radio emission from supernova...

47
Radio emission from Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina

Upload: others

Post on 18-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Radio emission from Supernova Remnants

Gloria Dubner IAFE Buenos Aires, Argentina

Page 2: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Before radio astronomy, only 2 SNRs were known: Crab and Kepler´s SNR

1948: Ryle and Smith detected an unusually bright radio

source, Cassiopeia A, although its nature was unknown 1949: radio detection of the Crab Nebula 1952: Tycho´s SN 1957: Kepler´s SN Two important conclusions were drawn: * a SNR is a source of intense radio radiation * the origin could not be explained by strictly thermal processes

History

G. Dubner - IAFE - Argentina

Page 3: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

The answer (~ 1953 by Shklovsky, based on solutions proposed by Alfven & Herlofson in 1950) was synchrotron radiation from relativistic electrons orbiting magnetic fields (“trapped around the star”) Shklovsky also advanced the idea that the cosmic ray acceleration could be supplemented by Fermi processes.

G. Dubner - IAFE - Argentina

Page 4: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

In our Galaxy there are almost 300 identified SNRs

~ 8% detected in the TeV range

~ 10% in the GeV range

~ 30% in optical wavelengths

~ 40% in X-rays

~ 95 % in radio. In the Magellanic Clouds only 4 out of 84 SNRs have not been seen in radio

Statistics

G. Dubner - IAFE - Argentina

Page 5: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Radio observations provide information on: Morphology

Brightness distribution

Spectral index

Polarization (percentage of polarized

emission and E vector orientation)

G. Dubner - IAFE - Argentina

Page 6: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Crucial information to delimit the current location of the

expanding shock front

to identify sites and mechanisms of particle acceleration

to infer orientation and degree of order of compressed magnetic fields

G. Dubner - IAFE - Argentina

Page 7: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Morphology Brightness distribution

G. Dubner - IAFE - Argentina

Page 8: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Statistics In the Milky Way it is statistically expected:

20 % SN Type Ia 70% SN Type II 10% SN Type Ib/c

G. Dubner - IAFE - Argentina

Page 9: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Ambient ISM

Reverse shock

Shocked ejecta

Expected morphology for radio remnants of SN Ia

G. Dubner - IAFE - Argentina

Page 10: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Ambient ISM

Reverse shock

PSR

PWN Shocked ejecta

Expected morphology for radio SNRs of SN Ib/c, II

G. Dubner - IAFE - Argentina

Page 11: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

G. Dubner - IAFE - Argentina

Page 12: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

PSR

PWN

PSR PWN

Shell SN Ia 20%

SN II, Ib/c 80%

shell-type

Composite

Filled-center or plerions

Predicted Observed in radio

Spectral index 0 ≤ α ≤ 0.3

Spectral index α≈ 0.5

G. Dubner - IAFE - Argentina

Page 13: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

PSR

PWN

PSR PWN

Shell SN Ia 20%

SN II, Ib/c 80%

shell-type

Composite

Filled-center or plerions

Over 70 % of the Milky Way SNRs have a shell-type morphology

~12% composite-type

~ 5% of pure plerions The rest do not fit in any class

Predicted Observed in radio

Spectral index 0 ≤ α ≤ 0.3

Spectral index α≈ 0.5

G. Dubner - IAFE - Argentina

Page 14: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

W28

G352.7-0.1

Mixed-morphology Shell in radio Filled center in X

W 44

G. Dubner - IAFE - Argentina

Page 15: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

VRO 42.05.01

W 50 / SS433

11

G340.6+0.3

CTB 80

Puppis A

G318.9+0.4 Tycho´s SNR

G. Dubner - IAFE - Argentina

Reynoso et al. 1997

Pineault et al. 1987

Castelletti et al. 2003

Dubner et al. 1996

Dubner et al. 1998

Whiteoak & Green 1996

Page 16: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Cas A in radio

Cas A in X-rays (NASA/CXC/SAO)

Bright ring (reverse shock)

Radio plateau

Forward shock

Gotthelf et al. 2001

Cassiopea A Where is the shock front?

G. Dubner - IAFE - Argentina

Image courtesy of NRAO/AUI

Page 17: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

VLA radio image at 330 MHz

Puppis A Chandra

and XMM X-rays

Castelletti et al. 2006 Dubner et al. 2013

G. Dubner - IAFE - Argentina

Page 18: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

X-rays + radio

HI

The faint radio plateau might represent precursor synchrotron radiation from relativistic electrons that have diffused upstream from the shock.

Radio plateau

IR 24 and 70 mu + radio

G. Dubner - IAFE - Argentina

Dubner et al. 2013

Reynoso et al. 1995

Page 19: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

SN 1006 Radio at 1.3 GHz

G. Dubner - IAFE - Argentina

Cassam-Chenai et al. 2008 NASA/CXC/Middlebury College/F.Winkler

Page 20: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Dubner et al. 2002

G. Dubner - IAFE - Argentina

Page 21: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

The total of ~300 discovered Galactic SNRs is only 1/3 of the statistically expected number of SNRs in the Milky Way.

Selection effects? • too young SNRs • faint, old SNR can be missed if sensitivity or angular resolution are not high enough

Missing radio SNRs

G. Dubner - IAFE - Argentina

Page 22: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Can the SN explosion type be constrained from radio observations?

Facts: - Once the shock front sweeps up a certain amount of

ambient gas, the radio synchrotron emission ignores the

explosion properties.

- The complexity of interaction between shock front and

ejecta, CSM and ISM soon mask all the previous information

of the exploding star (physical and chemical)

G. Dubner - IAFE - Argentina

Page 23: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Spectrum

G. Dubner - IAFE - Argentina

Page 24: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

DSA (diffusive shock acceleration) for strong shocks, (compression ratio of 4) predicts α = 0.5

Histogram of Spectral indices

Updated from Reynolds (2011) G. Dubner - IAFE - Argentina

Page 25: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

For shell-type SNRs Observed: 0.3 ≤ α ≤ 0.8 for shell-type SNRs α ≤ 0.5 (flat spectrum) efficient particle acceleration contamination with PWN (inside) contamination with thermal gas (outside) α ≥ 0.5 (steep spectrum) very low M (≤ 10) poor magnetic compression inefficient particle acceleration

G. Dubner - IAFE - Argentina

Page 26: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Young SNRs would be expected to be efficient accelerators and have flat spectrum (α≤ 0.5) α= 0.7 for Cas A, 0.6 for Tycho and SN1006 0.8 for SN 1987A Radio SNe have indices as steep as 0.9 -1.0 This can be explained with the orientation of the B field: quasi-perpendicular orientation produces steeper indices (Bell et al. 2011)

G. Dubner - IAFE - Argentina

Page 27: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Curvature of the spectrum in a log-log plot

Concave-up radio spectrum: the result of non-linear DSA

Concave-down radio spectrum: DSA with the effect of syncrotron losses within a finite emission region

G. Dubner - IAFE - Argentina

Page 28: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Turnovers in their low frequency spectra are usually extrinsic due to absorption by intervening thermal material along the line of sight (also synch self-absorption, intrinsic free-free absorpt.)

G. Dubner - IAFE - Argentina

Kass

im e

t al.

1989

Page 29: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

IC 443 W 44

G. Dubner - IAFE - Argentina

Castelletti et al. 2011 Castelletti et al. 2007

Page 30: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

W 44

Radio continuum at 1.4 GHz Spectral Index between 330 MHz and 1.4 GHz

G. Dubner - IAFE - Argentina

Cast

elle

tti e

t al.

2007

Page 31: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

G. Dubner - IAFE - Argentina

Blue: VLA radio continuum at 324 MHz Green: Spitzer IR at 8µm Red: Spitzer IR at 24 µm (Castelletti et al. 2007)

W 44

Page 32: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

IC 443

Castelletti et al. 2011

G. Dubner - IAFE - Argentina

Page 33: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Problems with spectral studies

• Less than one fourth (50/294) of Galactic SNRs have the predicted spectrum due to extrinsic and intrinsic causes.

• 44% of the SNRs classified as of shell-type have α poorly determined (54% for the Southern sources)

• Observations with total-power single-dish radiotelescopes have low angular resolution and prevents discrimination against background and nearby contaminat sources

• Observations with radio interferometer resolve sources but are spatial filters that loose extended components

G. Dubner - IAFE - Argentina

Page 34: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

G. Dubner - IAFE - Argentina

Whi

teoa

k &

Gre

en 1

996

Page 35: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Polarization

Radio polarization studies provide essential information on the degree of order and orientation of the magnetic field.

G. Dubner - IAFE - Argentina

Page 36: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

From synchrotron theory the radiation should be polarized and for α= 0.5, it is expected 70% of fractional polarization In general it is never observed polarization higher than ~ 10% - 15% Depolarized because : * intrinsic desorder * instrumental effects * Faraday rotation in the foreground medium and inside the SNR

RM (to convert E direction into B direction) can now be determined using high-sensitivity broadband observations using Rotation Measure Synthesis techniques (Brentjens & de Bruyn 2005)

G. Dubner - IAFE - Argentina

Page 37: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

SN1006, a young SNR with radial and tangential B field

The largest polarization is attained at the minimum synchrotron

G. Dubner - IAFE - Argentina

Page 38: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Crab Nebula New radio results

G. Dubner - IAFE - Argentina

Page 39: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

JVLA @ 3GHz ALMA @ 100GHz

HPBW = 0”.9 x 0”.8

G. Dubner - IAFE - Argentina

Dubner et al. 2016

Page 40: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Chandra deep image (Seward et al. 2006)

Comparison with X-ray emission

G. Dubner - IAFE - Argentina

Page 41: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Comparison with optical emission

Hester et al. 1995 G. Dubner - IAFE - Argentina

Page 42: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Comparison with optical emission

G. Dubner - IAFE - Argentina

Page 43: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Radio (green) + OIII (red) A cage of thermal filaments

Comparison with optical emission

Radio (blue) + optical continuum (red) synchrotron

The synchrotron nebula is bounded and confined by the thermal ejecta

G. Dubner - IAFE - Argentina

Page 44: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Comparison with IR emission

Temim et al. 2012

The dust emission coincides with the brightest filaments in the ejecta

G. Dubner - IAFE - Argentina

Page 45: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

Radio (green) IR 5.8 µm (red)

Radio (red) IR 8 µm (green)

Dust is predominantly heated by the synchrotron radiation field rather than collisionaly heated by the gas

G. Dubner - IAFE - Argentina

Page 46: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

In Summary:

• Amost 70 years after the first detection of a SNR with radiotelescopes, great progress has been achieved.

• The last generation radio telescopes (ALMA, SKA, LOFAR, JVLA, FAST, ASKAP, MEERKAT, eEVN, etc.) will bring important advances in understanding the properties of the magnetic field and particle acceleration

G. Dubner - IAFE - Argentina

Page 47: Radio emission from Supernova Remnantssnr2016.astro.noa.gr/wp-content/uploads/2016/07/S7.1_GDubner.pdf · Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina Before radio

G. Dubner - IAFE - Argentina