protein engineering enzyme engineering examples molecular... · lower ph (< 6) lower enzyme...

51
1 W I S S E N T E C H N I K L E I D E N S C H A F T u www.tugraz.at Protein Engineering Enzyme Engineering Examples MOL.921 Molecular Biotechnology II

Upload: hadien

Post on 08-Aug-2019

223 views

Category:

Documents


0 download

TRANSCRIPT

1

W I S S E N T E C H N I K L E I D E N S C H A F T

u www.tugraz.at

Protein Engineering

Enzyme Engineering

Examples

MOL.921 Molecular Biotechnology II

2 2 Engineering of Hb-Hnl

Rational Design Structure

Example for Engineering of Substrate Specificity by Rational Design

MOL.921 Molecular Biotechnology II

3 3 Hydroxynitrile lyases

Hb_Hnl

• Type II Hnl

• intracellular protein

• 29.2 kDa

• Homology to esterases

• / hydrolase fold protein

• catalytic triad

• (S)-selective

Pa_Hnl • Type I Hnl

• secretory protein

• 61 kDa ( 57.9 kDa)

• Homology to oxidases

• FAD

• N-glycosylated

• isoenzymes

• (R)-selective

(S)-Hnl of Hevea brasiliensis (R)-Hnl of Prunus amygdalus

MOL.921 Molecular Biotechnology II

4 4 Application of HNL technology on a large industrial scale (several hundred tons/y):

(S)-m-phenoxybenzaldehyde cyanohydrin

Intermediate in the production of synthetic pyrethroids

Biocatalytic production employing S-selective Hb_HNL provides product in enantiopure quality

MOL.921 Molecular Biotechnology II

5 5 Hb_Hnl – tunnel to active site

Tunnel to active site

MOL.921 Molecular Biotechnology II

6 Hb_HNL tunnel mutant

W128A

wild-type

W128

A128

MOL.921 Molecular Biotechnology II

7

Directed Evolution Screening-Assay

(colony level)

Engineering of Hb-Hnl

Any substrate possible 103 colonies per filter

Clear signal-no background Time as measure for activity

MOL.921 Molecular Biotechnology II

8 Directed Evolution of Hb_Hnl Substrate acceptance for

m-Phenoxybenzaldehyde cyanhydrine

5 * / 1 / 2

13 / 2 / 3

3 / 2 / 0

1 / 1 (Evo9) / 0

0

B

C

C

C

B

Hb-Hnl-Evo

Hb-Hnl-W128A

Hb-Hnl-W128F

Hb-Hnl-wt

Hb-Hnl-wt

Hits selected/ top / parental

Mutagenesis conditions

Mutant Library

* 1 Clone Mutation F128C Evo9: Mutation W128A

MOL.921 Molecular Biotechnology II

9

Cloned Esterase Genes heterologous host (E.coli)

Screening

Screening

New Esterases Genome screening Esterase Genes

Esterases

Wild type organism

Expression

Induction

MOL.921 Molecular Biotechnology II

10

Xv EstD GGDPTRVAVMGHSAGAHIAGLLVTDRRWLQAQG

Rrh EstA GGDPTRIVLAGDSAGGNLAASVAIAARDGGGPA

Rru EstA AAADAPLIVGGDSAGGNLAAVVAQRAVRENGPE

Rrh_EstC GGDPDRVTIAGESAGAMSVVSLLAMPAARGLFR

Xv_EstA GIDAQRVGVMGFSAGGHVAASLGTRYAAQVYPA

Xv_EstB GGDAGNVTVFGQSGGGAKIATLMAMPAARGLFH

Bs_EstA LHPDRPFVLFGHSMGGMVAFRLAQKLEREGIYP

Bg_EstC ALGHPRVVLVGHSMGGVAITAAAERAPERIAAL

Bg_EstD TLGLEKPLLVGHSLGGAIALAVGLDHPDSVSRI

Bg_EstE QLGAGPVHLVGHSRGGCVAFYMAHRYPELVRSL

Rrh_EstB FGIERLALVTGGSMGAQQTYEWAVRFPDKVLRA

Rrh_EstD ECPLTTYVLTGFSQGAVIVGDVAAQIGAGNGPV

Xv_EstE DSAFDQTVFFGDSLTDSGYYNPLLPAASRAVTG

Bg_EstA AGVQKQIVSFGDSLSDAGTYSPQILLGFGGGRF

Xv_EstC PLAASKIVLVGDSTTAVHGGWGPSFCAQHVTSF

Bg_EstB RPMREDTLFRLASVTKPIVALAVLRLVARGELA

GxSxG Family

GDSL Family

SxxK Family

Novel bacterial Esterases

MOL.921 Molecular Biotechnology II

11 11 Esterase Platform

Established Set of Key Enzymes:

Basic families: GXSXG SXXK GDSL 1 Esterase from Bacillus subtilis 4 Esterases from Burkholderia gladioli 4 Esterases from Xanthomonas vesicatoria 5 Esterases from Rhodococcus spp. 5 Esterases from plant endophytic bacteria

Libraries ~100 isolated primary esterase active clones ~ 50 Gene bacterial gene libraries ~ Libraries of Metagenomic DNA (> 106)

MOL.921 Molecular Biotechnology II

12 12

Natural Substrate Cephalosporin ???

Active Site

Esterase Bg_EstB Designed Evolution

G. Valinger, M. Hermann, M. Ivancic

13 13

Enzyme ß-Lactamase Activity (U/mg) - Substrates

Penicillin G Penicillin V Nitrocephin Cephalotin Cephaloridine Cephalosporin C

EstB 0.02 < 0.01 < 0.1 < 0.01 < 0.01 0.01

Bla 0.28 1.0 21.4 1.7 0.6 2.9

RNaseA <0.01 0.02 n.d. 0.03 <0.01 0.01

N

SNH2

OO

O

O

O

Enzyme Esterase Activity (U/mg) - Substrate

Cephalotin Cephaloridine Cephalosporin C 7-ACA

EstB 67.5 <0.01 75 70.5

Esterase Bg_EstB

MOL.921 Molecular Biotechnology II

14 14

Directed Evolution: stability in vinyl acetate

Burkholderia gladioli Esterase EstB

Directed Evolution

Screening-Assay at Colony-Level

Substrate: 4-Methylumbelli-

feron-Butyrat pH-Indikator

Organic solvent(VA) 103 Colonies per filter

Time as indicator for Activity

Error-Prone PCR Mutation rate: 0.5% 5.104 Clones screened

Primary sceening: 100 Clones isolated 3 best clones analysed 1 Clone with significant enhanced stability

Surrogate substrate

MOL.921 Molecular Biotechnology II

15 15

Stability in Vinyl acetate - Mutation W348G

Burkholderia gladioli Esterase EstB

Vmax Km

µmol/min/mg mM

EstB 79 1,3

M1 19 0,8

Substrate: Cephalosporin C kinetic data

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

rela

tiv s

pecif

isc

he A

kti

vit

ät

time (hours)

Temperature stability at 40°C.

EstB

M1

Much lower activity on Cephalosporin

MOL.921 Molecular Biotechnology II

16 Esterase Bg_EstB: Engineering of Stability Directed Evolution

Screening-Assay at Colony-Level

Substrate: Cephalosporin

pH-Indicator Organic solvent (36% DMF)

103 Colonies per filter Time as measure for activity

Error-Prone PCR

Mutation rate: 0.5%

106 Clones screened

25 Clones isolated and sequenced 19 different clones identified 11 Clones with different aminoacid sequence

0

2

4

6

8

10

12

14

16

18

20

1 101 201 301 401 501 601 701 801 901 1001 1101

DNA sequence of EstB

mu

tatio

n fr

equ

ency

silent mutations

mutations in protein sequence

MOL.921 Molecular Biotechnology II

17

Nr. Mutations in amino acid sequence

Generation I

203_11 A311V

204_20 L111Q W134R A311V

210_4 P8L G132S R155C

211_50 E93G A311V

212_39 S17L R155C A311V

214_27 S17L G132S E251G A311V E313K

218_47 I2T A311V V313A

220_38 A95P A311V

220_9 T301M A311V

221_18 E246V A311V

222_34 S115G W134R A311V

Combination

424_0 P8L G132S R155C E251G A311V E313K

426_0 S17L G132S R155C E251G A311V E313K

Generation II

426_29 P8L T77S G132S W134R R155C E251G A311V E313K

426_70 P8L G132S W134R R155C E251G A311V E313K

Esterase Bg_EstB Mutants with enhanced Stability (DMF)

MOL.921 Molecular Biotechnology II

18

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

EstB 212_39 214_27 424_0 426_0 424_29 424_70

Ak

tivit

ät

(U/m

g)

0% DMF

30% DMF

t1/2 min [45°C]

Wild type

Generation I Generation II Combination

Esterase Bg_EstB Mutants with enhanced Stability (DMF)

MOL.921 Molecular Biotechnology II

19

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0 10 20 30 40 50 60 70 80 90 100 120 160

rel.

resi

dual

act

ivity

EP6

212_39

214_27

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

Ak

tivit

ät

(U/m

g) 0% DMF

Esterase Bg_EstB Mutants with erhöhter Stabilität (DMF)

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

EstB

203_11

204_20

210_4

211_5

212_39

214_27

218_47

220_38

220_9

221_18

222_34

t 1/2

(m

in)

t1/2 min [45°C]

-5.000E+00

0.000E+00

5.000E+00

01E+04

02E+04

02E+04

03E+04

03E+04

04E+04

30 35 40 45 50 55 60 65

cal/m

ole

/deg

temperature (°C)

EstB

212_39

214_27

0,0

5,0

10,0

15,0

20,0

25,0

Ak

tivit

ät

(U/m

g)

30% DMF

MOL.921 Molecular Biotechnology II

20

A311 V313

E316

L111

S115

W134

G132

T301

A95

E93

E251

S17

E246 R155

S75

MOL.921 Molecular Biotechnology II

21

Hevea brasiliensis Hb_Hnl Manihot esculenta Me_Hnl High homology at sequence and structure levels 77% identity at the amino acid level

S80

H235

C81 K236

D207

3-D structure of Hb_HNL

Directed Evolution - Engineering

Example for Family shuffling by in vivo Recombination

MOL.921 Molecular Biotechnology II

22

S-selective: Hevea brasiliensis, Manihot esculenta

Hydroxynitrile lyases: chiral cyanohydrin synthesis

Problems: higher pH (6-7) good enzyme activity high chemical background reaction, low selectivity lower pH (< 6) lower enzyme activity, lower enzyme stability low chemical background reaction, high selectivity

Improvement of Stability and Activity at low pH

MOL.921 Molecular Biotechnology II

23 Recombination of MeHNL and HbHNL-W128A

Aims: Improved stability and activity at low pH

High activity with bulky substrates

Hb_Hnl W128A: good reactivity with mPBA, low stability at low pH Me_Hnl wt: better stability at low pH

Recombine features of both enzymes

MOL.921 Molecular Biotechnology II

24

URA3 CAN1

TRP1 CYH2

URA3

CAN1 TRP1

CYH2

A

B spore

cultures

MEIOSIS

URA3 CAN1

TRP1 CYH2

A

B a/a diploid

mosaic 1

mosaic 2

yeast shuffling strategy

Meiosis : high levels of genome-wide recombination

MSH2 : key player in homeologous recombination, mismatch repair and mutagenesis

Enzyme Engineering Recombination

Saccharomyces cerevisiae

25

Recombination of MeHNL and HbHNL-W128A

Aims:

Improved stability and activity at low pH

High activity with bulky substrates

MXY279 f orwa rd orientation

MXY287 reverse orientation

Me HNL URA3 CAN1

Hb HNL TRP1 CYH2

Hb HNL URA3 CAN1

Me HNL TRP1 CYH2

Hb_Hnl W128A: good reactivity with mPBA, low stability at low pH Me_Hnl wt: better stability at low pH

Enzyme Engineering Recombination

26

Novel Hb_HNLW128A / Me_Hnl recombinant proteins

Bipartite proteins

Complex proteins

N17

D20

G07

I03

D03

D10

Hb-specific amino acids

Me-specific amino acids

Hb W128A alteration

novel amino acids

Hits

Enzyme Engineering Recombination

MOL.921 Molecular Biotechnology II

27

0

10

20

30

40

50

60

70

80

0 50 100 150 200

time [min]

co

nv.

[%]

HbHNLwt

HbHNLW128A

MeHNLwt

MeHNLW128A

N17

G7

D20

blank

Conversion at pH 5.4

CHO

OPh

HCN

OH

CN

OPh

+

CHO

OPh

HCN

OH

CN

OPh

+

Enzyme Engineering Recombination

MOL.921 Molecular Biotechnology II

28

HbHNL_W128A (1) MAFAHFVLIHTICHGAWIWHKLKPLLEALGHKVTALDLAAS

Hnl_N17 (1) MVIAHFVLIHTICHGAWIWHKLKPALERAGHKVTALDMAAS

HNL_D20 (1) MAIAHFVLIHTICHGAWIWHKLKPALERAGHKVTALDLAAS

MeHnl_WT (D7) (1) MVTAHFVLIHTICHGAWIWHKLKPALERAGHKVTALDMAAS

HbHNL_W128A (42) GVDPRQIEEIGSFDEYSEPLLTFLEALPPGEKVILVGESCG

Hnl_N17 (42) GVDPRQIEEIGSFDEYSEPLLTFLEALPPGEKVILVGESCG

HNL_D20 (42) GVDPRQIEEIGSFDEYSEPLLTFLEALPPGEKVILVGESCG

MeHnl_WT (42) GIDPRQIEQINSFDEYSEPLLTFLEKLPQGEKVIIVGESCA

HbHNL_W128A (83) GLNIAIAADKYCEKIAAAVFHNSVLPDTEHCPSYVVDKLME

Hnl_N17 (83) GLNIAIAADKYCEKIAAAVFHNSVLPDTEHCPSYVVDKLME

HNL_D20 (83) GLNIAIAADKYCEKIAAGVFHNSLLPDTEHCPSYVVDKLME

MeHnl_WT (83) GLNIAIAADRYVDKIAAGVFHNSLLPDTVHSPSYTVEKLLE

HbHNL_W128A (124) VFPDAKDTTYFTYT-KDGKEITGLKLGFTLLRENLYTLCGP

Hnl_N17 (124) VFPDAKDTTYFTYT-KDGKEITGLKLGFTLLRENLFTKCTD

HNL_D20 (124) VFPDAKDTTYFTYT-KDGKEITGLKLGFTLLRENLYTLCGP

MeHnl_WT (124) SFPDWRDTEYFTFTNITGETITTMKLGFVLLRENLFTKCTD

Enzyme Engineering Recombination

MOL.921 Molecular Biotechnology II

29

HbHNL_W128A (164) EEYELAKMLTRKGSLFQNILAKRPFFTKEGYGSIKKIYVWT

Hnl_N17 (164) GEYELAKMVMRKGSLFQNVLAQRPKFTEKGYGSIKKVYIWT

HNL_D20 (164) EEYELAKMLTRKGSLFQNILAKRPFFTKEGYGSIKKVYIWT

MeHnl_WT (165) GEYELAKMVMRKGSLFQNVLAQRPKFTEKGYGSIKKVYIWT

HbHNL_W128A (205) DQDEIFLPEFQLWQIENYKPDKVYKVEGGDHKLQLTKTKEI

Hnl_N17 (205) DQDKIFLPEFQLWQIENYKPDKVYKVEGGDHKLQLTKTKEI

HNL_D20 (205) DQDKIFLPDFQLWQIENYKPDKVYKVEGGDHKLQLTKTEEV

MeHnl_WT (206) DQDKIFLPDFQRWQIANYKPDKVYQVQGGDHKLQLTKTEEV

HbHNL_W128A (246) AEILQEVADTYN

Hnl_N17 (246) AEILQEVADTYN

HNL_D20 (246) AHILQEVADAYA

MeHnl_WT (247) AHILQEVADAYA

Enzyme Engineering Recombination

MOL.921 Molecular Biotechnology II

30

C-terminal part of basic scaffold

Domains affected

N-terminal part

Enzyme Engineering Recombination

MOL.921 Molecular Biotechnology II

31

12.5.15

32 Improvement and inversion of the enantioselectivity of esterase EstB

Engineering Concept

Initial Round: Error Prone PCR Library of Entire Gene first positions affecting selectivity identified Further rounds of designed evolution: saturation mutagenesis at specific positions region-specific random PCR libraries region-specific randomized oligonucleotide mutagenesis designed construction of specific muteins

Screening: Differential assays using enantiopure substrates

33 Esterase Bg_EstB Mutants showing improved selectivity

Directed Evolution Primary screening: Colony-Filter Assay, pH-shift high activity on rac-S1 75.000 clones screened 6.000 clones good activity Secondary screening 6000 clones screened Colonie-Filter assay, pH-shift Differential screen (R) und (S)-S1 4 clones showing altered selectivity 1 clone showing enhanced (S)-selectivity

O H

C H 3 H

O Me

O

*

Hydroxyisobutyric acid methyl ester

S1

MOL.921 Molecular Biotechnology II

34 Esterase Bg_EstB Mutants showing altered selectivity

Mutant Mutation Properties

sA2 I 152 T I 245 T higher activity on (R)-S1

sA6 I 152 V higher activity on(S)-S1 and (R)-

S1

sB8 I 152 T R 308 C higher activity on(R)-S1

sD2 E 316 V G 349 C A 373 T higher activity on(S)-S1

0,00

0,50

1,00

1,50

2,00

2,50

0,00

10,00

20,00

30,00

40,00

50,00

60,00

EstB sA2 sA6 sB8 sD2

Specific activityo-NPB rac-S2 rac-S1

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

EstB sA2 sA6 sB8 sD2

Enantioselectivity

E (S1)

E (S2)

MOL.921 Molecular Biotechnology II

35

E316 V

A373T

S75

G349 C

Mutants

R308 C

I152 V/T

I245 T

sD2 sA2, sA6, sB8

Esterase Bg_EstB Mutants with improved selectivity

MOL.921 Molecular Biotechnology II

36

Saturation mutagenesis at

position 152

-2

0

2

4

6

8

10

12

14

I152L I152M WT I152V I152A I152S I152N

ES

ap p

ER

ap p

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80

vS (fluorescence s-1

)

v R (f

luo

resc

enec

e s

-1)

S-selective

mutants

R-selective

mutants

wild type

37

Ser75

Ile152Leu Met377 Ser

Gly349Arg

Esterase variant showing the highest S-enantioselectivity (ESapp= 36) harbors mutations I152L, G349R and M377S

Improvement of S-enantioselectivity by semi-random approach

E

0

5

10

15

20

25

30

35

40

Sap

p

+I152L G349R

WT

+M377S

+L249G +M377N

+M377A

• Amino acid residues in active site influence enantioselectivity • Semi-random approach – substitution of chosen 20 aa residues in the vicinity of Ser-75

Positions 152, 249, 349 and 377 found to enhance S-selectivity

MOL.921 Molecular Biotechnology II

38

0

1

2

3

4

5

6

7

8

9

Rela

tive r

ate

s (

aS, a

R)

WT G349R I152L/G349R I152L/G349R/ I152L/G349R/

/M377S /L249G

Eapp=5.6

Eapp= 24.6

Eapp=36.5

Eapp=17.1

Eapp=11.0

0

1

2

3

4

5

6

7

8

9

Sp

ecif

ic a

ctiv

ity (

U m

g-1

)

WT G349R I152L/G349R I152L/G349R/ I152L/G349R/

/M377S /L249G

Eapp=5.6

Eapp=17.1Eapp=11.0

Eapp=36.5

Eapp=24,6

Relative activities towards S (■) and R (■) enantiomer

Specific activity towards racemic substrate (■)

MOL.921 Molecular Biotechnology II

39

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80

vS (fluorescence s-1

)

v R (f

luo

resc

enec

e s

-1)

S-selective

mutants

R-selective

mutants

wild type

Saturation mutagenesis at

position 152

-2

0

2

4

6

8

10

12

14

I152L I152M WT I152V I152A I152S I152N

ES

ap p

ER

ap p

MOL.921 Molecular Biotechnology II

40

methyl-ß-hydroxyisobutyrate modelled in active site

I152L enhanced S-selectivity

I152V lowered S-selectivity

I152N conversion to R-selectivity

Enantioselectivity improvement of esterase EstB

K. Gruber, KF-Uni Graz

MOL.921 Molecular Biotechnology II

41

Mutations at positions 152, 253 and 351 increase R-selectivity

Improvement of the R-stereoselectivity by semi-random approach

Esterase variant showing the highest R-enantioselectivity (ERapp= 24.6) harbors mutations I152N, H253F and V351S

30

25

20

15

10

5

5

10

I152N

+V351A

+V351S

+V351C

+H253F

+H253M +H253W

E S

app

E

R a

pp

WT

+L135H +L135W +H253L

MOL.921 Molecular Biotechnology II

42

Mutations

Relative aS

activity aR

E app

Wild type 1 1 5.6 S

I152N 0,53 4,5 1.5 R

I152N, V351S 0,08 7,4 15.9 R

SI152N, V351S, H253F 0.09 15.7 28.9 R

Activities of R-selective mutations

MOL.921 Molecular Biotechnology II

43

Nature has developed Hnl activity out of different basic protein structures

by natural evolution over millions of years

Can we perform this by means of protein engineering within short time??

Creating a New Enzymatic Functionality

MOL.921 Molecular Biotechnology II

44

Hnl Enzymes have evolved from different protein structures

Andexer et al., Trends Biotechnol.2009 Oct;27(10):599-607

MOL.921 Molecular Biotechnology II

45

Xv EstD GGDPTRVAVMGHSAGAHIAGLLVTDRRWLQAQG

Rrh EstA GGDPTRIVLAGDSAGGNLAASVAIAARDGGGPA

Rru EstA AAADAPLIVGGDSAGGNLAAVVAQRAVRENGPE

Rrh_EstC GGDPDRVTIAGESAGAMSVVSLLAMPAARGLFR

Xv_EstA GIDAQRVGVMGFSAGGHVAASLGTRYAAQVYPA

Xv_EstB GGDAGNVTVFGQSGGGAKIATLMAMPAARGLFH

Bs_EstA LHPDRPFVLFGHSMGGMVAFRLAQKLEREGIYP

Bg_EstC ALGHPRVVLVGHSMGGVAITAAAERAPERIAAL

Bg_EstD TLGLEKPLLVGHSLGGAIALAVGLDHPDSVSRI

Bg_EstE QLGAGPVHLVGHSRGGCVAFYMAHRYPELVRSL

Rrh_EstB FGIERLALVTGGSMGAQQTYEWAVRFPDKVLRA

Rrh_EstD ECPLTTYVLTGFSQGAVIVGDVAAQIGAGNGPV

Xv_EstE DSAFDQTVFFGDSLTDSGYYNPLLPAASRAVTG

Bg_EstA AGVQKQIVSFGDSLSDAGTYSPQILLGFGGGRF

Xv_EstC PLAASKIVLVGDSTTAVHGGWGPSFCAQHVTSF

Bg_EstB RPMREDTLFRLASVTKPIVALAVLRLVARGELA

GxSxG Family

GDSL Family

SxxK Family

Novel bacterial Esterases

MOL.921 Molecular Biotechnology II

46 Esterases and Hydroxynitrile Lyases

Hb_Hnl....HK.

Bg_EstC...HS.

Hb_Hnl....GES

Bg_EstC...GHS

Hb_Hnl....HT.

Bg_EstC...HG.

sp|P52704|HNL_HEVBR MAF-------------AHFVLIHTICHGAWIWHKLKPLLEALGHKVTALDLAASGVDPR------------------QIEEIGSFDEYSEPLLTFLEA-LP-PGEKVILVGESCGGLNIA

sp|P52705|HNL_MANES MVT-------------AHFVLIHTICHGAWIWHKLKPALERAGHKVTALDMAASGIDPR------------------QIEQINSFDEYSEPLLTFLEK-LP-QGEKVIIVGESCAGLNIA

tr|Q9LFT6|HNL_ARATH MER------------KHHFVLVHNAYHGAWIWYKLKPLLESAGHRVTAVELAASGIDPR------------------PIQAVETVDEYSKPLIETLKS-LP-ENEEVILVGFSFGGINIA

tr|Q6ED34|Est_SOLLC MEKG----------DKNHFVLVHGACHGAWCWYKVVTILRSEGHKVSVLDMAASGINPK------------------HVDDLNSMADYNEPLMEFMNS-LP-QLERVVLVGHSMGGINIS

tr|Q56SE1|Est_SOLTU MEKG----------NKNHFVLVHGACHGAWCWYKVVTILRSEGHKVSVLDMAASGINPK------------------HVEDLNSMADYNEPLMEFMNS-LP-QQERVVLVGHSMGGINIS

sp|Q0JG99|PIR7B_ORYSJ MEISS--------SSKKHFILVHGLCHGAWCWYRVVAALRAAGHRATALDMAASGAHPA------------------RVDEVGTFEEYSRPLLDAVAAAAA-PGERLVLVGHSHGGLSVA

sp|Q0JG98|PIR7A_ORYSJ MEDG-----------GKHFVFVHGLGHGAWCWYRVVAALRAAGHRATALDMAAAGAHPA------------------RADEVGSLEEYSRPLLDAVAA-AA-PGERLVLVGHSLGGLSLA

tr|Q161F3|RdEstC_ROSDO MA---------------DILLIHGSCHGAWCWDKLIPCLNAKGHMARAIDLPSHGADDT------------------PVQT-VTLDCYAQAIVENC-------HEQTTLVGHSMGGYAIS

tr|Q9LAB8|BgEstC_BURGA MNHPDIDTHSRNAAAPLPFVLVHGAWHGAWAYERLGAALAARGHASVAHDLPAHGINARYPAAFWQGDAQALAQEPSPVAA-TTLDDYTGQVLRAIDAACALGHPRVVLVGHSMGGVAIT

* ::::* **** : :: . * ** . ::.: * . :. * :: . :** * .* ::

sp|P52704|HNL_HEVBR IAADKYCEKIAAAVFHNSVLPDTEHCP-SYVVDKLMEVFP---DWKDTTYFTY-TKDGKEITGLKLGFTLLRENL---YTLCGPEEYELAKM----LTRKGSLFQ-N-ILAKRPFFTKEG

sp|P52705|HNL_MANES IAADRYVDKIAAGVFHNSLLPDTVHSP-SYTVEKLLESFP---DWRDTEYFTFTNITGETITTMKLGFVLLRENL---FTKCTDGEYELAKM----VMRKGSLFQ-N-VLAQRPKFTEKG

tr|Q9LFT6|HNL_ARATH LAADIFPAKIKVLVFLNAFLPDTTHVP-SHVLDKYMEMPG---GLGDCEFSSH-ETRNGTMSLLKMGPKFMKARL---YQNCPIEDYELAKM----LHRQGSFFT-E-DLSKKEKFSEEG

tr|Q6ED34|Est_SOLLC LAMEKFPQKIVVAVFVTAFMPGPDLNL-VALGQQYNQQVE---SHMDTEFVYN-NGQDKAPTSLVLGPEVLATNF---YQLSPPEDLTLATY----LVRPVPLFD-ESILLANTTLSKEK

tr|Q56SE1|Est_SOLTU LAMEKFPHKIAVAVFVSASMPGPDLNL-VAVTQQYSQQVE---TPMDTEFVYN-NGLDKGPTSVVLGPKVLATIY---YQFSPPEDLTLATY----LVRPVPLFD-ESVLLTNTTLSKEK

sp|Q0JG99|PIR7B_ORYSJ LAMERFPDKVAAAVFVAAAMPCVGKHM-GVPTEEFMRRTAPEGLLMDCEMVAI-NNSQGSGVAINLGPTFLAQKY---YQQSPAEDLALAKM----LVRPGNQFMDDPVMKDESLLTNGN

sp|Q0JG98|PIR7A_ORYSJ LAMERFPDKVAAAVFLAACMPAAGKHM-GITLEEFMRRIKPD-FFMDSKTIVL-NTNQEPRTAVLLGPKLLAEKL---YNRSPPEDLTLATM----LVRPGTNYIDDPIMKDETLLTEGN

tr|Q161F3|RdEstC_ROSDO AAAERVPEQIAQLIYLCAYVPQNGMTL-AQMRKKA-----PRQPLL---P-AV-RMAPD-GLSFTIDPEMAPDIF---YHDCAPGDVEFALT----RLCPQAVAPTN-A----PLADMSA

tr|Q9LAB8|BgEstC_BURGA AAAERAPERIAALVYLAAFMPASGVPGLDYVRAPE-----NHGEML---ASLI-CASPRAIGALRINPASRDAAYLATLKQALFEDVDEATFRAVTRLMSSDV-PTA-PFATPIATTAER

* : :: :: : :* . :. . : *

sp|P52704|HNL_HEVBR YGSIKKIYVWTDQDEIFL-PEFQLWQIENYK------PDKVYKVEGGDHKLQLTKTKEIAEILQEVAD-TYN

sp|P52705|HNL_MANES YGSIKKVYIWTDQDKIFL-PDFQRWQIANYK------PDKVYQVQGGDHKLQLTKTEEVAHILQEVAD-AYA

tr|Q9LFT6|HNL_ARATH YGSVQRVYVMSSEDKAIP-CDFIRWMIDNFN------VSKVYEIDGGDHMVMLSKPQKLFDSLSAIAT-DYM

tr|Q6ED34|Est_SOLLC YGSVHRVYVVCDKDNVLKEQQFQKWLINNNP------PDEVQIIHNADHMVMFSKPRDLSSCLVMISQ-KYY

tr|Q56SE1|Est_SOLTU YGSVHRVYVVCDKDKVLKEEQFQRWLIKNNP------PNEVQMIHDAGHMVMFSKPRELCSCLVMISQ-KYH

sp|Q0JG99|PIR7B_ORYSJ YGSVKKVYVIAKADSSST-EEMQRWMVAMSP------GTDVEEIAGADHAVMNSKPRELCDILIKIAN-KYE

sp|Q0JG98|PIR7A_ORYSJ YGSVKRVFLVAMDDASSD-EEMQRWTIDLSP------GVEVEELAGADHMAMCSKPRELCDLLLRIAA-KYD

tr|Q161F3|RdEstC_ROSDO VEKLPRSYIRCMDDRTVP-PEFQVTMTQDWP------AQRLHQMD-CGHSPFFSDPETLATHIDQ---AIRG

tr|Q9LAB8|BgEstC_BURGA WGSIARHYVTCAEDRVIL-PALQRRFIAEADAFLPERPTRVHALD-SSHSPFLSQPDTLAELLTGIARNTAI

.: : :: * : : : .* :.. : :

MOL.921 Molecular Biotechnology II

47

Hb_Hnl Bg_EstC

Triade: Ser80, His235, Asp207 Important: Lys236

Triade: Ser112, His275, Asp242

Homology model

MOL.921 Molecular Biotechnology II

48

1: #SM0661 (Fermentas) (5 µl) 2: Bg_EstC S276K pellet (2 µl) 3: Bg_EstC S276K raw lysate (2 µl)

Bg_EstC Muteins designed for Hnl activity

1st Generation:

S276K

2nd Generation:

S276K G24T H111E

MOL.921 Molecular Biotechnology II

49

1: Bg_EstC S276K 2: Vector strain 3: Bg_EstC wt 4: Hb_HNL wt

(S)-m-phenoxy benzaldehyde cyanohydrin, pH 4.5, 56 min

acetone cyanohydrin, pH 3.5, 3.5 min

1 4

3 2

Cyanohydrin cleavage reaction

MOL.921 Molecular Biotechnology II

50 Esterase activity

Activity on ethyl acetate

1: Bg_EstC S276K 2: Vector strain 3: Bg_EstC wt 4: Hb_HNL wt 5: Bg_EstC_S276K,G24T, H111E

1

3

2

4

5

Hb_HNL wt

Bg_EstC S276K

Bg_EstC wt

Bg_EstC_S276K,G24T, H111E

MOL.921 Molecular Biotechnology II

51

0

10

20

30

40

50

60

70

80

90

100

5 15 30 45 60

t , min

% c

on

vers

ion

pMS470D8

EstCwt

EstCS276K

EstCS276K/G24T/H111E

Cyanohydrin Synthesis Reaction

MOL.921 Molecular Biotechnology II