probabilistic methods in open earth tools ferdinand diermanse kees den heijer bas hoonhout

57
Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

Upload: silvester-obrien

Post on 19-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

Probabilistic methods in Open Earth Tools

Ferdinand Diermanse

Kees den Heijer

Bas Hoonhout

Page 2: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

2

Open Earth Tools

• Deltares software• Open source• Sharing code for users of matlab, python, R, …• https://publicwiki.deltares.nl/display/OET/OpenEarth

Page 3: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

3

Application: probabilities of unwanted events (failure)

Floods (too much)

Droughts (too little)

Contamination (too dirty)

Page 4: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

4

Example application: flood risk analysis

Rainfall

Upstream river

Discharge

Sea water

level

Sobek

Page 5: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

5

General problem definition

X1

System/model

X2

Xn

.

.

.

Z

“Boundary

conditions”

“system

variable”

Page 6: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

6

Notation

X1

X2

Xn

.

.

.

Z

X = (X1, X2, …, Xn)

Z = Z(X)

System/model

Page 7: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

7

General problem definition

X1

model

X2

Xn

.

.

.

Z

?

Statistical

analysis

Probabilistic

analysis

complex

Time consuming

Page 8: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

8

failure domain: unwanted events

x1

x2

“failure”

Z(x)=0no “failure”

Z(x)>0

Z(x)<0

Wanted: probability of failure, i.e. probability that Z<0

Page 9: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

9

Example Z-function

Failure: if water level (h) exceeds crest height (k): Z = k - h

Page 10: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

10

Probability functions of x-variables

-4 -3 -2 -1 0 1 2 3 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x2

f(x 2)

-4 -2 0 2 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x1

f(x 1)

Page 11: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

11

Correlations need to be included

x2

f(x)

x1

x1

x2

f(x)

Multivariate distribution function

Page 12: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

12

Combination of f(x) and Z(x)

x2

x1

f(x)

Z(x)=C*

“failure”

no “failure”

Page 13: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

13

Probability of failure

x2

x1

f(x)

fail

0

P

Z

f d

x

x x

Z(x)=0

Page 14: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

14

Problem definition

Problem cannot be solved analytically

Probabilistic estimation techniques are required

Evaluation of Z(x) can be very time consuming

fail

0

P

Z

f d

x

x x

Page 15: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

15

Probabilistic methods in Open Earth Tools

Crude Monte Carlo

Monte Carlo with importance sampling

First Order Reliability Method (FORM)

Directional sampling

Page 16: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

1616

Crude Monte Carlo sampling

X1

X2

Z=0

failureno failure

1. Take N random samples of the x-variables 2. Count the number of samples (M) that lead to “failure” 3. Estimate Pf = M/N

-4 -2 0 2 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x1

f(x 1)

-4 -3 -2 -1 0 1 2 3 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x2

f(x 2)

Page 17: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

17

Simple example Crude Monte Carlo: ¼ circle

Uniform 0,1f x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x 2

4

14

Page 18: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

18

Samples crude Monte Carlo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x 2

no failure

failure

Page 19: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

19

MC estimate

100

101

102

103

104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of samples

MC

est

imat

e

1-/4

Page 20: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

20

New example: smaller probability of failure

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

z=0

u1

u 2

example limit state: Z = 5 - (u1+u

2)

failure probability: 0.00020

-3 -2 -1 0 1 2 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U1;U2

Page 21: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

1000 samples

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

z=0

u1

u 2

1000 samples crude MC

21

Page 22: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

How many samples required?

100

101

102

103

104

105

106

0

1

2

x 10-4

number of samples

estim

ated

fai

lure

pro

babi

lity

exact

crude MC

22

Page 23: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

23

Crude Monte Carlo

• Can handle a large number of random variables

• Number of samples required for a sufficiently accurate estimate is inversely proportional to the probability of failure

• For small failure probabilities, crude MC is not a good choice, especially if each sample brings with it a time consuming computation/simulation

Page 24: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

2424

“Smart” MC method 1: importance sampling

x

f(x)h(x)

f xh x

Manipulation of probability denstity function

Allowed with the use of a correction:

Potentially much faster than Crude Monte Carlo

Page 25: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

25

-8 -6 -4 -2 0 2 4 6 80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

u

prob

abili

ty d

ensi

tyexample strategy: increase standard deviation by a factor 2

f(u)

h(u)

Example strategy: increase variance

Page 26: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

26

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

u1

u 21000 samples MC-IS

Samples

Page 27: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

27

Convergence of MC estimate

100

101

102

103

104

105

106

0

1

2

3

4

5

6x 10

-4

number of samples

estim

ated

fai

lure

pro

babi

lity

importance sampling; scaling factor 2

exact

crude MCimportance sampling

Page 28: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

28

Example strategy 2

-8 -6 -4 -2 0 2 4 6 8 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

u

prob

abili

ty d

ensi

tyexample strategy: mu=2 sigma=2

f(u)

h(u)

Page 29: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

29

Samples

-3 -2 -1 0 1 2 3 4 5 6 7-3

-2

-1

0

1

2

3

4

5

6

7

u1

u 2

1000 samples MC-IS

Page 30: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

30

Convergence of MC estimate

100

101

102

103

104

105

106

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5x 10

-4

number of samples

estim

ated

fai

lure

pro

babi

lity

exact

crude MC

importance sampling

Page 31: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

31

Monte Carlo with importance sampling

• Potentially much faster than Crude Monte Carlo

• Proper choice of h(x) is crucial

• Therefore: Proper system knowledge is crucial

Page 32: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

32

FORM

Design point: most likely combination leading to failure

Page 33: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

33

x

u

F(x)

real world variable X

transformed normallydistributed variable u

(u) = F(x)

f(x)

(u )

(u)

Method is executed with standard normally distributed variables

Paul Hölscher
Moet deze sheet niet eerder opgenomen worden?
Page 34: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

34

Probability density independent normal values

Probability density decreases

away from origin

Page 35: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

35

example

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -10-9-8

-7

-6

-6

-5

-5

-4

-4

-3

-3

-2

-2

-2

-1

-1

-1

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

44

55

5

5 5 5

u

v

0.8 1.25Z u v

u en v standard

normally distributed

Page 36: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

36

Design point

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -10-9-8

-7

-6

-6

-5

-5

-4

-4

-3

-3

-2

-2

-2

-1

-1

-1

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

44

55

5

5 5 5

u

v

Z=0 & shortest distance to origin

Page 37: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

37

Start iterative procedure

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -10-9

-8-7

-6-5

-5

-4

-4

-3

-3

-2

-2

-1

-1

-1

0

0

0

1

1

1

2

2

2

2

3

3

3

3

44

4

4

55

5 5 5

u1

u 2

Page 38: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

38

Estimation of derivatives

0.4 0.6 0.8 1 1.2 1.4 1.60.4

0.6

0.8

1

1.2

1.4

1.6

u

v

3.5

4

4.5

u

v

Page 39: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

39

Resulting tangent

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

55

5

5 5 5

u

v

Page 40: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

40

Linearisation of Z-function based on tangent

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

-10

0

1

1

1

2

2

2

3

3

4

u1

u 2

Page 41: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

41

First estimate of design point

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -1

0

0

1

1

1

2

2

2

3

3

4

u1

u 2

Page 42: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

42

3D view: Z-function

Page 43: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

43

3D view: linearisation of Z-function

Page 44: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

44

Smaller steps to prevent “accidents” (relaxation)

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

-1

0

0

1

1

1

2

2

2

3

3

4

u1

u 2

Page 45: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

45

2nd iteration step

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

55

5

5 5 5

u

v

Page 46: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

46

Linearisation in 2nd iteration step

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

u

v

Page 47: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

47

3D view

Page 48: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

48

All iteration steps

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -10-9-8-7-6

-6

-5

-5

-4

-4

-3

-3

-2

-2

-2

-1

-1

-1

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

44

55

55 5 5

u

v

Page 49: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

49

-value of design point in standard normal space

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -10-9-8

-7

-6

-6

-5

-5

-4

-4

-3

-3

-2

-2

-2

-1

-1

-1

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

44

4

44

55

5

5 5 5

u

v

||||

Pfail

Page 50: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

50

-values in design point

Limit state(Z = 0)

Design point

u1

u2 Z < 0

β

u2,d = -α2β

u1,d = -α1β

Page 51: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

51

FORM

• Very fast method

• Risk: iteration method does not converge, or converges to the wrong design point

Page 52: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

52

Directional sampling

Z=0Selected directions

Z-function evaluations

u1

u2

1

2

34

Z<0

Z>0

0

Page 53: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

53

Search along 1 direction

z

0

1

2

4

3

Page 54: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

54

Resume

Crude Monte Carlo (MC)

Monte Carlo with importance sampling (MC-IS)

First Order Reliability Method (FORM)

Directional Sampling (DS)

Page 55: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

Towards the exercises

Page 56: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

56

Generic problem statement

x2

x1

f(x)

fail

0

P

Z

f d

x

x x

Z(x)=0

Page 57: Probabilistic methods in Open Earth Tools Ferdinand Diermanse Kees den Heijer Bas Hoonhout

57

Generic problem statement

fail

0

P

Z

f d

x

x x

1. Probability functions, f(x): P -> X

2. Z-function: X -> Z