overview of energy scenario - dsm -...

49
Rangan Banerjee Forbes Marshall Chair Professor Department of Energy Science and Engineering IIT Bombay DSM Workshop at IIT Bombay December 7. 2016 Overview of Energy Scenario

Upload: hahanh

Post on 10-May-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

Rangan Banerjee

Forbes Marshall Chair Professor

Department of Energy Science and Engineering

IIT Bombay

DSM Workshop at IIT Bombay December 7. 2016

Overview of Energy Scenario

2http://www.sankey-diagrams.com/wp-content/gallery/o_gallery_202/global-energy-conversion-to-economic-services1.png

Cullen and Allwood, 2010

Energy Supply 2005

3Cullen and Allwood, 2010

India and World (Selected Indicators for 2012)

Source: IEA, Key World Energy Statistics 2014

Population 1237 million 7037 million

GDP (PPP) 5567 Billion 2005 US$

(4500 $/person)

82901 Billion 2005 US$

(11780 $/person)

Primary Energy 33 EJ 559 EJ

Energy/person 26.6 GJ/person/year 84.4 GJ/person/year

Electricity/person 760 kWh/capita/year 2972 kWh/capita/year

CO2 emissions

Per person

Per GDP

1626 Million tonnes 31734 Million tonnes

1.58 tonnes /capita/year 4.51 tonnes /capita/year

0.35 kg /US$ ppp 0.38 kg /US$ ppp

5

6

Are our electricity supply systems sustainable?

Global Trends – Unbounded Growth?

GEA Ch 3 7

Rockstrom et al, Nature 2009 4

Long term global temperature record

Rockstrom et al, Nature 2009 5

Carbon Dioxide Concentrations

http://cdiac.ornl.gov/trends/co2/graphics/lawdome.gif 6

Recent Carbon dioxide concentrations

11https://scripps.ucsd.edu/programs/keelingcurve/

Carbon Dioxide Concentrations

Carbon Dioxide Emissions

Kaya identity: Total CO2 Emissions

= (CO2/E)(E/GDP)(GDP/Pop)Pop

CO2/E – Carbon Intensity

E/GDP- Energy Intensity of Economy

Mitigation – increase sinks, reduce sources- aforestation, fuel mix,energy efficiency, renewables,nuclear, carbon sequestration

Adaptation

Source: IPCC, 2011 14

Urban Air Problems

15October 31, 2016. Photo by Adnan Abidi/Reuters

http://www.pbs.org/newshour/rundown/delhi-air-pollution-smog/

History Of Electric Power Generation

100 kW DC

Power

Systems

Edison

1880

1882

Darjeeling Power

Station 13 kW

Hydro power

station

1896

1948

2015

1914

19811

900

1931

1965

2000

1895

Emambagh

Power Station –

CESC – Thermal

power station

1,362

MW

19471899

1964-69

Tarapur –

1st Nuclear

power plant

(2x160MW

=320MW)

Westinghouse,

Tesla-AC

power plant

TATA

Power

4000 MW

Power

plant,

Gujarat

2013

Damodar

Valley

Corporation &

Electricity

Supply Act

formed by

Govt. of India

Total

Installed

capacity-

1713MW

(15kWh/

capita)

1950

JNNSM

2010

Rajastan –

Atomic Power

Plant(300MW

+4x220MW)

Kaiga

Generating

Station-

(4x220MW

)

Kudankulam

-1000 MW

2014

7

Historical Household Electrification

Rates

GEA, Chapter 19

17

Installed Capacity - India

303070 MW All India installed capacity

Source: GOI, Ministry of Power, India (powermin.nic.in)

43086 MW Total Renewable installed capacity

2016 (as on 30.04.16)

Coal, 185993Nuclear,

5780

Natural Gas, 24509

Hydro (Res.), 41267

Diesel, 919

Renewables (Res.), 43086

Wind power, 26867

Small Hydro power, 4275

Biomass & Bagasse,

4831

Waste to Power, 115

Solar Power , 6998

Source: MNRE, Govt. of India (www.mnre.gov.in)

8

9

AustraliaSwitzerland

2013 India

United States

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 5000 10000 15000

Hum

an D

evelo

pm

en

t In

dex (

HD

I)

Annual Electricity consumption/ capita (kWh)

HDI and Electricity consumption (2013)

World

2035 India

1980 India

Netherlands

Russia

Pakistan

0.80-0.93

0.71 - 0.8

Very High HDI

High HDI

Medium HDI

Low HDI

0.57 - 0.70

0.41 - 0.55

Renewable share?

20

What will be the future supply mix for the Electricity sector ?

How much can renewables and nuclear supply?

India’s INDC

#1 Reduce Emissions Intensity of GDP by 33-35% of

2005 level in 2030

#2 Create 40% cumulative non fossil power by

installed capacity by 2030 (using finance from Green

Climate Fund)

#3 Create an additional carbon sink of 2.5 to 3 billion

tonnes of CO2 equivalent through additional tree

cover and forest

21

Renewable Energy Options

Wind

Solar Small

Hydro Biomass

Tidal

Energy

Wave Energy

Ocean Thermal

Energy

Solar Thermal

Solar

Photovoltaic

Geothermal*

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Renewable Installed Capacity

Renewable Generation

Nuclear generation Nuclear Installed Capacity

Renewable Share in Power

12

24

Renewable installed capacity and generation

*as on 28.02.2016 MNRE website: www.mnre.gov.in

Installed

Capacity*

Estimated

Capacity factor

Estimated

Generation

(GWh) (MW)

Wind 25217 14% 30926

Biomass & Bagasse 4827 70% 29596

Small Hydro 4194 40% 14697

Waste to Energy 115 50% 504

Solar PV 5547 19% 9233

Total 39901 25% 84957

13

Power Generation – Supply mix

Thermal

Nuclear

Renewables and Hydro

14

Power Generation – Supply mix

Thermal

Nuclear

Renewables and Hydro

15

Power Generation – Supply mix

Thermal

Nuclear

Renewables and Hydro

16

Cost of Electricity ($/MWh)

3 R

s./k

Wh

6 R

s./k

Wh

9 R

s./k

Wh

Bloomberg, 2015 17

29

Comparison of Supply technologies

GenerationTechnology

SIZERANGE(GW)

COSTCrores/ MW

Rs/kWh

CAPACITY FACTOR

AREA(m2/GWh)

CO2

Equivalent(gC02/kWh)

WATERl/MWh

COAL 0.1-4 5-6 3.5 0.8-0.9 200-400 820 1000

CCGT 0.1-1.5 4-5 3 0.5 -0.8 100 490 500

SOLAR PV 0.001-0.75

5-7 5.5 0.25 385 48 100

SOLARTHERMAL

0.01-0.5 10-15 12 0.25-0.29 300 48 3500

HYDRO 2.4-0.1 5-6 2.5-3.0

0.38-0.5 1374 24 17000

NUCLEAR 9.9-0.44 6.5-8 6-7 0.8-0.9 120 12 1000

WIND 1-0.1 6 4.5 -5.0

0.25 125 11 0

http://www.indiaenvironmentportal.org.in/files/file/solar%20energy%20in%20India.pdf

World’s largest solar power plant

30

648 MW 4654 crore ~ Rs 7.2 crores/ MWArea 10 km2 Kamothi, Tamil NaduRobotics for automatic panel cleaningPlant built in 8 months

http://www.indiatimes.com/news/india/india-is-now-home-to-the-world-s-largest-solar-power-plant-it-s-big-enough-to-power-150-000-homes-266449.html

1 MW Solar Plant – IIT Bombay

http://www.indiaprwire.com/pressrelease/education/20140128287038.htm19

Building Integrated PV

32

Roofed walkway with HeliaFilm® at the Seletar

Airport Singapore

Entrance canopy of CleanTech Park 2,

Singapore

30 m2

flexible 7%

Organic PV 12%

33

Printed PV

34

VICOSC’s new solar cell printer installed at CSIRO

National Solar Thermal Power Facility – Consortium supported

by MNRE and led by IIT Bombay

Thermal Storage

Solar Field

Expansion Vessel

Heat Exchanger

Generator

Condenser

Turbine

PumpPump

Cooling Water Circuit

Water/ Steam Loop

ThermicOil Loop

CLFR Direct Steam

Schematic of 1 MW Solar Power PlantSimulator snapshot

Parabolic Trough Solar Field Linear Fresnel Reflector Solar Field at Gwalpahari site

Consortium Members

KIE Solatherm

23

3

6

24

3

7

25

Prototype for 24 x 7 Solar Thermal Power

Development of indigenous heliostat

Development of improved LFR with

steam storage using PCM

Development of molten salt loop and

stratified storage

Temperature

°C

1 290 Flow

2 550 Flow

3 550 No Flow

4 290 No Flow

Heat transfer fluid is molten salt

flow

condition

Heat Exchanger

Stratifiedmolten salt

Storage

Solar tower

1

2

3

4

Molten saltPump for tower

Molten saltPump for H.X

Water

Superheatedsteam

DESE- IIT Bombay

Partners: Clique Consultants, Mumbai

KGDS Renewable Energy, Coimbatore

Sponsored by NETRA –NTPC Ltd

26

Share of Energy Imports - India

39

0.0

5.0

10.0

15.0

20.0

25.0

30.0

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

2010

Import Share (INDIA)

0

50

100

150

200

250

300

350

20

00

20

02

20

04

20

06

20

08

20

10

20

12

20

14

20

16

20

18

20

20

Tota

l In

stal

led

Cap

acit

y o

f So

lar

and

Win

d E

ne

rgy

(GW

)

China USA India Japan Germany

Existing Capacity (GW) Targets for the Future (GW)

31

Plan Layout

41

32

A portion of the ELU map of Ward A of MCGM

Corresponding Satellite Imagery for the area from Google Earth

Analyzed in QGIS 1.8.0To determine-Building Footprint Ratios- Usable PV AreasFor Sample Buildings

Source: R. Singh and Banerjee, 2015 33

0

0.5

1

1.5

2

2.5

0:0

1-

1:0

0

1:0

1-

2:0

0

2:0

1-

3:0

0

3:0

1-

4:0

0

4:0

1-

5:0

0

5:0

1-

6:0

0

6:0

1-

7:0

0

7:0

1-

8:0

0

8:0

1-

9:0

0

9:0

1-1

0:0

0

10:0

1-1

1:0

0

11:0

1-1

2:0

0

12:0

1-1

3:0

0

13:0

1-1

4:0

0

14:0

1-1

5:0

0

15:0

1-1

6:0

0

16:0

1-1

7:0

0

17:0

1-1

8:0

0

18:0

1-1

9:0

0

19:0

1-2

0:0

0

20:0

1-2

1:0

0

21:0

1-2

2:0

0

22:0

1-2

3:0

0

23:0

1-2

4:0

0

MU

s

Jan, 2014 Typical Load Profile vsPV Generation

1-AxisTracking @Highest eff.

1-AxixTracking @Median eff.

19 deg. FixedTilt @ Highesteff.

19 deg. FixedTilt @ Medianeff.

0.115

0.125

0.135

0.145

0.155

0.165

0.175

0.185

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Capacity Factor for Mumbai

1-Axis Tracking

Fixed Tilt @ 19deg.

Annual Averagewith 1-AxisTracking

34Source: R. Singh and Banerjee, 2015

35

Gujarat Wind1st April 201622:47 pm

Gujarat Wind3rd March 201622:00 pm

Installed Capacity 3542 MW

A.Dave, T.Kanitkar and R.Banerjee Analysing Implications of India's Renewable Energy Targets, 2016 - draft 36

37

SAM

Intermediate

ConsumptionFinal Demand

EndogenousExog

enou

s

SAM Coefficients

Multiplier Decomposition

Δf

New Production

New SAM

Scenarios for

Sectoral Growth

Energy Demand

Energy Supply

Constraints –

Resource,

Emissions

Investment

Analysis using SAM From Decomposition Analysis

Δx = MA*Δf

From Optimisation

or Manual

Summary

India – low energy use, high growth, predominantlt fossil based

INDC targets -achievable

Low Capacity factors- High daily and seasonal variability

Financing issues – Initial capital – Reduction in GDP, Equity impacts

Storage costs – problems with high penetration -Capacity credit?

Need for R&D and indigenization

Impact on Employment

Need for alternatives – Energy Efficiency and Demand Side Management

47

References

48

GEA, 2012 Chapter 3 : Global Energy Assessment - Toward a Sustainable Future,

Cambridge University Press, Cambridge, UK and New York, NY, USA and the

International Institute for Applied Systems Analysis, Laxenburg, Austria.

T. Kanitkar et al 2015: Tejal Kanitkar, Banerjee, R. Banerjee and T. Jayaraman,

Impact of economic structure on mitigation targets for developing countries,

Volume 26, June 2015, 56–61, June 2015.

Ministry of New and Renewable Energy (MNRE), Government of India, New

Delhi, website: www.mnre.gov.in

Ministry of Power, Government of India, http://powermin.nic.in/

R. Singh and Banerjee, 2015: Singh, R., and Banerjee, R., Estimation of rooftop

solar photovoltaic potential of a city, Solar Energy, Vol. 115, 589-602, May 2015.

Rockstrom et al, Nature 2009

http://cdiac.ornl.gov/trends/co2/graphics/lawdome.gif

http://www.indiaenvironmentportal.org.in/files/file/solar%20energy%20in%20India.

pdf

http://www.indiaprwire.com/pressrelease/education/20140128287038.htm

Bloomberg New Energy Finance, 2016: Global Trends in Renewable Energy

Investment 2016

A.Dave, T.Kanitkar and R.Banerjee Analysing Implications of India's Renewable Energy Targets,

2016 - draft

41

Acknowledgment

Balkrishna SurveTejal Kanitkar

Thank [email protected]@gmail.com

Solar power team+ Team Shunya

Rhythm Singh Pankaj Kumar

Jani Das Ajit Paul Abraham