operational amplifier

29
Rizki Anugrah Wibowo 1004405117 I Made Agung Pranata 1204405030 Made Danu Widana 1204405033 I Kadek Arya Wiratama 1204405038 Ketut Alit Sukertha Winaya 1204405043 Bhrama Sakti Karenda Putra 1204405082 Electrical Engineering Department Udayana University Summarized by:

Upload: alit-winaya

Post on 28-Nov-2015

28 views

Category:

Documents


6 download

DESCRIPTION

Tugas presentasi mata kuliah Elektronika Dasar..

TRANSCRIPT

Page 1: Operational Amplifier

Rizki Anugrah Wibowo 1004405117

I Made Agung Pranata 1204405030

Made Danu Widana 1204405033

I Kadek Arya Wiratama 1204405038

Ketut Alit Sukertha Winaya 1204405043

Bhrama Sakti Karenda Putra 1204405082

Electrical Engineering Department

Udayana University

Summarized by:

Page 2: Operational Amplifier

Introduction of Operation Amplifier (Op-Amp)

Analysis of ideal Op-Amp applications

Comparison of ideal and non-ideal Op-Amp

Outlines

Non-ideal Op-Amp consideration

Page 3: Operational Amplifier

Vd

+

Vo

R in~inf Rout~0

Input 1

Input 2

Output

+Vcc

-Vcc

Operational Amplifier (Op-Amp)

Very high differential gain

High input impedance

Low output impedance

Provide voltage changes

(amplitude and polarity)

Used in oscillator, filter

and instrumentation

Accumulate a very high

gain by multiple stages

ddo VGV

510say large,y ver

normally gain aldifferenti : dG

Page 4: Operational Amplifier

IC Product

+

1

2

3

4

8

7

6

5

OFFSET

NULL

-IN

+IN

V

N.C.

V+

OUTPUT

OFFSET

NULL

+

1

2

3

4

8

7

6

5

OUTPUT A

-IN A

+IN A

V

V+

OUTPUT B

-IN B

+IN B+

DIP-741 Dual op-amp 1458 device

Page 5: Operational Amplifier

Single-Ended Input

+

Vo

~ V i

+

Vo

~ V i

• + terminal : Source

• – terminal : Ground

• 0o phase change

• + terminal : Ground

• – terminal : Source

• 180o phase change

Page 6: Operational Amplifier

Double-Ended Input

~ V1

+

Vo

~ V2

+

Vo

~Vd

• Differential input

• 0o phase shift change

between Vo and Vd

VVVd

Qu: What Vo should be if,

V1

V2

(A) (B)

Ans: (A or B) ?

Page 7: Operational Amplifier

Distortion

Vd

+

Vo

+Vcc=+5V

Vcc=5V

0

+5V

5V

The output voltage never excess the DC voltage

supply of the Op-Amp

Page 8: Operational Amplifier

Common-Mode Operation

+

Vo

V i ~

• Same voltage source is applied

at both terminals

• Ideally, two input are equally

amplified

• Output voltage is ideally zero

due to differential voltage is

zero

• Practically, a small output

signal can still be measured Note for differential circuits:

Opposite inputs : highly

amplified

Common inputs : slightly

amplified

Common-Mode Rejection

Page 9: Operational Amplifier

Common-Mode Rejection Ratio (CMRR)

Differential voltage input :

VVVd

Common voltage input :

)(2

1 VVVc

Output voltage :

ccddo VGVGV

Gd : Differential gain

Gc : Common mode gain

)dB(log20CMRR 10

c

d

c

d

G

G

G

G

Common-mode rejection ratio:

Note:

When Gd >> Gc or CMRR

Vo = GdVd

+

Noninverting

Input

Inverting

Input

Output

Page 10: Operational Amplifier

CMRR Example

What is the CMRR?

Solution :

dBCMRR and

V (2) From

V (1) From

V V

V V

40)10/1000log(20101000

607007060

806006080

702

4010060

2

20100

60401008020100

21

21

cd

cdo

cdo

cc

dd

GG

GGV

GGV

VV

VV

+

100V

20V

80600V

+

100V

40V

60700V

(1) (2)

Page 11: Operational Amplifier

Op-Amp Properties

(1) Infinite Open Loop gain - The gain without feedback

- Equal to differential gain

- Zero common-mode gain

- Pratically, Gd = 20,000 to 200,000

(2) Infinite Input impedance- Input current ii ~0A

- T- in high-grade op-amp

- m-A input current in low-grade op-amp

(3) Zero Output Impedance- act as perfect internal voltage source

- No internal resistance

- Output impedance in series with load

- Reducing output voltage to the load

- Practically, Rout ~ 20-100

+

V1

V2

Vo

+

Vo

i1~0

i2~0

+

Rout

Vo'Rload

outload

load

oloadRR

RVV

Page 12: Operational Amplifier

Frequency-Gain Relation

• Ideally, signals are amplified

from DC to the highest AC

frequency

• Practically, bandwidth is limited

• 741 family op-amp have an limit

bandwidth of few KHz.

• Unity Gain frequency f1: the

gain at unity

• Cutoff frequency fc: the gain

drop by 3dB from dc gain Gd

(Voltage Gain)

(frequency)

f1

Gd

0.707Gd

fc0

1

GB Product : f1 = Gd fc

20log(0.707)=3dB

Page 13: Operational Amplifier

GB Product

Example: Determine the cutoff frequency of an op-amp having a unit

gain frequency f1 = 10 MHz and voltage differential gain Gd = 20V/mV

Sol:

Since f1 = 10 MHz

By using GB production equation

f1 = Gd fc

fc = f1 / Gd = 10 MHz / 20 V/mV

= 10 106 / 20 103

= 500 Hz

(Voltage Gain)

(frequency)

f1

Gd

0.707Gd

fc0

1

10MHz

? Hz

Page 14: Operational Amplifier

Ideal Vs Practical Op-Amp

Ideal Practical

Open Loop gain A 105

Bandwidth BW 10-100Hz

Input Impedance Zin >1M

Output Impedance Zout 0 10-100

Output Voltage VoutDepends only

on Vd = (V+V)

Differential

mode signal

Depends slightly

on average input

Vc = (V++V)/2

Common-Mode

signal

CMRR 10-100dB

+

~

AVin

Vin Vout

Zout=0

Ideal op-amp

+

AVin

Vin Vout

Zout

~

Zin

Practical op-amp

Page 15: Operational Amplifier

Ideal Op-Amp Applications

Analysis Method :

Two ideal Op-Amp Properties:

(1) The voltage between V+ and V is zero V+ = V

(2) The current into both V+ and V termainals is zero

For ideal Op-Amp circuit:

(1) Write the kirchhoff node equation at the noninverting terminal V+

(2) Write the kirchhoff node eqaution at the inverting terminal V

(3) Set V+ = V and solve for the desired closed-loop gain

Page 16: Operational Amplifier

Noninverting Amplifier

(1) Kirchhoff node equation at V+

yields,

(2) Kirchhoff node equation at V

yields,

(3) Setting V+ = V– yields

or

+V in

Vo

RaRf

iVV

00

f

o

a R

VV

R

V

0

f

oi

a

i

R

VV

R

V

a

f

i

o

R

R

V

V 1

Page 17: Operational Amplifier

+

vi

Ra

vov-

v+

Rf

+

vi

Ra

vov-

v+

Rf

R2R1

+

vi

vov-

v+

Rf

+

vi

vov-

v+

R f

R2R1

Noninverting amplifier Noninverting input with voltage divider

i

a

f

o vRR

R

R

Rv ))(1(

21

2

Voltage follower

io vv

i

a

f

o vR

Rv )1(

Less than unity gain

io vRR

Rv

21

2

Page 18: Operational Amplifier

Inverting Amplifier

(1) Kirchhoff node equation at V+

yields,

(2) Kirchhoff node equation at V

yields,

(3) Setting V+ = V– yields

0V

0_

f

o

a

in

R

VV

R

VV

a

f

in

o

R

R

V

V

Notice: The closed-loop gain Vo/Vin is

dependent upon the ratio of two resistors,

and is independent of the open-loop gain.

This is caused by the use of feedback

output voltage to subtract from the input

voltage.

+

~

Rf

Ra

Vin

Vo

Page 19: Operational Amplifier

Multiple Inputs

(1) Kirchhoff node equation at V+

yields,

(2) Kirchhoff node equation at V

yields,

(3) Setting V+ = V– yields

0V

0_

c

c

b

b

a

a

f

o

R

VV

R

VV

R

VV

R

VV

c

aj j

j

f

c

c

b

b

a

a

foR

VR

R

V

R

V

R

VRV

+

Rf

Va

Vo

Rb

Ra

Rc

Vb

Vc

Page 20: Operational Amplifier

Inverting Integrator

Now replace resistors Ra and Rf by complex

components Za and Zf, respectively, therefore

Supposing

(i) The feedback component is a capacitor C,

i.e.,

(ii) The input component is a resistor R, Za = R

Therefore, the closed-loop gain (Vo/Vin) become:

where

What happens if Za = 1/jC whereas, Zf = R?

Inverting differentiator

in

a

f

oV

Z

ZV

CjZ f

1

dttvRC

tv io )(1

)(

tj

iieVtv

)(

+

~

Zf

Za

V in

Vo

+

~

R

V in

Vo

C

Page 21: Operational Amplifier

Op-Amp Integrator

Example:

(a) Determine the rate of change

of the output voltage.

(b) Draw the output waveform.

Solution:

+

R

VoV i

0

+5V

10 k

0.01FC

Vo(max)=10 V

100s

(a) Rate of change of the output voltage

smV/

F k

V

50

)01.0)(10(

5

RC

V

t

V io

(b) In 100 s, the voltage decrease

VμssmV/ 5)100)(50( oV

0

+5V

0

-5V

-10V

V i

Vo

Page 22: Operational Amplifier

Op-Amp Differentiator

RCdt

dVv i

o

+

R

C

VoVi

0to t1 t2

0

to t1 t2

Page 23: Operational Amplifier

Non-ideal case (Inverting Amplifier)

+

~

Rf

Ra

Vin

Vo

3 categories are considering

Close-Loop Voltage Gain

Input impedance

Output impedance

Equivalent Circuit

Rf

Ra

V in

Vo

+

+

R R

V

-AV

+

AVin

Vin Vout

Zout

~

Zin

Practical op-amp

Page 24: Operational Amplifier

Close-Loop Gain

Rf

Ra

V in

Vo

+

+

R R

-AV

Ra Rf

R

V

V

V in Vo

Applied KCL at V– terminal,

0

f

o

a

in

R

VV

R

V

R

VV

By using the open loop gain,

AVVo

0f

o

f

oo

a

o

a

in

AR

V

R

V

AR

V

AR

V

R

V

fa

aafaf

o

a

in

RRAR

RARRRRRRRV

R

V

The Close-Loop Gain, Av

RARRRRRRR

RAR

V

VA

aafaf

f

in

o

v

Page 25: Operational Amplifier

Close-Loop Gain

When the open loop gain is very large, the above equation become,

a

f

vR

RA

~

Note : The close-loop gain now reduce to the same form

as an ideal case

Page 26: Operational Amplifier

Input Impedance

Rf

Ra

Vin

Vo

+

+

R

-AV

R'

R

V

Rf

+

R

-AV

if

V

Input Impedance can be regarded as,

RRRR ain //

where R is the equivalent impedance

of the red box circuit, that is

fi

VR

However, with the below circuit,

A

RR

i

VR

RRiAVV

of

f

off

1

)()(

Page 27: Operational Amplifier

Input Impedance

Finally, we find the input impedance as,

1

11

of

ainRR

A

RRR

RARR

RRRRR

of

of

ain)1(

)(

Since,RARR of )1( , Rin become,

)1(

)(~

A

RRRR

of

ain

Again with )1( ARR of

ain RR ~

Note: The op-amp can provide an impedance isolated from

input to output

Page 28: Operational Amplifier

Output Impedance

Only source-free output impedance would be considered,

i.e. Vi is assumed to be 0Rf

Ra

Vo

+

R

-AV

R

V

io

V

V

Rf

Ra R

+

R

-AV

V

i2 i1

(a) (b)

Firstly, with figure (a),

o

fafa

a

o

af

a VRRRRRR

RRVV

RRR

RRV

//

//

By using KCL, io = i1+ i2

o

o

faf

o

oR

AVV

RRR

Vi

)(

//

By substitute the equation from Fig. (a),

RRARRRRRRR

RRRRRRR

i

V

R

afafao

fafao

o

o

out

)1())(1(

)(

is impedance,output The

R and A comparably large,

a

fao

outAR

RRRR

)(~

Page 29: Operational Amplifier