phenix operation feedback and application for the …

49
1 Lecture at Tsuruga , the 28th August 2009 Joel Guidez PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE FUTURE. J GUIDEZ Director of Phenix plant from November 2002 to december 2007

Upload: others

Post on 17-Mar-2022

1 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

1Lecture at Tsuruga , the 28th August 2009 Joel Guidez

PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE

FUTURE.

J GUIDEZ Director of Phenix plant fromNovember 2002 to december 2007

Page 2: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

2Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Milestones in the French FBR development

� FBR reactors in France

RAPSODIE : 40 MWth reactorPHENIX : 563 MWth/250 MWe nuclear plant SUPER-PHENIX : 3000MWth/1200 MWe nuclear plantEFR ProjectASTRID Project

� Background on PHENIXConstruction: 1963 to 1973First Criticality: 31 August 1973Grid connection: 13 December 1973Commercial Operation: 14 July 1974End of commercial operation : 06 March 2009

Page 3: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

3Lecture at Tsuruga , the 28th August 2009 Joel Guidez

PHENIX ORGANIZATION

� CEA is � the owner� the nuclear operator

of PHENIX plant

The plant is operated by an association composed of :� CEA for 80 % � EDF for 20 %

The total personnel of the plant is 280 with a same participation of CEA and EDF:�210 CEA�70 EDF

Page 4: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

4Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Plant Diagram

Page 5: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

5Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Reactor Block

Pool type primary circuit

3 primary pumps6 intermediate heat

exchangers (563 Mwth)7 Control rods:

6 rods for power control, burn-up compensation and shutdown,1 safety rod (shutdown)

temperatures : 400 - 560°C (563 MWth)

main vessel diameter :11,8 metres

Page 6: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

6Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Driver fuel S/A : 217 pins, 6.55 dia., 1515titanium stabilised stainless steel clad, wired spaced, ferritic wrapperMixed oxide fuel UPuO2

Pu total enrichment:Inner Zone: 23 %Outer Zone: 28 %

Nb of fuel SA: 106Nb of Breeder SA: 86Max neutron flux :

4.4 x1015 n/cm2.s (at 350 MWth)

Reactor Core

Page 7: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

7Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Secondary sodium loops

Temperatures:350°C - 550°C

Page 8: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

8Lecture at Tsuruga , the 28th August 2009 Joel Guidez

16,9 m 4,2 m

Sodium inlet

ReheaterStage

SuperheaterStage

EvaporatorStage

18,8 m

12,9 m

Sodiumoutet

PHENIX Steam Generator Unit

Superheatermodule

Steam tubes and sodium shell

Steam conditions:512°C16,3 MPa

collecteursortie vapeur

collecteurentrée Na

sous collecteurvapeur

7 tubesvapeur

collecteurentrée vapeur

collecteursortie Na

Steamoutletheader

7 Steamtubes

Na inletheader

Steam inletheader

Na outletheaderSecondary

steamheader

Page 9: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

9Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Main characteristics

THERMAL POWER 345 MW 563

GROSS ELECTRICAL OUTPUT 140 MW 250

NET ELECTRICAL OUTPUT 140 MW 233

CORE EXIT SODIUM T° 530 °C 560

CORE INLET SODIUM T° 385 °C 400

SG INLET SODIUM T° 525 °C 550

ECO-EVA OUTLET STEAM T° 360 °C 375

SUPERHEATED STEAM T° 490 °C 512

REHEATED STEAM T° 500 °C 512

SUPERHEATED STEAM PRESSURE 140 bar 163

REHEATED STEAM PRESSURE 20 bar 35

SG INLET OVERALL WATER FLOWRATE 500 t/h 750

Page 10: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

10Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Operation diagram

1985

MW

OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre

600400200

34 35

1989OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre NovembreDécembre

600400200MW 4746

400600

200MW

1990 OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre NovembreDécembre

49481974OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre Novembre Décembre

600400200

MW MSI 32

1976OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre Novembre Décembre

600400200

MW 8 9 10

1977OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre Novembre Décembre

600400200

MW 11

1978OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre Novembre Décembre

600400200

MW 12 13 14

1979OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre Novembre Décembre

600400200

MW 15 16 17 18

1980 OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre Novembre Décembre

600400200

MW 19 20 21

1981OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre Novembre Décembre

600400200

MW 22 23 24 25

1982OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre Novembre Décembre

600400200

MW 26 27 28

1984OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre Novembre Décembre

600400200

MW 31 32 331983 OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre Novembre Décembre

600400200

MW 29 30

1975OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre Novembre Décembre

600400200

MW 4 65 7

1988 OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre NovembreDécembre

600400200MW 43 44 451987 OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre NovembreDécembre

600400200MW 39 40 41 421986 OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre NovembreDécembre

600400200

MW 37 3836

1995 OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre NovembreDécembre

600400200

1993

600

400200

MW

OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre6

MW

2001

600400200

OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre14

OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre

600400200MW

19911

1992OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre

3 4 5 2

1994OctobreJanvier Février Mars Avril Mai Juin Juillet août Septembre NovembreDécembre

600400200MW 7 8

1996

MW600400200

OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre9

MW

1997

600400200

OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre10

1998

MW600400200

OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre11

12

200013

MW

OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre

600400200

15

MW

2002

600400200

OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre

MW

1999

600400200

OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre

50

16

MW

2003

600400200

OctobreJanvier Février Mars Avril Mai Juin Juillet Août Septembre NovembreDécembre

51

Réacteur en Puissance

Réacteur divergé à puissance faible

2005

350

300

200

OctobreJanvierFévrierMarsAvril Mai JuinJuilletAoûtSeptembreNovembreDécembre100

AM3 AM4Fin du 52 Fin du 52 èème cycleme cycleDDéébut du 53 but du 53 èème cycleme cycle

2006

350

300

200

OctobreJanvierFévrierMarsAvril Mai JuinJuilletAoûtSeptembreNovembreDécembre100

A5 A6Fin du 53 Fin du 53 èème cycleme cycleDDéébut du 54 but du 54 èème cycleme cycle

2007

350

300

200

OctobreJanvierFévrierMarsAvril Mai JuinJuilletAoûtSeptembreNovembreDécembre100

A7 A8Fin du 54 Fin du 54 èème cycleme cycleDDéébut du 55 but du 55 èème cycleme cycle

2004

350

300

200

100

OctobreJanvierFévrierMarsAvril Mai JuinJuilletAoûtSeptembreNovembreDécembre

AT2Fin du 51 Fin du 51 èème cycleme cycle

AM1DDéébut du 52 but du 52 èème cycleme cycle

2008

350

300

200

OctobreJanvierFévrierMarsAvril Mai JuinJuilletAoûtSeptembreNovembreDécembre100

A9Fin du 55 Fin du 55 èème cycleme cycleDDéébut du 56 but du 56 èème cycleme cycle

A10 A11Sortie de FUTURIX

1974-1990 Démonstration of Sodium cooled FBR technology with a reliable ans safeoperation. Validation of components, fuel and materials.

1994-2003 : Time life extension. Upgrading of all the plant to new safety level.

1990-1993 : Investigations following four shut down by negative reactivitytransients

2003-2009 :operation at two third of the power and with a new program of experimental irradiations

Page 11: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

11Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Availability rate

In the first period (1074/ 1990 ) the averagevalue of Phenix availability rate is about 60% despite the necessary replacement and reparation of all IHX and primary pumps.

After its restart in 2003, the Phenix availabilityrate has oscillated between 69% and 85%, until 2009.

These values are high for a prototype and show the potentiality of high availability rate for this type of reactors

Page 12: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

1Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Sodium leaks

32 sodium leaks

from a few cm3 to several liters

very few primary sodium leaks: 3 small leaks on plugging-meters:

most of the leaks located on welds of secondary loops and auxiliary circuits

Leak satisfactorily detected at an early stage(significant corrosion due to delayed detection on one occasion: lead to improvement of detection system)

Consequences for the plant on availability but not on safety

Page 13: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

2Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Sodium leaks

Location of leaks:23 on welded junctions (piping or other pieces)3 on flange assemblies2 on IHX tubes1 on a valve bellow

Major causes:Design and manufacturing (IHX, Plugging meters, junction Te…)Material (321 SS)Inert atmosphere keeping of circuits

Page 14: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

3Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Sodium leaks

Remedial actions:improvement of design and fabricationjunction Te replaced by mixersreplacement of 321 SS hot parts of circuitsseparation wall between secondary loop and Water/Steam circuit in SG building

Improvement of detection through feedback:additional detection by monitoring of the electrical insulation of trace heatersequipment of circular welds with “sandwich” detectorsAerosol detection by flame spectrometer in secondary circuit separation cells

Page 15: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

4Lecture at Tsuruga , the 28th August 2009 Joel Guidez

SODIUM LEAK on PURIFICATION LOOP n°1 (March 2003)

Page 16: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

5Lecture at Tsuruga , the 28th August 2009 Joel Guidez

SODIUM LEAK on PURIFICATION LOOP n°1 (March 2003)

Page 17: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

6Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Disassembling of the leaking valve

SODIUM LEAK on PURIFICATION LOOP n°1 (March 2003)

Page 18: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

7Lecture at Tsuruga , the 28th August 2009 Joel Guidez

AN EXAMPLE OF SODIUM LEAK ( 21st August 2007 )

Amount of leak : approximately 1kg, confinedin the insulation

No corrosion found on piping

Metallurgical examination: crack in a zone repaired in 1997

Cause: creep cracking due to local stress induced by repair

No other repaired welds on the secondary loophot legs

Replacement of the elbow and straight part of piping

Solid Compound: sodium and insulation material

Page 19: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

1Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Sodium-water reactions

4 sodium-water reactions on reheater stagesin 1982 and 1983:

Cause: fatigue damage due to temperature fluctuations during start up phase (water ingress)All reheater units replacedImprovement of startup procedure, Leak detection and Shutdown sequence

1 sodium-water reaction in 2003:Cause: welding defect on one reheater steam tubeReplacement of the module

Page 20: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

2Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Steam tubes of SG2 reheater module n°12

Sodium-water reactions: April 1982 event

Page 21: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

3Lecture at Tsuruga , the 28th August 2009 Joel Guidez

33 mm

6 x 2 mm

Sodium-water reactions: Sept. 2003 event

Page 22: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

4Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Wastage on sodium pipe after cleaning

Maximum wastagedepth: 4.5 mm

Pipe thickness: 6.5 mm

Sodium-water reactions: Sept. 2003 event

Page 23: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

5Lecture at Tsuruga , the 28th August 2009 Joel Guidez

SODIUM – WATER REACTIONS

� Summary of sodium-water reactionsNa/H2O Reaction N° 1 2 3 4 5

Number of leaking tubes 2 1 1 2 1

Wastage effect Very important Nil Significant Important Significant

Scenario of the leaks

Section of holes on sodium side

(mm2)13 + 60 + 90 7,4 7 6 + 35 24

Duration of the leak

(mn) > 10 4 4 4 1,6

Estimation of the average leak flow (g/s) 20 12 5 12 20

Total quantity of water injected in sodium during the reaction

(kg) 30 � 8 3 � 1 1,2 � 0,3 4,1 � 1,7 4 � 1

Erosion on the Na shell Yes on 1/4th of thickness

i.e. 1,5 mm

No No No Yes On 2/3rd of thickness

i.e. 4,5 mm

Page 24: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

1Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Expérimental Irradiations

Very good conception of the reactor for experimentalirradiations:core characteristics, easy handling, hot cells for fabrication of the experimental components or for post-irradiation examinations

More than 200 experimental irradiations:� Behaviour of MOX fuel� Cladding and structure materials� Concept of heterogeneous reactor� Test of other types of fuel (carbure , nitrure, ..)� transmutation of minor actinides in homogeneous

and heterogeneous mode� New fuels and new materials for the reactors of

fourth generation.

A lot of these experiments was also achieved in the frame of international collaboration.

Concepts innovants pour RCG:Combustibles nitrures et carbures en matrices inertes

Std Coeur 2

StdCoeur 2

Std Coeur 2

StdCoeur 2

Std Coeur 2

Std Coeur 2

Std Coeur 2

StdCoeur 2

StdCoeur 2

StdCoeur 2

CEA 7

CEA 8

StdCoeur 2

StdCoeur 2

StdCoeur 2

StdCoeur 2

StdCoeur 2

StdCoeur 2

StdCoeur 2

Expérience FUTURIX FTA(Pu0,50 , Am0,50 )O2-x - MgO 80%

Page 25: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

2Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Fuel Performance

Constituant steel of hexagonal tube: The initial type-316 led to deformation in excess of criteria, in the 40-50 dpa range. With the titaniumstabilised steels it was possible to support about 80 dpa . At the end , the use of ferritic-martensitic steelsallowed to support more than 150dpa.

Fuel pin material:The same work of research was made on the fuel pin material. It allows , now with the 316-TI ,to reach about 120dpa. Research continue with ferritic-martensiticsteel strengthened by an oxide dispersion (ODS)

MOX performance:Gradually increasing burnup was possible with thesenew materials and gave a lot of informations on fission gas behaviour and fuel evolution at high burn up

Page 26: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

3Lecture at Tsuruga , the 28th August 2009 Joel Guidez

PHENIX:FUEL BURN-UP INCREASE

0

20000

40000

60000

80000

100000

120000

140000

1600001 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

ZEBRE 4(calculée)

COEUR 2STANDARD

GAMMA 2

PAPEETE 3

SPHINX 4

VIGGEN BOITIX 9

CYCLE

MWd/t OXIDE

BURN-UP OF UNLOADED SUBASSEMBLIES

AVERAGE BURN-UP OF ALL THE CORE SUBASSEMBLIES

MAXIMUM BURN-UP REACHED AT EACH

Driver fuel max. Burn-up increase:

Inner core: 60000 to 90000 MWd/t.ox

Outer core: 75000 to 115000 MWd/t.ox

Driver fuel max. Burn-up increase:

Inner core: 60000 to 90000 MWd/t.ox

Outer core: 75000 to 115000 MWd/t.ox

Max. Burn-up achieved:

160000 MWd/t.ox

17.4 at % 156 dpa

Max. Burn-up achieved:

160000 MWd/t.ox

17.4 at % 156 dpa

Page 27: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

4Lecture at Tsuruga , the 28th August 2009 Joel Guidez

� 15 fuel failures with delayed neutron signals� (8 of them on experimental sub-assemblies)

� 11 Gas leakers without neutron signal

� Detection and location systems has proved to be effective and reliable (Location is based on sodium sampling from every fissile S/A outlet)

�� They allowed an early detection and monitoring of the failures with in most of

the case a shut-down of the reactor before reaching the trip level

� Low contamination level of primary sodium� (Cs 137: 1200 Bq/g)

Fuel Failures

Page 28: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

5Lecture at Tsuruga , the 28th August 2009 Joel Guidez

FUEL TREATMENT

• From 1979 to 1992 , about 27 tonnes heavy metal, includingfour tonnes plutonium , were produced , by reprocessing of fuels irradiated in Phenix.(it means about four and a halfPhenix cores)

• As early as 1980, assemblies fabricated with this recycledplutonium were loaded into the core.

• Thus, Phenix has demonstrated , at industrial level, the closureof a FBR cycle.

• The breeding ratio , planned initially at 1,13 , yielded, with the measurements during fuel dissolution operation , a value of about 1,16.

Page 29: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

6Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Primary components: pumps and heat exchangers.

Due to some initial default of conception, it wasnecessary to repair all these components.

The total number of handling operations has been 32 for IHX and 22 for primary pumps.

The possibilities of inspection and reparation of components have been demonstrated:

-Experience on large component handling.-Optimization of cleaning and decontamination

process.-Knowledge of primary components

contamination.After corrections, the operation of these

components has been reliable . This knowledge has been used for the conception of primary components for SPX1 and EFR.

NB: the possibility for the plant to operate , at reduced power, with onlytwo secundary loops available, has reduced the production lossesduring the components handling and reparation.

Page 30: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

7Lecture at Tsuruga , the 28th August 2009 Joel Guidez

slippage of reinforcements from hydrostatic bearing

Incidents in 1976 and 1981 on the primary pumps, and in 1987 on a secondary pump. Reinforcements slid down to the level of the pump impellers.

�Mechanical incidents due to repeated expansion and contraction on the braces after the sodium thermal cycles during the trip transients.�Modification in the assembly of all the pump reinforcements

Hydrostatic bearing of pumps

Page 31: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

8Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Events in 1976/1977 on all intermediate heat exchangers(1)

this plate connects the 2 shells forming the secondary sodium header

• difference of temperature arising between the 2 shells led to differential expansion between these shells

• this gave rise to high mechanical stresses and caused the weld connecting the inner shell to the plate to crack

SLAB

Biologicprotection

Roof

Primarysodium

level

• Crack in the top closure plate of exchanger

Page 32: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

9Lecture at Tsuruga , the 28th August 2009 Joel Guidez

• Crack in the top closure plate of exchanger

Modifications:addition of a mixer at the secondary

sodium outlet from the tube bundleimprovement of the flexibility of the IHX

hot header between the top closure plate and the inner shell

Biologicprotection

Top closure plate

Inner shell

Crack

Events in 1976/1977 on all intermediate heat exchangers(2)

Page 33: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

10Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Primary component: the control rods

Satisfactory operation of the six control rods and their drive mechanisms.

Some improvements werecarried out to take in account swellingproblems and sodium aerosol deposition .

A new articulated control rod (called SAC )wasadded during the safetyreevaluation work.

Barre

SAC

Page 34: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

11Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Fuel assembly handling

Satisfactory running of fuel assembly handling operations.

No incident.

But the handling operations require time (about one hour for a transfer)

Page 35: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

12Lecture at Tsuruga , the 28th August 2009 Joel Guidez

� 4 trips due to negative reactivity transients in 1989-1990

� Extensive studies and testing to identify the cause of the transient

� International Expert committee� 200 Man.Year - 500 documents� Examination of all possible� phenomena

� Safety analysis conclusions: no safety consequences for the reactor

TIME (ms)

1 Sept. 14th 19892 Sept. 9th 1990

NEUTRONIC SIGNAL(MW équivalent)

Negative Reactivity Transients 1989-1990

Page 36: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

13Lecture at Tsuruga , the 28th August 2009 Joel Guidez

� Most of the explanations were eliminatedelectrical perturbationgas release through the corecore/control rods relative movementoil ingress …

� Reference scenariomechanical (core flowering effect, initiator under study)

� Considerable reinforcement of reactor instrumentation (200 sensors)� Fast data acquisition system for:

permanently monitoring of the reactor� recording of any new event� No new occurrence since 1990� A new scenario proposed in 2006 is today under demonstration , by

experimentation during the end of life test and by calculation.

Negative Reactivity transients 1989-1990

Page 37: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

14Lecture at Tsuruga , the 28th August 2009 Joel Guidez

� 6 years of work in two phases from 1994 to 1997 and 1999 to 2003, separated by one operating cycle.

� 250 million € of studies and renovation works

� 5000 contracts entered into,� 350 sub-contracting companies

� 4500 agents working for the sub-contractors (up to 700 per day)� [PHENIX staff : 260 people + 50 backup CEA/EDF]

PLANT LIFETIME EXTENSION WORK

Page 38: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

15Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Life time extension / safety upgrading of the plant

Safety reevaluation of the plant :�Seismic reevaluation and reinforcement

of buildings and components.�Replacement of all the parts at high

temperature in 321 steel , by 316 steel�Decrease risks of large sodium fire and

consequencies of a sodium/water reaction�New emergency cooling system�New articulated control rod.

Circuit sodium

Inspection of component ans structures :dedicated inspection and maintenance.

�A lot of new methods of inspection wasdeveloped during this period�Ultrasound inspections were used for welds in

sodium�Visual inspections were possible, by draining

partially the sodium from the reactor block.

Page 39: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

16Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Ultrasonic inspection of the core support conical skirt carried out under sodium at 155 °CSept-Oct 1999

SPECIAL INSPECTIONS of REACTOR INTERNALS

Page 40: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

17Lecture at Tsuruga , the 28th August 2009 Joel Guidez

A visual inspection of the core cover plug and of the internal structures was made in March-April 2001For this operation sodium was drained partially from the reactor block , ansspecial devices allow to provide lights and visualisation

SPECIAL INSPECTIONS of REACTOR INTERNALS

Page 41: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

18Lecture at Tsuruga , the 28th August 2009 Joel Guidez

CORE S/A HEADS

Page 42: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

19Lecture at Tsuruga , the 28th August 2009 Joel Guidez

CORE COVER PLUG BOTTOM GRID

�Conclusions of the inspections:�very good condition of reactor internals

Page 43: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

20Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Materials

Satisfactory overall feedback as regards AISI 316L steel ,used for the reactorblock and intermediate heat exchangers , and more generally for all materialsused in the primary part.

Some problems of stress relief cracking with welds of titanium-stabilizedAISI321 grade (affecting welds at high temperature with stress relief treatment ) . This steel was used in the secundary loops and on the steamgenerators. All the parts at high temperature have been replaced.

A final confirmation will be given by the end of life program.

Page 44: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

21Lecture at Tsuruga , the 28th August 2009 Joel Guidez

0123456789

10

TBq

1974

1977

1980

1983

1986

1989

1992

1995

1998

2001

2004

Année

TritiumGaz Rares

Bruit de Fond

Dosimetry and environment

Advantages for RNR-Na, due to reactorcharacteristics.

� Radioprotection :The dosimetry accumulated in 35 years for all the personnel is only 2,3 Sv .The averageannual dose of an employee corresponds to the dose absorbed during a flight from Paris to Tokyo.

�EnvironmentGazeous release very low(less than one TBq per year in average value)

Liquid radioactiv effluents production also very low (a few TBq/an on average).

Dose cumulée annuelle

100 mSv

Rejets radioactifs gazeux

Page 45: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

22Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Main objectives of Phénix end of life program

Tests•� Tools validation in the fields of neutronics, thermal-hydraulics…� Safety demonstration: intrinsic safety features of sodium cooled FR, verification

of calculation margins,� Investigation of scenarios for Phénix negative reactivity transient explanation

• Expertise

• Material’s behaviour knowledge acquisition (material properties, damagingmechanisms, welded assemblies, modelling)

• Technology demonstration : validation of materials and components

Page 46: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

23Lecture at Tsuruga , the 28th August 2009 Joel Guidez

1)Neutronics1- Subassemblies reactivity worth measurements�1A – Substitutions of S/A in core central position.�1B – Substitution of a control rod by a gas volume

2- Control rod withdrawal�2A – Assymetrical control rod configuration (static)�2B – Control rod withdrawal and FACTO (dynamic)

3. Decay heat measurement4. Control rod worth measurements by different methods

2)Thermalhydraulics5. Reactor assymetrical thermal-hydraulic conditions (secondary

pump trip)6. Natural convection (primary and secondary)

Phenix end of life test program

Page 47: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

24Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Phenix end of life test program

3)Negative reactivity transient :measurement of core flowering effect , with a special device.reproduction of a scenario with the DAC component (also with dedicated device )

4)Program of post mortem examination

After the end of life test , and during the dismantling, collection of samplesof various materials will be made in several places ,to confort the knowledge on the mechanical evolution of materials after 35 years of operation.

Page 48: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

25Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Conclusion on Phenix operating feedback

• In terms of industrial operation, this prototype demonstrated that itwas possible to operate this type of reactor with a good availabilityrate.

• In terms of research the 200 experimental irradiation conduced in Phenix , allowed a lot of progress on materials, fuels, transmutation and other matters.

• In terms of technology , a lot of knowledge was accumulated in sodium technology, chemical matters, decontamination, repair methods, ..

• In terms of safety , a lot of knowledge was accumulated especiallyduring the life time extension process , with a lot of new methods for inspection in sodium , and a lot of modifications driven by safety,thatare guides for the future reactors.

Page 49: PHENIX OPERATION FEEDBACK AND APPLICATION FOR THE …

26Lecture at Tsuruga , the 28th August 2009 Joel Guidez

Conclusion for the future

• Phenix , with other reactors as BN600 in Russia, has demonstrated the possibilities of sodium fast reactors and validated the choice of main options on fuel and materials.

• Phenix is the only reactor in the world, that reprocessed itsfuel , manufactured new fuel with reprocessing produces and used it to demonstrate the overall breeding operation.Thatmeans the demonstration of possibility to provide electricityduring several millenaries, only with the depleted uranium today available.

• The Phenix experience has also shown some specificadvantages of the FBR: dosimetry , environment, possibilitiesof waste transmutation, ..

• In conclusion ,the Phenix experience provides a lot of necessary knowledge, on materials, component conception, sodium technology,..totaly necessary for the sodium FBR today in project or already under construction