pltn 3

36
0 INDONESIA NUCLEAR POWER PLANT BLUE PRINT Lecturer : SYARIFFUDDIN MAHMUDSYAH

Upload: bangkit1110

Post on 19-Jan-2016

11 views

Category:

Documents


0 download

DESCRIPTION

Kuliah PMEL PLTN 3

TRANSCRIPT

Page 1: PLTN 3

0

INDONESIANUCLEAR POWER PLANT

BLUE PRINT

Lecturer : SYARIFFUDDIN MAHMUDSYAH

Page 2: PLTN 3

1

LAMPIRAN-LAMPIRAN

Page 3: PLTN 3

2

Sumber IAEA 2006

1

59

31

6

6

4

2

15

31

0

15

9

20

56

10

2

18

104

2

2

1

7

17

5

9

2

1

4

1

1

6

4

PERKEMBANGAN PLTN DI DUNIALAMPIRAN 1

Kembali

Page 4: PLTN 3

3

JENIS TEKNOLOGI PLTN YANG

DIOPERASIKAN SECARA KOMERSIAL

(xx) Number of units by constructor

Source AREVA

1. PWR ( Reaktor Air

Bertekanan Tinggi )

2. BWR ( Reaktor Air Didih )

3. HWR ( Reaktor Air Berat )

4. FBR ( Reaktor Pembiak

Cepat )

MWe installed

120,000

100,000

80,000

60,000

40,000

20,000

0

B&WFra

ma

tom

e A

NP

(Pera

ncis

)

We

sti

ng

ho

use

(U

SA

)

AB

B-C

E

ABB

Mitsubishi(Jepang)

General

Electric(USA)

Hitachi

Toshiba(Jepang)

Minatom

VVER(Rusia)

AECL(Kanada)

(69)

(7)

(17)

(6)

(78)

(25)

(10)

(55)

(51)

(32)(18)

(29)

PWR BWR HWR

(2)

(1)

FBR

NP

I/F

ram

ato

me

LAMPIRAN 2

Kembali

Page 5: PLTN 3

4

KECELAKAAN NUKLIR YANG PERNAH TERJADI

LAMPIRAN 3

NO. TINGKAT KEJADIAN SKALA KEJADIAN CONTOH PLTN

1. Kecelakaan besar Skala 7 Chernobyl, Rusia, 1986

2. Kecelakaan serius Skala 6

3. Kecelakaan dengan resiko ke lingkungan Skala 5 Three Mile Island, USA, 1979

4. Kecelakaan tanpa resiko ke lingkungan Skala 4 Saint Laurent, Perancis, 1980

5. Peristiwa serius Skala 3 Vandellos, Spanyol, 1989

6. Peristiwa biasa Skala 2

7. Peristiwa tidak normal Skala 1

8. Di bawah skala Skala 0

Skala INES dengan kategori kejadian nuklir

Catatan:

- Kejadian nuklir pada INES (International Nuclear Event Scale) dikalsifikasikan dalam 7 skala;

- Skala 4 s.d. skala 7 dikategorikan sebagai “Kecelakaan Nuklir”;

- Skala 1 s.d. skala 3 dikategorikan sebagai “Peristiwa Nuklir”;

- Kejadian yang tidak memiliki tingkat gangguan keselamatan yang terukur dikategorikan skala 0, dan diistilahkan sebagai “Penyimpangan”

1.Pada Three Mile Island seluruh zat radioaktif terkungkung dalam sistem kontaimen sehingga tidak ada korban jiwa.

2.Pada kecelakaan chernobyl menimbulkan korban 31 orang korban jiwa dan kontaminasi lingkungan karena tidak mempunyai kontaimen.

Sumber : INES 2001 Edition IAEA, OECD, NEA Kembali

Page 6: PLTN 3

5

PROSPEK PLTN DI DUNIA

USA

Kapasitas Nuklir

bertambah 50 GWe

pada 2020

FINLAND

Reaktor ke-5

Sumber : TotalFinaElf0%

20%

40%

60%

1900 1950 2000 2050

Batubara EBT

BBM

Gas

HidroNuklir

KOREA

Kapasitas Nuklir

bertambah 9 GWe

by 2015

INDIA

Kapasitas Nuklir

bertambah

18 GWe by 2020

JAPAN

Kapasitas Nuklir

bertambah 20Gwe

by 2015

CINA

Kapasitas Nuklir

bertambah 30 Gwe

by 2020

BRAZIL

Program Nuklir

bangkit & berkembang

LAMPIRAN 4

Kembali

Page 7: PLTN 3

6

KEBUTUHAN TENAGA LISTRIK

WILAYAH URAIAN SATUAN 2006 2010 2015 2015 2025

Jawa-Madura-Bali

(JAMALI)

Kebutuhan TWh 87 118 175 250 348

Beban Puncak GW 16 21 31 43 59

Tambahan Pembangkit GW 3 10 21 39 55

Luar Jamali Kebutuhan TWh 24 34 50 72 102

Beban Puncak GW 5 7 11 15 21

Tambahan Pembangkit GW 1 5 9 15 22

Indonesia Kebutuhan TWh 111 152 225 322 450

Beban Puncak GW 21 28 42 58 80

Tambahan Pembangkit GW 4 15 30 54 77

Sumber: RUKN 2005-2025

LAMPIRAN 5

Kembali

Page 8: PLTN 3

7

0

100

200

300

400

500

2006 2010 2015 2020 2025

Tahun

TWh

Kebutuhan Jamali Kebutuhan Luar Jamali Kebutuhan Indonesia

GRAFIK KEBUTUHAN TENAGA LISTRIKLAMPIRAN 6

Kembali

Page 9: PLTN 3

8

PANGSA ENERGI PRIMER

UNTUK PEMBANGKITAN TENAGA LISTRIK

(Jawa-Madura-Bali)

0

50

100

150

200

250

300

350

400

20052006

20072008

20092010

20112012

20132014

20152016

20172018

20192020

20212022

20232024

2025

Nuklir Batubara Panas bumi Gas Air BBM

Tahun 2005 2025

Batubara 43% 58%

Air 10% 4%

Gas 19% 27%

Panas bumi 6% 4%

BBM 22% 3%

Nuklir 0% 4%

KOMPOSISI ENERGI

TWH

LAMPIRAN 7

Kembali

Page 10: PLTN 3

9

POTENSI SUMBER DAYA ENERGI (Tahun 2004)

A. Energi Fosil

B. Energi Terbarukan

JENIS ENERGI TOTAL CADANGANCADANGAN TERBUKTI

PRODUKSI CADANGAN/ PRODUKSI

Minyak 86,9 miliar bbl 9 miliar bbl 500 juta bbl 18 tahun

Gas 384,7 TSCF 182 TSCF 3,0 TSCF 61 tahun

Batubara 57 miliar ton 19,3 miliar ton 130 juta ton 147 tahun

JENIS ENERGI TOTAL CADANGAN EKIVALEN PEMANFAATANKAPASITAS

TERPASANG

Air 845,00 juta BOE 75,67 GW 6.851,00 GWh 10 tahun

Panas Bumi 219,00 juta BOE 27,00 GW 2.593,50 GWh 62 tahun

Mini/ Mikro hidro 458,75 MW 458,75 MW 147 tahun

Biomasa 49,81 GW

Tenaga Surya 4,8 kWh/m2/hari

Tenaga Angin 9,29 GW

Uranium (Nuklir) 24.112 Ton e.q.3 GW

untuk 11 tahun *)

* Hanya di daerah Kalan-Kalbar

LAMPIRAN 8

Kembali

Page 11: PLTN 3

10

ENERGI MIX NASIONAL TAHUN 2025(Sesuai Perpres No. 5 / 2006)

Minyak

Bumi 20 %

Gas 30 %

Batubara 33 %

EBT 17 %

Bahan Bakar Nabati

(Bio-fuel) 5 %

Panas Bumi 5 %

Biomasa, Nuklir, Air,

Surya, Angin 5 %

Batubara yang dicairkan

(Coal Liquefaction) 2 %

LAMPIRAN 9

Kembali

Page 12: PLTN 3

11

SEP. 12, 2007

Sung, [email protected]

Reduction Method of Spent Resin Generated

from

SG BD Ion Exchangers of PWR NPPS

Page 13: PLTN 3

12

1. Introduction

2. Review of the early SGBD IX Replace Criteria

3. Experiment of IX Resin Capacity

4. Review of Experimental Results

5. Conclusions

Contents

Page 14: PLTN 3

13

KHNP’s R&D Institute (1)

Page 15: PLTN 3

14

KHNP’s R&D Institute (2)

Page 16: PLTN 3

15

KHNP’s R&D Institute (3)

Page 17: PLTN 3

16

○ Background

In Project of Kori #3,4 NPP PSR,

Main system of LLW Resin : SG BD Demineralizer

Cause : Secondary Side water pH control agent : NH3 ⇒ ETA-

AVT

The SGBD cation loads was increased about 2~3 times

Spent Resin Radwaste : Large volume and no Industrial waste…

Not easy to treat the ash, though spent resin is almost

disposal object itself

PSR Team treated as safety issue item

PSR Team(NETEC) and Kori 2 Chemistry Section agreed to the

problems and solved the sophisticated problems

1. Introduction (1)

Page 18: PLTN 3

17

Block the leaked

ActivitiesRecovery Heat

RecoveryBD Bleed

water

Capacity : 5000ℓ×2eaDesign flow : 45ℓ/secNormal flow : 45ℓ/sec

SG BD system’ functions

1. Introduction (2)

Page 19: PLTN 3

18

SFP IX2.0ton (9.4%)

LRW System IX1.7ton (7.1%)

CVCS IX3.3ton (18.9%)

SG BD Demin15.4ton/Yr

(65%)

Spent IX Resin Source

0 22.4 ton/Yr2.12 t 3.71 t 7.95 t

1. Introduction (3)

Page 20: PLTN 3

19

IX Mechanism

Ion Exchange Resin ?

Model of Ix ResinBead of amorphous and

sphere type high polymers

100billions IX sites / bead

1. Introduction (4)

Page 21: PLTN 3

20

2. Review of the early SGBD IX Replace

Criteria (1)

• IX Resin Replacement Procedures of SGBD IX

- No standard Criteria of SGBD IX

- Na was a typical ion to determine the IX removal

capacity in many plants.

- However, Na was not a typical ion to determine IX

removal capacity other plants ( See the next page table )

In USA NPPs, (from EPRI report)

In Domestic Plants,

• IX Resin Replacing Procedures of SGBD IX

- 22 of 73 PWR plant didn’t consider the Na ion as IX

replacement Criteria

Page 22: PLTN 3

21

Criteria

Plnat

IX Replacing Criterianote

Operation Demin. After Demin.

A Plant Na+ ≥ 5ppbC.C ≥0.5 μS/㎝

Na, Cl-, SO4-2 ≥ 2 ppb

B Plant Na+. DF ≤1 Na+. Cl-, C.C DF ≤1 DF = Inlet Conc.

Outlet Conc.

C Plant SO4-2 DF ≤1 SO4

-2 DF ≤1

D Plant C.C increase or Na+≥2ppb C.C≥0.2 μS/㎝

Na+, Cl-, SO4-2 ≥ 2ppb

E PlantC.C≥0.5μS/㎝

Na+, Cl-, SO4-2 ≥ 2 ppb

NA1 Operation,

1 Stand-by

F Plant C.C≥0.1μS/㎝ NA “

G PlantC.C≥0.1μS/㎝

Na+≥3 ppb Cl-, SO4-2≥5ppb

NA “

Table : IX Exchanger Replacement Criteria of Domestic Plants

2. Review of the early SGBD IX Replace

Criteria (2)

Page 23: PLTN 3

22

Scheme and Shots

3. Experiment of IX Resin Capacity (1)

Page 24: PLTN 3

23

Ion selectivity experiment with H-type IX resin

Volume Flow

N H4

Na CsE TA

3. Experiment of IX Resin Capacity (2)

Page 25: PLTN 3

24

ETA, NH4, Na Ion selectivity experiment with Cs-type IX resin

Na

Cs

ETA

NH4

3. Experiment of IX Resin Capacity (3)

Page 26: PLTN 3

25

E TA

N H4

Na

Cs

N H4

Na

E TA

Cs Saturated IX

Resin

Same characteristics of new IX Resin

4. Review of Experimental Results (1)

Page 27: PLTN 3

26

• Experiment : 1/80000 of 2.5 ㎥ which was equal to 30㎖ of resin capacity

and experiment was achieved for resin which is 30 times of addicted chemical material

• Experimental result (ion selectivity on resin) : H+ < NH4 + ≤ ETA+ < Na+ < Cs

Ionmolecular

weight

ion concentration system

concentratio

n

(ppm)

ratio with

system ion

concentration(ppm) (meq/l)

ETA+ 61.08 122.16 2 3.5 35

NH3+ 17 34 2 0.2 170

Na+ 23 46 2 0.001 46000

Cs+ 133 266 2 0 ∞

total 101.08 202.16 8 3.701 -

Ion Absorbing Capacity on Resin

4. Review of Experimental Results (2)

Page 28: PLTN 3

27

• ETA

0.5 [Output conc./Input conc.] Breakthrough time(T) ->

(ETA+NH3) : Na : Cs = 2T : 3T : 4T

This phenomenon came from ETA/NH3, Na and Cs ‘s different selectiveness.

• NH3

NH3 was eluted after ETA and exchange reaction was faster than ETA.

※ NH3 was produced from ETA or N2H4 which removes Oxygen.

• Na

Na’s sensitivity was stronger than NH3 or ETA. So, Na was eluted after NH3 or

ETA.

High Peak position of Na Conc. was overrode on Cs’s conc. 1.0 meq/ℓ(half input

Conc.)

⇒ Cs extrude Na

• Cs

Cs has S-shape breakthrough characteristics like single ion and it was absorbed

on IX resin.

Cs was not affected by other ions, and Its behavior look like single ion solution.

4. Review of Experimental Results (3)

Ion Breakthrough Curve Characteristics

Page 29: PLTN 3

28

- ETA was not impurity in system, and should not be removed at deminerlizer (On the contrary it

should be circulated)

- The small Na leakage from new resins was not controlled and excluded at demineralizer exchange

criteria.

- Even impurities by outside influx was suddenly increased, the impurities concentration should be

decreased in proportion to circulating volume as time passes. Impurities, concentration should be

decreased.

Table. The SG blowdown water quality of PWROperation Operation mode

Na criteria

(ppb)

Cl criteria

(ppb)

Startup

operation

reload→ cold standby (mode 6-5) ≤ 100 ≤ 100

hot shutdown (mode 4) ≤ 100 ≤ 100

hot standby (mode 3) ≤ 100 ≤ 100

startup operation (mode 2) ≤ 100 ≤ 100

Reactor

power

operation

reactor power (5~30%) ≤ 100 ≤ 100

reactor power ( 30%) ≤ 20 ≤ 20

4. Review of Experimental Results (4)

The resin replacement criteria of cation

resin

Page 30: PLTN 3

29

• Na concentration should be less than 100ppb at maximum or stop operation.

If the limited concentration at the second step is less than Na 100ppb,

the concentration at Na DF 10 should be 10ppb.

• DF 10 of Na Spec value (20ppb) is 2ppb, and Max conc. of Na is 3ppb

at operation over 30% generation. Therefore sum of them is less than 5ppb.

• The water quality level is less than Na concentration(5ppb).

Therefore, improvement of cation resin change criteria is that the Na outlet conc.

is reasonable to be selected less than 5ppb.

• Cl , SO4-2 and Conductivity would be derived from system parameters as below.

◆ The resin exchange criteria of SG blowdown demineralizer

- exchange criteria of mixed bed : [Na, Cl ≥ 5 ppb ]

- reference exchange criteria : [SO4-2 ≥ 5 ppb, C.C ≥ 0.3㎲/㎝ ]

4. Review of Experimental Results (5)

The resin replacement criteria of IX resin

Page 31: PLTN 3

30

Table : Ion load for water quality of flow water

Item

IonMax.conc (ppb) M.W (g./mol)

Ion load

( x 10-9 eq/ℓ)

Considered ETA, NH4 not considered ETA, NH4

ETA 5,000 61.08 81.86 NA

NH4+ 500 17.00 29.41 NA

N2H4 50 32.00 1.56 1.56

Na+ 20 23.00 0.87 0.87

total 115.05 3.78

Anion Max organic acid x 1 Max organic acid x 5

Cl- 20 35.50 0.56 0.56

SO4-2 20 96.06 0.42 0.42

SiO2- 100 60.08 1.66 1.66

Acetic acid 20 60.05 0.333 1.67

Glycolic acid 20 76.05 0.263 1.31

Formic acid 20 46.02 0.435 2.17

total 3.67 7.80

4. Review of Experimental Results (6)

The SGBD Ion Exchanger’s cation/anion mixing

ratio

Page 32: PLTN 3

31

Table. Calculated Resin Volume with system ion loads

Item

Resin

Ion Load of System

(x10-9 eq/ℓ) Removal

Capacity of

Resin *

(eq /ℓ resin)

Calculated Resin Volume

capacity

(x 10-9 ℓ resin)

ETA

considering

ETA not

considerin

g

ETA

considering

ETA not

considering

Cation 115 3.78 1.8 63.9 6.5

Anio

n

Max organic

acid x 1 3.67 3.67 1.2 3.1 3.1

Max organic

acid x 5 7.80 7.80 1.2 2.1 2.1

◆ SG BD demineralizer’s cation/anion resin mixing ratio

- the ratio of cation and anion resin was 10 : 1 considered ETA load

- the ratio of cation and anion resin was 1 : 3 excluded ETA load

- The Mixing ratio of Resin (margin : ETA elution effects) 3 : 1

4. Review of Experimental Results (7)

The SGBD Ion Exchanger’s cation/anion mixing

ratio

Page 33: PLTN 3

32

Satisfaction of PWR FSAR’s Requirements

Saturated IX with ETA Capture the Na and Cs ion

Cs+ > Na+ > ETA+ ≥ NH4+ > H+

Confirm the cation IX Resin Selectivity in ETA solution

No load IX Resin for ETA or NH4

Verify the Cs ion Selectivity of H-, ETA-saturated IX

Satisfaction of EPRI secondary water Guidelines

Confirm the Na ion Selectivity in ETA solution

5. Conclusions (1)

Page 34: PLTN 3

33

Establish Spent Resin change Criteria

1Standardization Spent Resin Criteria and Mixing IX Resin

2

Examined Na’s behavior in system

4Obtain ion Selectivity for H-type ion

3

Technical

Effects

5. Conclusions (2)

Page 35: PLTN 3

34

Max. removal Capacity of Resin

Reduce works on Radiation area

Reduce Spent IX resin(370t/yr)

Save the Cost(3.3billionWon/total

Solving Problem example with another team

Other

Effects

Min. Low Level Radioactive Wastes

Min. Radiation Exposure

Water quality treatment tech.

Co-works

5. Conclusions (3)

Page 36: PLTN 3

35

Thank you for your attentions !