production of cold antihydrogen atoms in large quantities

35
DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich 1 A ATHENA - Cold antihydrogen production Production of cold antihydrogen atoms in large quantities Introduction The ATHENA experiment + New results Summary Outlook On behalf of the ATHENA collaboration C. Regenfus University of Zürich H detector Antihydrogen candidate (real data, 4- prong event) Sept. 02: > 50k cold antiatoms produced

Upload: sinead

Post on 04-Feb-2016

24 views

Category:

Documents


0 download

DESCRIPTION

Production of cold antihydrogen atoms in large quantities. C. Regenfus. University of Zürich. On behalf of the ATHENA collaboration. Sept. 02: > 50k cold antiatoms produced. Introduction The ATHENA experiment + New results Summary Outlook. H detector. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

1A

ATHENA - Cold antihydrogen production

Production of cold antihydrogen atoms in large quantities

• Introduction

• The ATHENA experiment +

• New results

• Summary

• Outlook

On behalf of the ATHENA collaboration

C. Regenfus

University of Zürich

H detector

Antihydrogen candidate (real data, 4-prong event)

Sept. 02: > 50k cold antiatoms produced

Page 2: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

2A

ATHENA - Cold antihydrogen production

Motivation

Antihydrogen: The simplest antimatter counterpart to matter

for testing fundamental physic principles

• CPT symmetry (Theoretical underpinning of field theories)

• Gravitational acceleration (Equivalence principle)

A very high precision can be achieved by comparing antihydrogen to hydrogen

Page 3: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

3A

ATHENA - Cold antihydrogen production

Future: high resolution laser spectroscopy

Atomic 1S - 2S transition by two-photon excitation (first order Doppler-free)

Lyman E = 10.2 eV = 2.5 x 1015 Hz = 122 nm UV 2 x 243 nm photons (mW)Lifetime of 2S state: 122 ms => precision ~10-16

Cesar et al. (1996)(Laser 3kHz, 150µK)

Need: Cold antihydrogen ( T < mK )

Capture in neutral trap

Hydrogen reference cell

243 nm LASER

Mirror

H

H spectroscopy

Gravitation: atomic fountain / interferometry

Page 4: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

4A

ATHENA - Cold antihydrogen production

Present physics menu

Plasma studies: new kind of plasma imaging

• Particle losses in trap

• (Re)combination mechanism

• Production of cold antihydrogen in larger quantities

Investigations

• Antihydrogen energy distribution (+ inner states)

• Laser spectroscopy on non trapped atoms

• Trapping H and/or creation of a H beam

Page 5: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

5A

ATHENA - Cold antihydrogen production

The ATHENA collaboration

Particle traps + control:INFN, Sez. di Genova, and Dipartimento di Fisica, Università di Genova, Italy

EP Division, CERN, Geneva, SwitzerlandDepartment of Physics, University of Tokyo, Japan

Precision lasers:Department of Physics and Astronomy, University of Aarhus, Denmark

Instituto de Fisica, Rio de Janeiro, Centro de Educação Tecnologica do Ceara, Brazil

Positron plasma:Department of Physics, University of Wales Swansea, UK

Detector + Analysis:Physik-Institut, Zürich University, Switzerland

INFN, Sez. di Pavia, and Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, ItalyDipartimento di Chimica e Fisica per l'Ingegneria e per iMateriali, Università di Brescia, Italy

Page 6: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

6A

ATHENA - Cold antihydrogen production

Experimental overview

Positron Accumulator

AntihydrogenDetector(T= 140 K)

0 1 m

0 10 cm

Na-22Source

AntiprotonCapture Trap Mixing Trap

CsI crystals

Si stripdetectors

Cryostat

e+3 T superconducting solenoid

15 K , 10-11 mbar

Main ATHENA features: Open access system (no sealed vacuum)Powerful e+ accumulation Plasma diagnosis and control High granularity imaging detector

Scint. Scint.Scint.

Page 7: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

7A

ATHENA - Cold antihydrogen production

ATHENA Photo

Page 8: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

8A

ATHENA - Cold antihydrogen production

Penning traps

Trapped electron at B = 3 T, E = 1 eV, U ~ 10 V

• Cyclotron motion (perpendicular to B)

f = 84 GHz, r ~ 1 µm

Emission of synchrotron radiation (cooling)

t cool ~ 0.3 s

• Axial motion (along B)

f ~ 7 MHz, d ~µm … cm

• E x B drift (‘magnetron’) (cooling over coupling)

f ~ kHz, r ~ mm

Single particle <=> Plasma

Coulomb coupling parameter: Ecoul/Etherm

Electrical screening distance: Debye length

ATHENA:Multi-ring Penning trap (choose Vz as you like )

Page 9: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

9A

ATHENA - Cold antihydrogen production

Antiproton decelerator (CERN)

Page 10: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

10A

ATHENA - Cold antihydrogen production

Antiproton capture and cooling with electrons

p

5 MeV

50 cm

Antiproton Capture Trap

Solenoid (3 T)

Degrader

Degrading

Trapping

Cooling

Vacuume-

TrappingPotential

5 KV

Cold electron cloud(Cooled by Synchrotron Radiation,

τ=0.4 3 )s at T

. /Univ of Genova IT

(t=0)

(t=200 )ns

(t=20-30 )s

• Capture dynamics

• Capture trap (50 cm)

10 000 p / AD shot

Page 11: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

11A

ATHENA - Cold antihydrogen production

Positron accumulation

Coldhead

300 Gauss guiding fields

T = 6 K50 mCi 22Na

Solid neon moderator

Segmented electrodefor Rotating Wall

Beam strength:6 million e+ per second

e+

Energy loss through collisions

e+

Accumulation rate: 106 e+/s

150 million e+ / 5 min

After transfer: 75 x 106 in mixing trap

Positron plasma : r~2mm, l~32mm, n~2.5 x 108 / cm3

Lifetime: ~hours

Page 12: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

12A

ATHENA - Cold antihydrogen production

Non destructive positron plasma diagnostics

read

heat

drive

Complete model of plasma mode excitation

(based on ‘Cold Fluid Theory’ * )

PLASMA SHAPE, LENGTH, DENSITY

Plasma temperature change* D. Dubin, PRL 66, 2076 (1991)

kΔT =mzp

2

5ω2

h( )

2−ω2( )

2

[ ] 3−ωp

2α2

2ω22

d2 f(α)dα2

⎣ ⎢ ⎤

⎦ ⎥

−1

~ 30 MHz

Page 13: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

13A

ATHENA - Cold antihydrogen production

Detection principle of antihydrogen annihilations

• H atom dissociates to p and e+

by contact with the trap wall or rest gas atoms

• pN -> charged and neutral pions

• e+ e- -> 511keV photons (back to back)

Good spatial resolution (< 1 cm ) of chargedvertex ( at least 2 prong events)

Time coincidence (~ 1 µs)

High rate capability (self triggering)

511 keV opening angle

Monte Carlo

Measure 1MeV on background of 2GeV

Page 14: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

14A

ATHENA - Cold antihydrogen production

Detector development

Much effort into R&D

• Low temperature (~ 140 K)

• High magnetic field (3 T)

• Low power consumption

• Light yield of pure-CsI crystals ?

• CTE matching (Kapton, silicon, ceramics)

• Electronic components

Full detector installed: August 2001

All photodiodes replaced with APDs: Spring 2002

• Compact design (radial thickness 3 cm)

• High granularity (8K strips, 192 crystals)

• Large solid angle (>75 %)

Workshop Zürich , J. Rochet

Silicon micro strip layer

Mechanics for 77K

Page 15: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

15A

ATHENA - Cold antihydrogen production

Pure-CsI crystals + Avalanche Photo Diodes

22Na

T = 150 K

0

2000

4000

6000

8000

511 keV

back scatter

1275 keV

10000

FWHM = 18%

12000

Pulse height [keV] cos()

4000

3000

2000

1000

-1.0 -0.5 00 60 500 1000 1500 0.5 1.0

e+e−

γ(511 )keV

γ(511 )keV

• Read out close up • Crystal APD unit

• Crystal detector performance

~16 times higher light yield @ 80K

C. Amsler, et al. :Temperature dependence of pure-CsI, scintillation light yield and decay time. NIM A 480, 494–500 (2002).

Pure-CsI

Page 16: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

16A

ATHENA - Cold antihydrogen production

Full GEANT Monte Carlo simulations

E&M cascades, Hadronic Showers (GEISHA) (> 10 keV)

Geometry from AutoCAD

Module-by-module (in)efficiency taken into account

Same analysis routine for MC and data

Electrode (r = 1.25 cm)

Radial vertex position

Page 17: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

17A

ATHENA - Cold antihydrogen production

Antiproton annihilations

Antiproton annihilation on the trap wall (real data, 3-prong event)

• strip hits (inner + outer layer) => p vertex

• crystals hit (matched to charged tracks)

• vertex resolution, ~ 4 mm (curvature not resolved)

Electrode position (r = 1.25 cm)

Page 18: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

18A

ATHENA - Cold antihydrogen production

Plasma imaging (antiprotons only)

-10 -5 0 5 100

10

20

30

40

50

60

70

Longitudinal Position [cm]-10 -5 0 5 10

0

10

20

30

40

50

60

70

Longitudinal Position [cm]

Antiprotons and electrons

Early times

Late times

Potential

Potential

Powerful plasma and loss diagnostics !

p vertex evolution in time

Page 19: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

19A

ATHENA - Cold antihydrogen production

Mixing trap (nested penning trap*)

In one mixing cycle (5 min) we mix ~104 antiprotons with ~108 positrons

* G. Gabrielse et al., Phys. Lett. A129, 38 (1988)

0 2 4 6 8 10 12

-50

-100

-75

-125

Length (cm)

antiprotons

108

Page 20: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

20A

ATHENA - Cold antihydrogen production

Cooling of antiprotons by 75 million positrons

• Rapid cooling (< 20 ms)• Decreasing energy of antiprotons• Increasing separation of plasmas

Page 21: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

21A

ATHENA - Cold antihydrogen production

Antiprotons in the positron plasma

Energy loss by dE/dx and thermalization

e+ cloud (108/cm3)

T = 10K ….. 10000K(by RF heating)

Incoming antiproton

1 2 3 4 5

5

10

15

20

25

30

Te=300 K

Te=30 K

Te=3000 K

ne = 2.5 108 cm

-3

Le = 3.2 cm

Antiproton kinetic energy [eV]

Page 22: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

22A

ATHENA - Cold antihydrogen production

Antihydrogen production

1. Fill positron well in mixing region with 75·106 positrons;

allow them to cool to ambient temperature (~15 K)

2. Launch 104 antiprotons into mixing region

3. Mixing time 190 s - continuous monitoring by detector (charged trigger)

4. Repeat cycle every 5 minutes (data for 165 cycles)

For comparison:

“hot” mixing = continuous RF heating of positron cloud

(suppression of antihydrogen production)

0 2 4 6 8 10 12

-50

-100

-75

-125

Length (cm)

antiprotons

Page 23: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

23A

ATHENA - Cold antihydrogen production

Antiproton annihilation rate (charged trigger rate)

Background trigger rate ~ 0.5 Hz

High initial rate ~ 100 Hz

Page 24: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

24A

ATHENA - Cold antihydrogen production

Analysis Procedure

• Reconstruct annihilation vertex (103 k)

• Search for ‘clean’ 511 keV-photons:exclude crystals hit by charged particles+ its 8 nearest neighbours

• ‘511 keV’ candidate =400… 620 keVno hits in any adjacent crystals

• Select events with two ‘511 keV’ photons

• Reconstruction efficiency ~ 0.25 % = “golden” events !

Antihydrogen candidate (real data, 4-prong event)

Event reconstruction (165 mixing cycles ~ 2 days)

Page 25: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

25A

ATHENA - Cold antihydrogen production

Antihydrogen Signal (“golden” events)

Opening angle between two 511 keV photons(seen from charged particle vertex)

-1 -0.5 0 0.5 10

20

40

60

80

100

120

140

160

180

200

Mixing with cold positrons

Mixing with hot positrons

131± 22 events

cos(Θγγ)

> 50,000 produced antiatoms (conservative estimate)

Background: mixing with hot positrons-1 -0.75 -0.5

0

20

40

60

80

100

120

140

160

180

200

cosΘγγ

Angular resolution from MC simulation( )normalised to peak height

- - 511 Back to back keV peak from antihydrogen annihilation

Comparison with Monte Carlo

M. Amoretti et al., Nature 419, 456 (2002)

Page 26: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

26A

ATHENA - Cold antihydrogen production

Background measurements

Histogram:

Antiproton-only data (99,610 vertices, 5,658 clean 2-photon events plotted).

Dots:

Antiproton + cold positrons, but analyzed using an energy window displaced upward so as not to include the 511 keV photo-peak

-1 -0.5 0 0.5 10

20

40

60

80

100

120

140

160

180

200

Antiprotons only

Cold mixing (displaced E window)γ

(cos Θγγ)

Opening angle between two 511 keV photons (seen from charged particle vertex)

M. Amoretti et al., Nature 419, 456 (2002)

Can antiproton annihilations on electrode fake back-to-back signal?

No !

1) Secondary e+ within 10 mm ~ 0.1 %

2) Monte Carlo - no peak

3) Measurement - no peak

Page 27: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

27A

ATHENA - Cold antihydrogen production

Antihydrogen = main source of annihilations

Hot

Time distribution of golden events and all annihilations Cold

X-Y vertex distribution

Page 28: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

28A

ATHENA - Cold antihydrogen production

Physics of antihydrogen production

ANTIHYDROGEN VERSUS BACKGROUND

ABSOLUTE PRODUCTION RATES

DEPENDENCE ON TEMPERATURE

ANGULAR DISTRIBUTION

PRELIMINARY

Page 29: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

29A

ATHENA - Cold antihydrogen production

Opening angle fit

Fit result: ~ 2/3 of the events are antihydrogen

Fit ResultFit Input MC

Hbar

Background

cos(γγ)

cos(γγ)

Data

Fit

Background

PRELIMINARY

Page 30: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

30A

ATHENA - Cold antihydrogen production

Vertex spatial distribution fit

=>

Antihydrogen on trap electrode Antihydrogen on trapped ions or rest gas Compare to cold mix data

Average fraction of antihydrogen65 ± 10 % during mixing !

In 2002, ATHENA produced0.7 ±± 0.3 Million antihydrogen atomsPRELIMINARY

Page 31: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

31A

ATHENA - Cold antihydrogen production

Rate of antihydrogen production

High Initial Rate (> 100 Hz)

High S/B (~ 10:1) in first seconds

Analysis:

• 65 ± 10 % antihydrogen

• ~ 50 % vertex / annihilation

PRELIMINARY

Page 32: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

32A

ATHENA - Cold antihydrogen production

Pulsed antihydrogen production

Mixing time

secsec

Ver

tex

Z p

osi

tio

n

Heat OnHeat On

Ver

tex

Co

un

ts

Mixing time ->

Heat OnHeat On

Switch positron heating Off/On resp. On / Off We observe:

Annihilation rate

Vertex distribution along z

Rise time ~ 0.4 s(Positron cooling time)

PRELIMINARY

Page 33: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

33A

ATHENA - Cold antihydrogen production

Antihydrogen Production - T dependence

Radiative Three-body

(T) dependence T-0.5 T-4.5

Final state n < 10 n >> 100

Stability (re-ionization) high low

Expected rates ~ Hz ?

Page 34: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

34A

ATHENA - Cold antihydrogen production

Summary

First production and detection of cold antihydrogen

- high positron accumulation rate = fast duty cycle

- sensitive detector = observe clear signals

High rate production

- initial rate > 100 Hz, average rate ~ 10 Hz

Antihydrogen dominates annihilation signal (~ 2/3)

Pulsed antihydrogen production

Temperature dependence measured

Antihydrogen production at room temperature

Page 35: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

35A

ATHENA - Cold antihydrogen production

Outlook

More …

Increase formation rate

More antiprotons

Laser induced recombination

Trapping and cooling ...Anti-Hydrogen at E < 0.05 meV ?

Dense plasmas in magnetic multipole fields ?

Laser cooling? Collisions with ultra-cold hydrogen atoms?

Spectroscopy

High precision comparison 1S-2S

Hyperfine structure

Gravitational effectsE ~ 0.000 1 meV

Atom interferometry

Study …

Formation process

Next steps - technology Next steps - physics