plasma physics lecture 1 ian hutchinson

Upload: 005235

Post on 06-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Plasma Physics Lecture 1 Ian Hutchinson

    1/11

    Chapter1Introduction1.1 What isaPlasma?1.1.1 An ionizedgasAplasmaisagasinwhichanimportantfractionoftheatomsisionized,sothattheelectronsandionsareseparatelyfree.Whendoesthisionizationoccur? Whenthetemperatureishotenough.Balancebetweencollisionalionizationandrecombination:

    Figure1.1: IonizationandRecombination

    Ionizationhas

    athreshold

    energy.

    Recombination

    has

    not

    but

    is

    much

    less

    probable.

    Thresholdisionizationenergy (13.6eV,H).iIntegral over Maxwellian distribution gives rate coefficients (reaction rates). Because ofthe tail of the Maxwellian distribution, the ionization rate extends below T =i. And inequilibrium,when

    nions < iv >= , (1.1)

    nneutrals < rv >

    6

  • 8/3/2019 Plasma Physics Lecture 1 Ian Hutchinson

    2/11

    Figure1.2: Ionizationandradiativerecombinationratecoefficientsforatomichydrogen>thepercentageofionsislarge(100%)ifelectrontemperature: Te i/10.e.g. Hydrogen

    >isionizedforTe 1eV (11,600k). Atroomtemprionizationisnegligible.Fordissociationandionizationbalancefigureseee.g.DelcroixPlasmaPhysicsWiley(1965)figure1A.5,page25.1.1.2 PlasmasareQuasi-NeutralIfagasofelectronsandions(singlycharged)hasunequalnumbers,therewillbeanetchargedensity,.

    =ne(e)+ni(+e)=e(nine) (1.2)Thiswillgiverisetoanelectricfieldvia

    e.E= = (nine) (1.3)

    0

    0

    Example: Slab.dE dx = 0 (1.4)

    xE =

    0 (1.5)7

  • 8/3/2019 Plasma Physics Lecture 1 Ian Hutchinson

    3/11

    Figure1.3: ChargedslabThisresults inaforceonthechargestendingtoexpelwhicheverspecies is inexcess. Thatis,ifni >ne,theE fieldcausesni todecrease,ne toincreasetendingtoreducethecharge.Thisrestoringforce isenormous!ExampleConsiderTe =1eV,ne =1019m3 (amodestplasma;c.f. densityofatmospherenmolecules31025m3). Supposethereisasmalldifferenceinionandelectrondensitiesn=(nine)

    so =ne (1.6)Thentheforceperunitvolumeatdistancexis

    xFe =E=2 x =(ne)2 (1.7)0 0

    Taken/ne =1%,x=0.10m.Fe =(10171.61019)2 0.1/8.81012 =3106N.m3 (1.8)

    Comparewiththisthepressureforceperunitvolumep/x:pneTe(+niTi)Fp10191.61019/0.1=16Nm3 (1.9)

    Electrostaticforce>>KineticPressureForce.Thisisoneaspectofthefactthat,becauseofbeingionized,plasmasexhibitallsortsofcol-lectivebehavior,differentfromneutralgases,mediatedbythelongdistanceelectromagneticforcesE,B.Anotherexample(related) isthatof longitudinalwaves. Inanormalgas,soundwavesarepropagated via the intermolecular action of collisions. In a plasma, waves can propagatewhencollisionsarenegligiblebecauseofthecoulombinteractionoftheparticles.

    8

  • 8/3/2019 Plasma Physics Lecture 1 Ian Hutchinson

    4/11

    1.2 PlasmaShielding1.2.1 ElementaryDerivationoftheBoltzmannDistributionBasicprincipleofStatisticalMechanics:Thermal Equilibrium Most Probable State i.e. State with large number of possible ar-rangementsofmicro-states.

    Figure1.4: StatisticalSystemsinThermalContactConsidertwoweaklycoupledsystemsS1,S2 withenergiesE1,E2. Letg1,g2 bethenumberofmicroscopicstateswhichgiverisetotheseenergies,foreachsystem. Thenthetotalnumberofmicro-statesofthecombined systemis(assumingstatesareindependent)

    g=g1g2 (1.10)Ifthetotalenergyofcombinedsystem isfixedE1 +E2 =Et thenthiscanbewrittenasafunctionofE1:

    andg

    dgdE1

    ==

    g1(E1)g2(EtE1)dg1dEg2g1

    dg2dE .

    (1.11)(1.12)

    Themostprobablestateisthatforwhich dgdE1 =0i.e.

    1g1

    dg1dE =

    1g2

    dg2dE or

    ddElng1 =

    ddElng2 (1.13)

    Thus,inequilibrium,statesinthermalcontacthaveequalvaluesof ddE lng.

    OnedefineslngastheEntropy.And[ d

    dE lng]1 =T theTemperature.Nowsupposethatwewanttoknowtherelativeprobabilityof2micro-statesofsystem1inequilibrium. Thereare, inall,g1 ofthesestates, foreachspecificE1 butwewanttoknowhowmanystatesofthecombined systemcorrespondtoasingle microstateofS1.Obviouslythatisjustequaltothenumberofstatesofsystem2. So,denotingthetwovaluesof the energies of S1 for the two microstates we are comparing by EA,EB the ratio of thenumberofcombinedsystemstatesforS1A andS1B is

    g2(EtEA)=exp[(EtEA)(EtEB)] (1.14)

    g2(EtEB)9

  • 8/3/2019 Plasma Physics Lecture 1 Ian Hutchinson

    5/11

    NowwesupposethatsystemS2 islargecomparedwithS1 sothatEA andEB representverysmallchangesinS2senergy,andwecanTaylorexpand

    d dg2(EtEA)exp EA +EB (1.15)

    g2(EtEA) dE dEThus we have shown that the ratio of the probability of a system (S1) being in any twomicro-statesA,B issimply

    exp (EAEB) , (1.16)T

    wheninequilibriumwitha(large)thermalreservoir. Thisisthewell-knownBoltzmannfactor.YoumaynoticethatBoltzmannsconstant isabsentfromthis formula. That isbecauseofusingnaturalthermodynamicunitsforentropy(dimensionless)andtemperature(energy).Boltzmannsconstantissimplyaconversionfactorbetweenthenaturalunitsoftemperature(energy, e.g. Joules)and (e.g.) degrees Kelvin. Kelvins are based on Cwhich arbitrarilychoosemeltingandboilingpointsofwateranddivideinto100.Plasma physics is done almost always using energy units for temperature. Because Joulesareverylarge,usuallyelectron-volts(eV)areused.

    1eV =11600K=1.61019Joules. (1.17)OneconsequenceofourBotzmann factor isthatagasofmovingparticleswhoseenergy is1 2 2mv adoptstheMaxwell-Boltzmann(Maxwellian)distributionofvelocitiesexp[mv ].2 2T

    1.2.2Plasma

    Density

    in

    Electrostatic

    Potential

    Whenthereisavaryingpotential,,thedensitiesofelectrons(andions)isaffectedbyit.Ifelectronsareinthermalequilibrium,theywilladoptaBoltzmanndistributionofdensity

    eneexp( ) . (1.18)

    TeThisisbecauseeachelectron,regardlessofvelocitypossessesapotentialenergye.Consequenceisthat(fig1.5) aself-consistentloopofdependenciesoccurs.Thisisoneelementaryexampleofthegeneralprincipleofplasmasrequiringaself-consistentsolutionofMaxwellsequationsofelectrodynamicsplustheparticledynamicsoftheplasma.1.2.3 DebyeShieldingAslightlydifferentapproachtodiscussingquasi-neutrality leadstothe importantquantitycalledtheDebyeLength.Supposeweputaplanegridintoaplasma,heldatacertainpotential,g.

    10

    http://-/?-http://-/?-
  • 8/3/2019 Plasma Physics Lecture 1 Ian Hutchinson

    6/11

    Figure1.5: Self-consistentloopofdependencies

    Figure1.6: Shieldingoffieldsfroma1-Dgrid.Then,unlikethevacuumcase,theperturbationtothepotentialfallsoffratherrapidlyintotheplasma. Wecanshowthisasfollows. Theimportantequationsare:

    d2PoissonsEquation = (nine) (1.19)2=

    dx2 e

    0ElectronDensity ne =nexp(e/Te). (1.20)

    [This is a Boltzmann factor; it assumes that electrons are in thermal equilibrium. n isdensityfarfromthegrid(wherewetake=0).]

    IonDensity ni =n . (1.21)[Applies far from grid by quasineutrality; wejust assume, for the sake of this illustrativecalculationthationdensityisnotperturbedby-perturbation.]Substitute:

    d2=

    enexp

    e. (1.22)dx2 0 Te 1

    Thisisanastynonlinearequation,butfarfromthegrid |e/Te

  • 8/3/2019 Plasma Physics Lecture 1 Ian Hutchinson

    7/11

    12

    Solutions: =0exp(|x /D)where|0Te

    (1.24)D2e n

    ThisiscalledtheDebyeLengthPerturbationstothechargedensityandpotential inaplasmatendto falloffwithcharac-teristiclengthD.InFusionplasmasD istypicallysmall. [e.g. ne =1020m3Te =1keV D =2105m=20m]UsuallyweincludeaspartofthedefinitionofaplasmathatD

  • 8/3/2019 Plasma Physics Lecture 1 Ian Hutchinson

    8/11

    [Thisequationcomesfromelementarygas-kinetictheory. Seeproblemsifnotfamiliar.]Themeanspeed 8T T .v=

    m mBecauseofmassdifferenceelectronsmove mi fasterandhencewoulddrainoutofplasma

    mefaster. Hence,plasmachargesupenoughthatanelectricfieldopposeselectronescapeandreducestotalelectriccurrenttozero.Estimateofpotential:

    1Ionescapeflux4nivi1Electronescapeflux4n evi

    Primedenotesvaluesatsolidsurface.Boltzmannfactorappliedtoelectrons:

    n =nexp[es/Te] (1.26)ewheres issolidpotentialrelativetodistant()plasma.Since ions are being dragged out by potential assume ni n (Zi = 1). [This is onlyapproximatelycorrect.]Hencetotalcurrentdensityoutofplasmais

    j = qi14nivi +qe

    14 neve (1.27)

    = en4 {viexp

    esTe ve} (1.28)

    Thismustbezero sos =

    =Tee

    Tee

    ln|vive|=

    Tee

    12ln

    memi

    12ln

    TiTe

    memi

    [if Te =Ti.](1.29)(1.30)

    Forhydrogen mime =1800so 12 lnmemi =3.75.

    Thepotentialofthesurfacerelativetoplasmaisapproximately4 Te.e

    [Note Tee isjusttheelectrontemprinelectron-voltsexpressedasavoltage.]

    1.2.5 ThicknessofthesheathCrudeestimatesofsheaththicknesscanbeobtainedbyassumingthationdensityisuniform.Thenequationofpotentialis,asbefore,

    d2= en exp e (1.31)

    dx2 0 Te 1

    13

  • 8/3/2019 Plasma Physics Lecture 1 Ian Hutchinson

    9/11

    Weknowtheroughscale-lengthofsolutionsofthisequationis

    120Te

    D =e2n theDebyeLength. (1.32)

    Actuallyourprevioussolutionwasvalidonlyfor|e/Te 1 (Collectiveeffectsdominateovercollisions) (1.35)1.4 SummaryPlasmaisanionized gasinwhichcollectiveeffectsdominateovercollisions.

    [D 1 .] (1.36)14

  • 8/3/2019 Plasma Physics Lecture 1 Ian Hutchinson

    10/11

    1.5 OccurrenceofPlasmasGasDischarges: FluorescentLights,Sparkgaps,arcs,welding,lightingControlledFusionIonosphere:

    Ionized

    belt

    surrounding

    earth

    InterplanetaryMedium: Magnetospheresofplanetsandstarts. SolarWind.StellarAstrophysics: Stars. Pulsars. Radiation-processes.IonPropulsion: Advancedspacedrives,etc.&SpaceTechnology InteractionofSpacecraftwithenvironmentGasLasers: Plasmadischargepumpedlasers: CO2,He,Ne,HCN.MaterialsProcessing: Surfacetreatmentforhardening. CrystalGrowing.SemiconductorProcessing: Ionbeamdoping,plasmaetching&sputtering.SolidStatePlasmas: Behaviorofsemiconductors.ForafigurelocatingdifferenttypesofplasmaintheplaneofdensityversustemperatureseeforexampleGoldstonandRutherfordIntroductiontoPlasmaPhysicsIOPPublishing,1995,figure1.3page9. Anotherisathttp://www.plasmas.org/basics.htm

    1.6 DifferentDescriptionsofPlasma1. SingleParticleApproach. (Incompleteinitself). Eq. ofMotion.2. KineticTheory. BoltzmannEquation.

    ft +v.x+a.v f = t

    col.(1.37)

    3. FluidDescription. Moments,Velocity,Pressure,Currents,etc.Usesofthese.

    SingleParticleSolutionsOrbitsKineticTheorySolutionsTransportCoefs.FluidTheoryMacroscopicDescription

    Alldescriptions

    should

    be

    consistent.

    Sometimes

    they

    are

    different

    ways

    of

    looking

    at

    the

    samething.

    15

    http://www.plasmas.org/basics.htmhttp://www.plasmas.org/basics.htm
  • 8/3/2019 Plasma Physics Lecture 1 Ian Hutchinson

    11/11

    1.6.1 EquationsofPlasmaPhysics

    .E = .B = 00

    B 1E (1.38)= = 0j+E t B c2 t

    F =q(E+vB)1.6.2 SelfConsistencyInsolvingplasmaproblemsoneusuallyhasacircularsystem:Theproblemissolvedonlywhenwehaveamodelinwhichallpartsareselfconsistent. Weneedabootstrapprocedure.Generallywehavetodoitinstages: CalculatePlasmaResponse(togivenE,B) Getcurrents&chargedensities CalculateE&Bforj,p.

    Thenputitalltogether.

    16