of entangling fibres to create lace-like nonwoven fabrics uses fine, precisely controlled, jets of water.

• When the jets pass through the web of fibres, they form a small vortex at each point of contact.

• This creates sufficient fibre movement to entangle the fibres.

• The resultant fabric does not need any further reinforcing by heat or adhesive.

• It is pliable, resistant to damage during washing, drip-dry, light, warm and soft, excellent for curtains, table cloths and other lace-type application.

Page 24: No tejido 1

Conclusion• This section we discuss what non-woven

is and their applications in textile.• We also discuss the web formation

methods for both staple fibres and filament fibres.

• Next section, we will discuss the bonding systems for non-woven in order to make the fabrics with certain thickness and weight for specific end uses