pathway from the boundary layer to the utls · pathway from the boundary layer to the utls ... asma...

32
1 Pathway from the boundary layer to the UTLS over the Asian summer monsoon region Jianchun Bian LAGEO Institute of Atmospheric Physics Chinese Academy of Sciences [email protected] Outline 1. TP ASM (E to W) 2. O 3 H 2 O, cirrus & aerosol 3. Dynamics microphysics, chemistry & radiation 4. Extra-tropical TL TTL 5. Sat. & simulation in situ obs. 6. Summary

Upload: ngonhan

Post on 08-Jun-2019

219 views

Category:

Documents


0 download

TRANSCRIPT

1

Pathway from the boundary layer to the UTLS over the Asian summer monsoon region

Jianchun Bian LAGEO

Institute of Atmospheric Physics Chinese Academy of Sciences

[email protected]

Outline 1.  TP → ASM (E to W)

2.  O3 → H2O, cirrus & aerosol

3.  Dynamics → microphysics, chemistry & radiation

4.  Extra-tropical TL → TTL

5.  Sat. & simulation → in situ obs.

6.  Summary

2

1. From Tibetan Plateau to the ASM

Zhou et al., 1995

! Guess: BL pollutants converge to TP, and then are transported to UTLS by ASM updraft, which is induced by the huge elevated heat source (Yeh et al., 1957; Flohn, 1957).

! Mechanisms: dynamics, chemistry

! TP has been a long-lasting topic for atmospheric research (Yeh, 1949, 1950; Yin, 1949; Bolin,

1950).

! TOMS measurements show a summertime total ozone valley over TP (Zhou et al., 1995)

30 40 50 60 70 80 90 100 110 120Longtitude (E)

260

265

270

275

280

285JJA

OM

I tot

al o

zone

(DU

) 450

600

750

900

1050

Terra

in in

pre

ssur

e (h

Pa)

30 N

285 DU

0 1000 2000 3000 4000 5000

50 60 70 80 90 100 110

Total ozone anomaly (DU) in JJA (2005-2009)

25

30

35

40

In view of Asia region, ozone valley is a phenomenon of terrain: Good agreement between total O3 and terrain!

Ozone Terrain

! Total ozone decreases 4-4.5 DU per 100 hPa elevation change

! TP terrain causes a reduction of ~20 DU total ozone.

Bian et al., AAS, 2010

0 40 80 120 160SAGE II ozone partial pressure (nb)

1

10

100

1000

Pres

sure

(hPa

)

(45E-75E)

(75E-105E)

Non-ASM

TP & IP share the same ozone profile, but have lower ozone in UTLS relative to non-ASM region.

Blue – Tibet P.

Red – Iran P.

Green – non-ASM

Lower O3 in UTLS

Bian et al., AAS, 2010

0 40 80 120 160SAGE II ozone partial pressure (nb)

1

10

100

1000

Pres

sure

(hPa

)(45E-75E)

(75E-105E)

Non-ASM

Non-ASM: 300 DU

TP: 267DU

ASM UTLS 20DU

Terrain 20DU

267DU = 300 DU + 7 DU – 20 DU – 20 DU TP Non-ASM Higher trop. Lower_UTLS Terrain –20% +60% +60%

Budget

Bian et al., AAS, 2010

6

1. From Tibetan Plateau to the ASM

! Focus shifts from the TP to the whole ASM region.

7

2. From O3 to H2O, cirrus, and aerosol

H2O

Cirrus

H2O

Bian  et  al.,  Chinese  JAS,  2011  

! Maximum H2O within anticyclone (Rosenlof et al., 1997)

! Maximum cirrus & enhanced aerosol (Vernier et al., 2011)

! H2O, cirrus & aerosol are critical for chemistry, radiation

8

CALIPSO SR @532nm, 15–17 km

Asian tropopause aerosol layer (ATAL)

ATAL

15–45oN average

ATAL

Anticyclone Anticyclone

Vernier et al, GRL, 2011

!  ATAL impacts also on microphysics.

Lelieveld  et  al.,  ACP,  2007  

Upward  flux  

Impact on global climate

! Simulations: the upward water mass flux associated with ASM accounts for 75% of global flux during boreal summertime (Gettelman et al., 2004)

~  17  km    

10

3. From dynamics to microphysics, chemistry & radiation

! Dynamics: 2 key processes

1. Deep convection (Randel et al., JGR, 2006; Fu et al., GRL, 2007):

convective transport + emission source = pathway → destination (Yan et al., AAS, 2015)

2. Anticyclone trapping effect (Li et al., GRL, 2005; Park et al, JGR, 2007): bi-mode (Yan et al, AOSL, 2011)

3. Many issues to be investigated: main outflow level, wet scavenge, …

! Microphysics, chemistry, radiation:

1. formation of cirrus & aerosol

2. super-saturation

3. inhomogeneous/homogeneous nucleation & chemistry

Tracing CO-maxima within ASM anticyclone by WRF-Chem

!  CO emission: Global Fire+ Asia Anthropogenic

!  Period:20060501-20060701; no chemistry

!  Wind:FNL(1°× 1°); chemical initial & boundary condition:MOZART4

Indian C.

E. China

Yan et al., 2015, AAS

I-O =30ppb I-O =20ppb

I-O =13ppb I-O =2ppb

Simulation and contribution of different emission

Yan et al., 2015, AAS

Pathway of emission from Indian continent

Yan et al., 2015, AAS

Pathway of emission from Eastern China

Yan et al., 2015, AAS

IM: 50-67.5E

TM: 80-92.5E

Center no. in the longitude during 2005-2009 summer

!  ASMA center has bi-peak distribution zonally (Zhang et al, 2002)

Effect of the bimodality of ASM anticyclone

Iran mode Tibet mode

Yan et al., 2011, AOSL

Composite analysis Iran mode

Tibet mode

Water vapor distribution for different mode

Yan et al., 2011, AOSL

IM

TM

Climate ave.

! IM:

Higher trop. tracers over IP,

lower strat. tracers over IP,

Opposite over the TP

H2O(ppmv) CO(ppbv) O3(ppbv)

Composition distribution for different mode

Yan et al., 2011, AOSL

! Although ASM anticyclone locates at sub-tropics (ExTL), it has

TTL mixing structure (Pan et al., JGR, 2014). However, somewhat

different from TTL, such as TIL, higher top boundary level.

! Unknowns: 1. Top & bottom boundary

2. Physical & chemical processes related to cirrus, dehydration,

aerosol, and so on; micro-scale waves related to in situ formation of

cirrus

3. How to get into tropical pipe or stratosphere from ASM

anticyclone ?

……

4. From extra-tropical transition layer to TTL

Boulder 40N

Pan et al., 2014, JGR

Gettelman et al., 2011, RG

Tropics 10N

KM 25N

! ATAL formation mechanisms: 1. Anthropogenic SO2 emissions (Neely III et al, JGR, 2014) 2. Carbonaceous and sulfate materials (Vernier et al, JGR, 2015) 3. Ammonium nitrate (NH4NO3) (Liao et al, communication) …… True evidence ?

5. From sat. & simulation to in situ measurement

Vernier et al., 2015, JGR

21

!  Above and many other related studies have used satellite data and models.

!  Satellite product lacks of validation over this region, and the vertical resolution is low so many finer structures can’t be seen.

!  We are trying to conduct coincident in situ measurements of water vapor, ozone and particle in the UTLS within the ASM anticyclone.

!  These observations will be significant for quantifying the moisture transport associated with the ASM, for identifying the transport pathway, and for understanding microphysical process in the ASM-TL. —— Scientific goals

22

Sounding Water vapor, Ozone and Particle (SWOP)

campaign at Lhasa and Kunming during the Asian summer monsoon

Thanks to Hongbin Chen, Daren Lu, Yuejian Xuan, Jinqiang Zhang, Zhixuan Bai (IAP/CAS) …

Holger Vömel (GRUAN, DWD), Frank Wienhold (ETH), Dale Hurst, Samuel Oltmans, Emrys Hall, Allen Jordan (NOAA)

23

Campaign Locations

"  ASM anticyclone spans subtropical Asian continent between 20–40N, higher tropopause

"  KM (25.0N, 102.6E) within southeast edge of anticyclone, influenced by the air mass from outside

"  LH (29.6N, 91.1E) @ anticyclone center and consistently within anticyclone limit

Bian et al. GRL, 2012

24

"  Compact Optical Backscatter Aerosol Detector (ETH) "  NOAA Frost Point Hygrometer (NOAA GMD) "  Cryogenic Frost Point Hygrometer (Vömel-DMT) "  Electrochemical Concentration Cell Ozonesonde (DMT) "  Radiosonde: P, T, U, winds (u,v) (InterMet)

Balloon-borne sondes

•  CFH & FPH measure the water vapor concentration and RHi by detecting the frost point of the air-mass.

•  COBALD detects cloud particle and aerosol by emitting light at two wavelengths (455nm, 870nm), and receiving the back-scattered signal.

25

LS KM

2010 Aug 22-28 12 CFH/ECC 3 Cobald 2013 Aug 3-26 22 CFH/ECC 18 Cobald

Six IOPs during 2009-2014

2009, Aug 7-13 11 CFH/ECC 2011, Sep 12-15 4 CFH/ECC 2012, Aug 11-Sep 6 21 CFH/FPH 38 ECC , 12 Cobald 2014, Aug 13-22 10 CFH/ECC/Cobald

26

Balloon-borne Sondes & Timing

"  Once or twice daily

"  Kunming:

–  Aug 7-13, 2009, CFH/ECC/RS80 (11 sets)

–  Sep 12-15, 2011, CFH/ECC/iMet (4 sets)

–  Aug 11-Sep 6, 2012, CFH (6), FPH (15), COBALD (12), ECC (38)

–  Aug 13-22, 2014, CFH (10), COBALD (10), ECC(10)

"  Lhasa: –  Aug 22-28, 2010, CFH/ECC/iMet (9 sets), CFH/COBALD/ECC/iMet (3 sets)

–  Aug 3-26, 2013, CFH/ECC/iMet (6 sets), CFH/COBALD/ECC/Imet (18 sets)

"  Ozone: ECC ozonesonde (99)

"  Water vapor: CFH-RS80 (11), CFH-iMet (54), FPH-iMet (15)

"  Cloud and aerosol: COBALD (43)

27

First in situ measurement of UTLS H2O and O3 during ASM

H2O O3 RHi - Supersaturation

Kunming

Lhasa

Bian et al, JGR, 2012

RHi distribution changes with temperature

29

Aerosol and cirrus

0 2 4 6 8 10Water vapor mixing ratio (ppmv)

14

16

18

20

22

Altit

ude

(km

)

1 2 3 4BSR

0 20 40 60 80 100RHi (%)

H2O mixing ratioRHiBSR_RedBSR_Blue

30

Asian tropopause aerosol layer is indeed observed by in situ measurements !

Vernier et al, JGR, 2015

True evidence ? To be confirmed

Russian M-55 Geophysica

To be confirmed by StratoClim aircraft campaign

Rex et al, ACAM, 2013

32

Summary: # knowns << # unknowns Park et al, JGR, 2009

So, we come here to find the true evidence !

Thank you very much