potentielle forklarende variabler for udbytte i forskellige miljøer hans pinnschmidt danmarks...

28
Potentielle forklarende variabler for udbytte i forskellige miljøer Hans Pinnschmidt Danmarks JorgbrugsForskning Afdeling for Plantebeskyttelse Forskning Center Flakkebjerg 4200 Slagelse [email protected]

Upload: susanna-dayna-cummings

Post on 16-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

  • Slide 1
  • Potentielle forklarende variabler for udbytte i forskellige miljer Hans Pinnschmidt Danmarks JorgbrugsForskning Afdeling for Plantebeskyttelse Forskning Center Flakkebjerg 4200 Slagelse [email protected]
  • Slide 2
  • Background BAROF WP1 data: multivariate measurements on 86 spring barley genotypes in 10 environments (2 years: 2002 & 2003, 3 sites: Flakkebjerg, Foulum, Jyndevad, 2 production systems: ecological & conventional). [email protected]
  • Slide 3
  • variables: yield 1000 grain weight grain protein contents culm length date of emergence growth duration mildew severity rust severity scald severity net blotch severity disease diversity weed cover broken panicles & culms lodging parameters: raw data mean/median/max./min. rank/relative values main effects interaction slopes raw data adjusted for E/G main effects/slopes (residuals) IPCA scores SD/variance factors: genotypeenvironment G 1 E 1....E j. G i variables: X 1(i,j)... X m(i,j) parameters X m(i)1... X m(i)p X m(j)1... X m(j)p } derive information on general properties, specificity, stability/variability [email protected]
  • Slide 4
  • Objectives Multivariate characterisation of genotypes with emphasis on yield-related properties. [email protected]
  • Slide 5
  • Statistical methods Non-linear Canonical Correlation Analysis (NCCA): an optimal scaling procedure suited for handling multivariate data of any kind of scaling (numerical/quantitative, ordinal, nominal). Multiple Regression Analysis (MRA) [email protected]
  • Slide 6
  • Non-linear Canonical Correlation Analysis (NCCA) data treatment: quantitative variables (v m ) were converted into ordinal variables with n categories (v 11... v 1n,..., v m1... v mn ). [email protected]
  • Slide 7
  • Characterisation of environments based on data adjusted for G main effects (= residuals) [email protected]
  • Slide 8
  • Flakkebjerg 2003: high yield, net blotch & panicle breakage; low mildew & lodging Flakkebjerg 2002: high rust & 1000 grain weight; late sowing Foulum 2002 conventional & Jyndevad 2003 ecological: high mildew & lodging; low yield % net blotch Jyndevad 2002 ecological: low yield, 1000 grain weight, weed infestation, protein content [email protected]
  • Slide 9
  • Characterisation of genotypes based on data adjusted for E main effects (= residuals) [email protected]
  • Slide 10
  • dimension 1 (sq. root) dimension 5 (sq. root) high yield & 1000 grain weight; low protein content & lodging low yield & 1000 grain weight high mildew; low net blotch & disease diversity low mildew [email protected]
  • Slide 11
  • Characterisation of genotypes in individual environments based on: actual yield data disease main effects (ME) of Gs environmental disease variability (SD) of Gs (= standard deviation of E adjusted data) [email protected]
  • Slide 12
  • Flakkebjerg 2003: high yield, net blotch & panicle breakage; low mildew & lodging [email protected]
  • Slide 13
  • dimension 4 (sq. root) dimension 6 (sq. root) high yield; low net blotch ME & SD short straw high rust ME & SD long straw low yield; high net blotch ME & SD Flakkebjerg 2003: high yield, net blotch & panicle breakage; low mildew & lodging
  • Slide 14
  • Flakkebjerg 2003: high yield, net blotch & panicle breakage; low mildew & lodging Foulum 2002 conventional & Jyndevad 2003 ecological: high mildew & lodging; low yield & net blotch Jyndevad 2002 ecological: low yield, 1000 grain weight, weed infestation, protein content [email protected]
  • Slide 15
  • dimension 1 (sq. root) dimension 5 (sq. root) low yield; high mildew & net blotch ME & SD low mildew ME & SD high yield Jyndevad 2003 ecological: high mildew & lodging; low yield & net blotch
  • Slide 16
  • Multiple Regression Analysis (MRA) dependent variables: yield (actual, E-adj. G mean & SD) independent variables: E-adj. G mean & SD of disease severity, weed infestation, growth duration, culm length criteria: Pin/out = 0.05/0.10; Fin/out = 3,84/2.71; tolerance = 0.0001 [email protected]
  • Slide 17
  • Variables must pass both tolerance and minimum tolerance tests in order to enter and remain in a regression equation. Tolerance is the proportion of the variance of a variable in the equation that is not accounted for by other independent variables in the equation. The minimum tolerance of a variable not in the equation is the smallest tolerance any variable already in the equation would have if the variable being considered were included in the analysis. If a variable passes the tolerance criteria, it is eligible for inclusion based on the method in effect.
  • Slide 18
  • Mean versus standard deviation of environment-adjusted yield of spring barley genotypes; BAROF 2002-2003 [email protected]
  • Slide 19
  • Slide 20
  • Observed versus estimated mean environment-adjusted yield of spring barley genotypes; BAROF 2002-2003 [email protected]
  • Slide 21
  • Slide 22
  • Observed versus estimated standard deviation of environment- adjusted yield of spring barley genotypes; BAROF 2002-2003 [email protected]
  • Slide 23
  • Yield of spring barley genotypes versus main effect yield of the environment; BAROF 2002-2003 [email protected]
  • Slide 24
  • Slide 25
  • Yield of spring barley genotypes estimated based on yield main effect of environment and E-adjusted mean & standard deviation of genotype property variables (disease severity, weed infestation, culm length, growth duration); analysis across environments; BAROF 2002-2003 [email protected]
  • Slide 26
  • Slide 27
  • Yield of spring barley genotypes estimated based on E-adjusted mean & standard deviation of genotype property variables (disease severity, weed infestation, culm length, growth duration); analysis by environment; BAROF 2002-2003 [email protected]
  • Slide 28
  • Conclusions & outlook NCCA: intuitive method good for visualising the main features in multivariate data of various scales useful for obtaining an overall synoptic orientation of G properties and E characteristics soft systems approach MRA: hard systems approach synoptic view neglected Mildew & net blotch had highest yield-related effect, although not always functional (especially in MRA!) [email protected]