orbital mechanics - university of...

58
Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Lecture #08 – September 22, 2016 Planetary launch and entry overview Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time in orbit Interplanetary trajectories Low-thrust trajectories Relative orbital motion (“proximity operations”) 1 © 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: phungbao

Post on 03-May-2018

237 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Orbital Mechanics

• Lecture #08 – September 22, 2016 • Planetary launch and entry overview • Energy and velocity in orbit • Elliptical orbit parameters • Orbital elements • Coplanar orbital transfers • Noncoplanar transfers • Time in orbit • Interplanetary trajectories • Low-thrust trajectories • Relative orbital motion (“proximity operations”)

1

© 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Page 2: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Space Launch - The Physics

• Minimum orbital altitude is ~200 km

• Circular orbital velocity there is 7784 m/sec

• Total energy per kg in orbit

Potential Energy

kg in orbit= � µ

rorbit+

µ

rE= 1.9⇥ 106 J

kg

Kinetic Energy

kg in orbit=

12

µ

r2orbit

= 30� 106 J

kg

Total Energy

kg in orbit= KE + PE = 32� 106 J

kg

2

Page 3: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Theoretical Cost to Orbit

• Convert to usual energy units

• Domestic energy costs are ~$0.05/kWhr

!Theoretical cost to orbit $0.44/kg

Total Energy

kg in orbit= 32� 106 J

kg= 8.888

kWhrs

kg

3

Page 4: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Actual Cost to Orbit

• SpaceX Falcon 9 – 13,150 kg to LEO – $65 M per flight – Lowest cost system currently

flying

• $4940/kg of payload • Factor of 11,000x higher

than theoretical energy costs!

4

Page 5: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

What About Airplanes?

• For an aircraft in level flight,

• Energy = force x distance, so

• For an airliner (L/D=25) to equal orbital energy, d=81,000 km (2 roundtrips NY-Sydney)

5

Total Energykg

=thrust� distance

mass=

Td

m=

gd

L/D

WeightThrust

=LiftDrag

, ormg

T=

L

D

Page 6: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Equivalent Airline Costs?

• Average economy ticket NY-Sydney round-round-trip (Travelocity 9/3/09) ~$1300

• Average passenger (+ luggage) ~100 kg • Two round trips = $26/kg

– Factor of 60x more than electrical energy costs – Factor of 190x less than current launch costs

• But… you get to refuel at each stop!

6

Page 7: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Equivalence to Air Transport

• 81,000 km ~ twice around the world

• Voyager - one of only two aircraft to ever circle the world non-stop, non-refueled - once!

7

Page 8: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Orbital Entry - The Physics

• 32 MJ/kg dissipated by friction with atmosphere over ~8 min = 66kW/kg

• Pure graphite (carbon) high-temperature material: cp=709 J/kg°K

• Orbital energy would cause temperature gain of 45,000°K!

8

Page 9: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Newton’s Law of Gravitation

• Inverse square law

• Since it’s easier to remember one number,

• If you’re looking for local gravitational acceleration,

F =

GMm

r2

µ = GM

g =

µ

r2

9

Page 10: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Some Useful Constants

• Gravitation constant µ = GM – Earth: 398,604 km3/sec2

– Moon: 4667.9 km3/sec2

– Mars: 42,970 km3/sec2 – Sun: 1.327x1011 km3/sec2

• Planetary radii – rEarth = 6378 km

– rMoon = 1738 km

– rMars = 3393 km

10

Page 11: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Energy in Orbit

<--Vis-Viva Equation

K.E. =1

2mv

2=⇒

K.E.

m=

v2

2

P.E. = −µm

r=⇒

P.E.

m= −

µ

r

Constant =v2

2−

µ

r= −

µ

2a

• Kinetic Energy

• Potential Energy

• Total Energy

11

v2 = µ

�2r� 1

a

Page 12: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Classical Parameters of Elliptical Orbits

12

Page 13: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Classical Orbital Elements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

13

Page 14: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Implications of Vis-Viva

• Circular orbit (r=a)

• Parabolic escape orbit (a tends to infinity)

• Relationship between circular and parabolic orbits

vcircular =

!

µ

r

vescape =

!

r

vescape =√

2vcircular

14

Page 15: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Hohmann Transfer

vperigee

v1

vapogee

v2r1

r2

15

Page 16: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

First Maneuver Velocities

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v1 =

!

µ

r1

vperigee =

!

µ

r1

!

2r2

r1 + r2

∆v1 =

!

µ

r1

"!

2r2

r1 + r2

− 1

#

16

Page 17: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Second Maneuver Velocities

• Initial vehicle velocity

• Needed final velocity

• Delta-V

∆v2 =

!

µ

r2

"

1 −

!

2r1

r1 + r2

#

vapogee =

!

µ

r2

!

2r1

r1 + r2

v2 =

!

µ

r2

17

Page 18: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Implications of Hohmann Transfers

• Implicit assumption is made that velocity changes instantaneously - “impulsive thrust”

• Decent assumption if acceleration ≥ ~5 m/sec2 (0.5 gEarth)

• Lower accelerations result in altitude change during burn ⇒ lower efficiencies and higher ΔVs

• Worst case is continuous “infinitesimal” thrusting (e.g., ion engines) ⇒ ΔV between circular coplanar orbits r1 and r2 is

18

�VLow Thrust

= Vc1 � V

c2 =

r1�r

µ

r2

Page 19: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Limitations on Launch Inclinations

Equator

19

Page 20: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Differences in Inclination

Line of Nodes

20

Page 21: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Choosing the Wrong Line of Apsides

21

Page 22: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Simple Plane Change

vperigee

v1vapogee

v2

Δv2

22

Page 23: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Optimal Plane Change

vperigee v1 vapogee

v2

Δv2Δv1

23

Page 24: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

First Maneuver with Plane Change Δi1

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v1 =�

µ

r1

vp =�

µ

r1

�2r2

r1 + r2

�v1 =�

v21 + v2

p � 2v1vp cos �i1

24

Page 25: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Second Maneuver with Plane Change Δi2

• Initial vehicle velocity

• Needed final velocity

• Delta-V

�v2 =�

v22 + v2

a � 2v2va cos �i2

va =�

µ

r2

�2r1

r1 + r2

v2 =�

µ

r2

25

Page 26: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Sample Plane Change Maneuver

Optimum initial plane change = 2.20°

26

Page 27: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Calculating Time in Orbit

27

Page 28: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Time in Orbit

• Period of an orbit

• Mean motion (average angular velocity)

• Time since pericenter passage

➥M=mean anomaly

P = 2⇥

�a3

µ

n =�

µ

a3

M = nt = E � e sinE

28

Page 29: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Dealing with the Eccentric Anomaly

• Relationship to orbit

• Relationship to true anomaly

• Calculating M from time interval: iterate

until it converges

r = a (1� e cos E)

tan�

2=

�1 + e

1� etan

E

2

Ei+1 = nt + e sinEi

29

Page 30: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Time in Orbit

• Hohmann transfer from LEO to GEO – h1=300 km --> r1=6378+300=6678 km

– r2=42240 km

• Time of transit (1/2 orbital period)

a =12

(r1 + r2) = 24, 459 km

ttransit =P

2= ⇥

�a3

µ= 19, 034 sec = 5h17m14s

30

Page 31: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Time-based Position

Find the spacecraft position 3 hours after perigee

E=0; 1.783; 2.494; 2.222; 2.361; 2.294; 2.328; 2.311; 2.320; 2.316; 2.318; 2.317; 2.317; 2.317

Ej+1 = nt + e sin Ej = 1.783 + 0.7270 sin Ej

n =�

µ

a3= 1.650x10�4 rad

sec

e = 1� rp

a= 0.7270

31

Page 32: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Time-based Position (cont.)

Have to be sure to get the position in the proper quadrant - since the time is less than 1/2 the period, the spacecraft has yet to reach apogee --> 0°<θ<180°

32

E = 2.317

tan�

2=

�1 + e

1� etan

E

2=⇥ � = 160 deg

r = a(1� e cosE) = 12, 387 km

Page 33: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Basic Orbital Parameters

• Semi-latus rectum (or parameter)

• Radial distance as function of orbital position

• Periapse and apoapse distances

• Angular momentum

h⃗ = r⃗ × v⃗

p = a(1 − e2)

r =p

1 + e cos θ

rp = a(1 − e) ra = a(1 + e)

h =

µp

33

Page 34: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Velocity Components in Orbit

34

r =p

1 + e cos �

vr =dr

dt=

d

dt

�p

1 + e cos �

⇥=�p(�e sin � d�

dt )(1 + e cos �)2

vr =pe sin �

(1 + e cos �)2d�

dt

1 + e cos � =p

r� vr =

r2 d�dt e sin �

p�⇤h = �⇤r ⇥�⇤v

Page 35: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Velocity Components in Orbit (cont.)

35

~h = ~r ⇥ ~v h = rv cos � = r

✓rd✓

dt

◆= r2

d✓

dt

Page 36: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Patched Conics• Simple approximation to multi-body motion (e.g.,

traveling from Earth orbit through solar orbit into Martian orbit)

• Treats multibody problem as “hand-offs” between gravitating bodies --> reduces analysis to sequential two-body problems

• Caveat Emptor: There are a number of formal methods to perform patched conic analysis. The approach presented here is a very simple, convenient, and not altogether accurate method for performing this calculation. Results will be accurate to a few percent, which is adequate at this level of design analysis.

36

Page 37: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Lunar Orbit Insertion• v2 is velocity of moon

around Earth • Moon overtakes

spacecraft with velocity of (v2-vapogee)

• This is the velocity of the spacecraft relative to the moon while it is effectively “infinitely” far away (before lunar gravity accelerates it) = “hyperbolic excess velocity”

37

Page 38: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Planetary Approach Analysis

• Spacecraft has vh hyperbolic excess velocity, which fixes total energy of approach orbit

• Vis-viva provides velocity of approach

• Choose transfer orbit such that approach is tangent to desired final orbit at periapse

v =

!

v2

h+

r

∆v =

!

v2

h+

r−

!

µ

r

v2

2� µ

r= � µ

2a=

v2h

2

38

Page 39: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Patched Conic - Lunar Approach

• Lunar orbital velocity around the Earth

• Apogee velocity of Earth transfer orbit from initial 400 km low Earth orbit

• Velocity difference between spacecraft “infinitely” far away and moon (hyperbolic excess velocity)

vm =

!

µ

rm

=

!

398, 604

384, 400= 1.018

km

sec

va = vm

!

2r1

r1 + rm

= 1.018

!

6778

6778 + 384, 400= 0.134

km

sec

vh = vm − va = vm = 1.018 − 0.134 = 0.884km

sec

39

Page 40: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Patched Conic - Lunar Orbit Insertion

• The spacecraft is now in a hyperbolic orbit of the moon. The velocity it will have at the perilune point tangent to the desired 100 km low lunar orbit is

• The required delta-V to slow down into low lunar orbit is

40

vpm =

rv2h +

2µm

rLLO=

r0.8842 +

2(4667.9)

1878= 2.398

km

sec

�v = vpm � vcm = 2.398�r

4667.9

1878= 0.822

km

sec

�v = vpm � vcm = 2.398�r

4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec�v = vpm � vcm = 2.398�

r4667.9

1878= 0.822

km

sec

Page 41: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

ΔV Requirements for Lunar Missions

To:

From:

Low EarthOrbit

LunarTransferOrbit

Low LunarOrbit

LunarDescentOrbit

LunarLanding

Low EarthOrbit

3.107km/sec

LunarTransferOrbit

3.107km/sec

0.837km/sec

3.140km/sec

Low LunarOrbit

0.837km/sec

0.022km/sec

LunarDescentOrbit

0.022km/sec

2.684km/sec

LunarLanding

2.890km/sec

2.312km/sec

41

Page 42: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

LOI ΔV Based on Landing Site

42

Page 43: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

LOI ΔV Including Loiter Effects

43

Page 44: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Interplanetary Trajectory Types

44

Page 45: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Interplanetary “Pork Chop” Plots• Summarize a number of

critical parameters – Date of departure – Date of arrival – Hyperbolic energy (“C3”) – Transfer geometry

• Launch vehicle determines available C3 based on window, payload mass

• Calculated using Lambert’s Theorem

45

Page 46: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

C3 for Earth-Mars Transfer 1990-2045

46

Page 47: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Earth-Mars Transfer 2033

47

Page 48: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Earth-Mars Transfer 2037

48

Page 49: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Interplanetary Delta-V

49

C3 = V 2h

Hyperbolic excess velocity ⌘ Vh

Vreq =p

V 2esc + C3

�V =pV 2esc + C3 � Vc

2033 Window: �V = 3.55 km/sec

2037 Window: �V = 3.859 km/sec

�V in departure from 300 km LEO

Page 50: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Low-Thrust Trajectories

• Acceleration measured in milligees • Circular orbits remain circular • Vehicle spirals outbound over many orbits

• From any circular orbit, to escape is

50

�v = vc1 � vc2

�v

�v =

r

Page 51: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Low-Thrust ∆V to Moon

• From LEO to Moon’s orbit around Earth

• From Moon’s orbit to low lunar orbit (LLO)

51

�vE =

rµE

rLEO�r

µE

rMoon

�vM =

rµM

rLLO

�vtotal

= �vE

+�vM

Page 52: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Low-Thrust ∆V to Mars

52

�vEarth escape =

rµE

rLEO

�vEarth�Mars

=

rµsun

rEarth orbit

�r

µsun

rMars orbit

�vMars capture =

rµMars

rLMO

�vMars capture = �vEarth escape +�vEarth�Mars +�vMars capture

Page 53: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Low-Thrust Caveats

• This analysis assumes infinitesimal thrust • ∆V calculation should be conservative for any

higher thrust level • This will serve for preliminary analysis of low-

thrust mission requirements • More accurate ∆V (and time of flight) calculations

will depend on integrating the equations of motion and iterating to match boundary conditions

53

Page 54: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Hill’s Equations (Proximity Operations)

˙ ̇ x = 3n2x + 2n˙ y + adx

˙ ̇ y = −2n˙ x + ady

˙ ̇ z = −n 2z + adz

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

54

Page 55: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Clohessy-Wiltshire (“CW”) Equations

x(t) = 4 − 3cos(nt)[ ]xo +sin(nt)

n˙ x o +

2n

1− cos(nt)[ ] ˙ y o

y(t) = 6 sin(nt)− nt[ ]xo + yo −2n

1−cos(nt)[ ] ˙ x o +4sin(nt)− 3nt

n˙ y o

z( t) = zo cos(nt) +˙ z on

sin(nt)

˙ z ( t) = −zonsin(nt) + ˙ z o sin(nt)

55

Page 56: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

“V-Bar” Approach

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit Satellite Servicing and Resupply, 15th USU Small Satellite Conference, 2001

56

Page 57: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

“R-Bar” Approach

• Approach from along the radius vector (“R-bar”)

• Gravity gradients decelerate spacecraft approach velocity - low contamination approach

• Used for Mir, ISS docking approaches

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit Satellite Servicing and Resupply, 15th USU Small Satellite Conference, 2001

57

Page 58: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F16/483F16L08.orbmech/483F16L...Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U

Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

References for This Lecture

• Wernher von Braun, The Mars Project University of Illinois Press, 1962

• William Tyrrell Thomson, Introduction to Space Dynamics Dover Publications, 1986

• Francis J. Hale, Introduction to Space Flight Prentice-Hall, 1994

• William E. Wiesel, Spaceflight Dynamics MacGraw-Hill, 1997

• J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

58