references - shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] donnan, f.g.,...

32
119 REFERENCES [1] World Health Organization (WHO)/United Nations Children’s Fund (UNICEF), (2000), Water Supply and Sanitation Council. Global Water Supply and Sanitation Assessment Report. New York, NY: UNICEF. [2] World Health Organization (WHO)/ United Nations Children’s Fund (UNICEF), (2004) Joint Monitoring Programme for Water Supply and Sanitation. Meeting the MDG Drinking Water and Sanitation Target, A Mid- Term Assessment of Progress. New York, NY: WHO and UNICEF. [3] GLAAS Report, (2012), UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water, World Health Organization. [4] Water for life: making it happen, (2005), World Health Organization. [5] Service, R. F., “Desalination freshens up”, Science, 313(5790), pp.1088- 1090, 2006. [6] Droste, R.L., (1997), “Theory and Practice of Water and Waste Water Treatment”, John Wiley and Sons, Newyork. [7] Wolfe, R.L., "Ultraviolet Disinfection of Potable Water", Environ. Sci. Tech., 24(6), pp. 768-773, 1990. [8] Baxter, C.S., Hofmann, R., Templeton, M.R., Brown, M. and Andrews, R.C., “Inactivation of Adenoviruss Types 2, 5, and 41 in Drinking Water by UV Light, Free Chlorine, and Monochloramine”, J. Enviro. Eng., 133, pp. 95-103, 2007. [9] Mallevialle, J., Odendaal, P. E., and Wiesner, M. R., (1996) “The Emergence of Membranes in Water and Wastewater Treatment, in Water Treatment: Membrane Processes”., McGraw Hill Co., New York, NY. Chap.1.1-1.10, [10] Gede Wenten,I., “Recent development in membrane science and its industrial applications” Songklanakarin J. Sci. Technol. (Suppl.): Membrane Sci. & Tech., 24, pp. 1-16, 2002. [11] Baker, R. W., (2004), “Membrane Technology and Applications”., II edition John Wiley and Sons,West Sussex, England, [12] Munari, S., Botino, A., Camera Roda, G., and Capannelli, G., “Preparation of ultrafiltration membranes. state of the art”, Desalination, 77, pp.85 – 100, 1990.

Upload: others

Post on 29-May-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

119

REFERENCES

[1] World Health Organization (WHO)/United Nations Children’s Fund(UNICEF), (2000), Water Supply and Sanitation Council. Global WaterSupply and Sanitation Assessment Report. New York, NY: UNICEF.

[2] World Health Organization (WHO)/ United Nations Children’s Fund(UNICEF), (2004) Joint Monitoring Programme for Water Supply andSanitation. Meeting the MDG Drinking Water and Sanitation Target, A Mid-Term Assessment of Progress. New York, NY: WHO and UNICEF.

[3] GLAAS Report, (2012), UN-Water Global Analysis and Assessment ofSanitation and Drinking-Water, World Health Organization.

[4] Water for life: making it happen, (2005), World Health Organization.

[5] Service, R. F., “Desalination freshens up”, Science, 313(5790), pp.1088-1090, 2006.

[6] Droste, R.L., (1997), “Theory and Practice of Water and Waste WaterTreatment”, John Wiley and Sons, Newyork.

[7] Wolfe, R.L., "Ultraviolet Disinfection of Potable Water", Environ. Sci.Tech., 24(6), pp. 768-773, 1990.

[8] Baxter, C.S., Hofmann, R., Templeton, M.R., Brown, M. and Andrews, R.C.,“Inactivation of Adenoviruss Types 2, 5, and 41 in Drinking Waterby UV Light, Free Chlorine, and Monochloramine”, J. Enviro. Eng.,133, pp. 95-103, 2007.

[9] Mallevialle, J., Odendaal, P. E., and Wiesner, M. R., (1996) “The Emergenceof Membranes in Water and Wastewater Treatment, in Water Treatment:Membrane Processes”., McGraw Hill Co., New York, NY. Chap.1.1-1.10,

[10] Gede Wenten,I., “Recent development in membrane science and its industrialapplications” Songklanakarin J. Sci. Technol. (Suppl.): Membrane Sci. &Tech., 24, pp. 1-16, 2002.

[11] Baker, R. W., (2004), “Membrane Technology and Applications”., II editionJohn Wiley and Sons,West Sussex, England,

[12] Munari, S., Botino, A., Camera Roda, G., and Capannelli, G., “Preparation ofultrafiltration membranes. state of the art”, Desalination, 77, pp.85 – 100,1990.

Page 2: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

120

[13] Paugam, L., Taha, S., Cabon, J., Dorange, G., “Elimination of nitrate ions indrinking waters by nanofiltration”., Desalination, 152, pp. 271-274. 2002.

[14] Petersen, R. J., “Composite reverse osmosis and nanofiltration membranes”,J. Membr. Sci., 83, pp. 81-150, 1993.

[15] Hilal, N., Al-Zoubi, H., Darwish, N. A., Mohamma, A. W., Abu Arabi, M.,“A comprehensive review of nanofiltration membranes:Treatment,pretreatment, modelling, and atomic force microscopy”., Desalination 170,pp. 281-308, 2004.

[16] Freeman, B. D., and Pinnau, I., (2004) “Gas and liquid separations usingmembranes: an Overview”, ACS Symposium, Series 876 (AdvancedMaterials for Membrane Separations), American Chemical Society,Washington DC, pp.1-23.

[17] Vrijenhoek, E.M., Hong, S., Elimelech, M., “Influence of membrane surfaceproperties on initial rate of colloidal fouling of reverse osmosis andnanofiltration membranes”, J. Membr.Sci., 188, pp.115-128, 2001.

[18] Nghiem, L.D., Schäfer, A.I., (2005), “Nanofiltration-principle andapplication”, Elsevier Science Ltd., pp. 479-520.

[19] Mallevialle Joel., Odendal Peter, E., and Wiesner, M.R., (1996), “Watertreatment membrane processes, Mc Graw Hill,

[20] Ulbricht, M., “Advanced functional polymer membranes”, Polymer, 47, pp.2217-2262, 2006.

[21] Bernardo, P., Drioli, E., and Golemme, G., “Membrane gas separation: Areview/state of the art”, Ind. Eng. Chem. Res., 48, pp. 4638-4663, 2009.

[22] Hannah, W., Thompson, P.W., “Nanotechnology, risk and the environment: areview”, J.Environ.Monit., 10, pp. 291-300, 2008.

[23] Narr, J., Viraraghavan,T., Jin, Y.C., “Applications of nanotechnology inwater/waste water treatment: a review”, Fresenius Environ.Bull.,17, pp.320-329,2007.

[24] Karn, B., Kuiken, T., Otto,M., “Nanotechnology and in situ remediation: Areview of the benefits and potential risks”, Environ.Health Perspect., 117,pp.1823-1831,2009.

[25] Klefenz, H., “Nanobiotechnology: from molecules to systems”, Eng. Life Sci.4 (3),pp. 211–218, 2004.

[26] Masciangioli, T., Zhang, W.X., “Environmental technologies at thenanoscale”, Environ. Sci. Technol., 37 (5), pp. 102A–108A, 2003.

Page 3: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

121

[27] Zhang, L., Fang, M., “Nanomaterials in pollution trace detection andenvironmental Improvement”, Nano Today, 5 (2), pp. 128–142, 2010.

[28] Jones, A. J., (1987) “Membrane and Separation Technology: The AustralianPerspective”. Australian Government Publishing Service. Canberra.

[29] Nollet, J. A. (Abbe)., “Recherches sur les causes du Bouillonnement desLiquides. Histoir de l’Academie Royale des Sciences”, Paris AnneeMDCCXLVIII, pp.57-104. 1748.

[30] Graham, T., “On the Law of Diffusion of Gases”. The London and EdinburghPhilosophical Magazine and Journal of Science, 2, pp.175-190, 269-276, 351-358, 1833.

[31] Traube, M., (1867), “Physiologie and wissenschaftliche Medizin”,Arch.An.Physiol., 87.

[32] Bechhold, H., “Durchlässigkeit von Ultrafiltern”. Zeitschrift fürPhysikalische Chemie 64, pp.328-342, 1908.

[33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentialebei Vorhandensein von nicht dialysierenden Elektrolyten”. Zeitschrift fürElektrochemie und angewandte physikalische Chemie” 17, pp.572-581,1911.

[34] Elford, W.J., “A new series of graded collodion membranes suited for generalbacteriological use, especially in filterable virus studies”, J.Pathol. Bacteriol.,34, pp. 505-521, 1931.

[35] Mc Bain, J.W., Kistler, S.S., “Ultrafiltration as a Test for ColloidalConstituents in Aqueous and Nonaqueous Systems”, J.Phys.Chem. 35,pp.130-136, 1931.

[36] Loeb, S., Sourirajan, S., (1963), “Seawater Demineralization by Means of aSemipermeable Membrane”, in saline water conversion II, R.F. Gould (ed.),Advances in chemistry series, 28, American Chemical Society, WashingtonDC, pp-117-132.

[37] Cadotte, J.E. and Petersen, R.I., (1981), “Thin film reverse osmosismembranes: origin, development, and recent advances. SyntheticMembranes”, ACS Symposium Series 153, Vol.I Desalination (ed. Turbak,A.F.), Washington, D.C.: American Chemical Sosciety, pp. 305 -325.

[38] Cheryan, M., (1998), “Ultrafiltration and Microfiltration Handbook “,Technomic Publishing Co., Inc., Lancaster, UK.

[39] Hachisuka,H., and Ikeda,K., “Reverse osmosis composite membrane andreverse osmosis treatment method for water using the same”. US. PatentUS6413425, 2002.

Page 4: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

122

[40] Zhang,W., He,G.H., Gao,P., Chen,G.H., “Development and characterizationof composite nanofiltration membranes and their application in concentrationof antibiotics”, Sep.Purif.Technol. 30, pp-27-35, 2003.

[41] Cheryan, M., Mehaia, M.A., “Reverse Osmosis and Ultrafiltration” ACSSymposium series, American Chemical Society, 281, pp-231-245, 1985.

[42] Wenten, I.G, “Recent development in membrane science and its industrialapplications”, J.Sci.Technol.Membrane Sci Technol., 24 (suppl), pp-1010-1024, 2002.

[43] Ye,Y., Le, C.P., Chen, V., Fane,A.G., “Evolution of fouling during crossflowfiltration of model EPS solutions”. J.Membr.Sci., 264, pp-190-199, 2005.

[44] Wang, L.K., Ivanov, V., Tay,J.H., Hung,Y.T., (eds), (2010), “Environmentalbiotechnology” Humana, Totowa, New Jersey, pp. 484-506.

[45] Taurozzi Julian, S., (2009). “Nanoparticle-polymer composite membranes:Synthesis, characterization and environmental application”., Dissertation,Michigan State University.

[46] Jeong, B.H., Hoek, E.M.V., Yan, Y.S., Subramani, A., Huang, X.F, Hurwitz,G., Ghosh, A.K., Jawor, A., “Interfacial polymerization of thin filmnanocomposites: A new concept for reverse osmosis membranes”.,J.Membr.Sci., 294, pp-1-7, 2007.

[47] Zouboulis, A.I., Katsoyiannis, I.A., “Arsenic removal using iron oxide loadedalginate beads”, Ind. Eng. Chem. Res., 41,PP. 6149–6155, 2002.

[48] Xu, J., Bhattacharya, D., “Fe/Pd nanoparticle immobilization inmicrofiltration membrane pores: Synthesis, characterization and applicationin the dechlorination of polychlorinated biphenyls”, Ind.Eng.Chem.Res., 46,pp. 2348-2359, 2007.

[49] Lu, P., Teranishi, T., Asakura, K., Miyake, M., Toshima, N., “Polymer-protected Ni/Pd bimetallic nano-clusters: Preparation, characterization andcatalysis for hydrogenation of nitrobenzene”, J. Phys. Chem. B, 103 (44), pp.9673–9682, 1999.

[50] Majmuder, M., Chopra, N., Andrews, R., Hinds, B.J., “Nanoscalehydrodynamics-enhanced flow in carbon nanotubes”, Nature, 238, pp. 44-44,2005.

[51] Bae, T. H., Tak, T. M., “Effect of TiO2 nanoparticles on fouling mitigation ofultrafiltration membranes for activated sludge filtration”, J.Membr.Sci., 249,pp.1-8, 2005.

Page 5: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

123

[52] Taurozzi, J. S., Arul, H., Bosak, V. Z., Burban, A. F., Voice, T. C., Bruening,M. L., Tarabara, V. V., “Effect of filler incorporation route on the propertiesof polysulfone-silver nanocomposite membranes of different porosities”,J.Membr.Sci., 325, pp. 58-68, 2008.

[53] Xu, X., Wang, Q., Choi, H.C., “Encapsulation of iron nanoparticles with PVPnanofibrous membranes to maintain their catalytic activity”, J. Membr. Sci.,348, pp.231–237, 2010.

[54] Tong, M., Yuan, S., Long, H., Zheng, M., “Reduction of nitrobenzene ingroundwater by iron nanoparticles immobilized in PEG/nylon membrane”, J.Contam. Hydrol., 122, pp.1-4, 2010.

[55] Xiong, Z., Zhao, D., Pan, G., “Rapid and complete destruction of perchloratein water and ion-exchange brine using stabilized zero-valent ironnanoparticles”, Water Res. 41 (15), pp. 3497–3505, 2007.

[56] Liu, F., Zhang., “Nano-zerovalent iron contained porous carbons developedfrom waste biomass for the adsorption and dechlorination of PCBs”,Bioresour.Technol., 101 (7), pp. 2562–2564, 2010.

[57] Ponder, S. M., Darab, J. G., Mallouk, T. E., “Remediation of Cr(VI) andPb(II) aqueous solutions using supported, nanoscale zero-valent iron”,Environ, Sci. Technol., 34 (12), pp. 2564–2569, 2000.

[58] Lin, C. J., Liou, S. L., Lo, Y. H., “Degradation of aqueous carbontetrachloride by nanoscale zerovalent copper on a cation resin”,Chemosphere, 59, pp. 1299–1307, 2005.

[59] Wu, S. J., Liou, T. H., Mi, F. L., “Synthesis of zero-valent copper-chitosannanocomposites and their application for treatment of hexavalent chromium”,Bioresour. Technol., 100 (19), pp .4348–4353, 2009.

[60] Dong, T.T., Luo, H. J., Wang, Y. P., Hu, B. J., Chen, H., “Stabilization ofFe–Pd bimetallic nanoparticles with sodium carboxymethyl cellulose forcatalytic reduction of para-nitrochlorobenzene in water”, Desalination, 271,pp.1-3, 2011.

[61] Guczi, L., “Bimetallic nano-particles: Featuring structure and reactivity”,Catal.Today, 101 (2), pp. 53–64, 2005.

[62] Wang, X., Chen, C., Liu, H., Ma, J., “Preparation and characterization ofPAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorinationof trichloroacetic acid”, Water Res., 42 (18), pp. 4656–4664, 2008.

[63] Zhang, W.X., Wang, C.B., Lien, H.L., “Treatment of chlorinated organiccontaminants with nanoscale bimetallic particles”, Catal. Today, 40 (4), pp.387–395, 1998.

Page 6: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

124

[64] Elliott, D.W., Zhang, W.X., “Field assessment of nanoscale bimetallicparticles for groundwater treatment” Environ. Sci. Technol., 35 (24), pp.4922–4926, 2001.

[65] Barnes, R.J., Riba, O., Gardner, M.N., Scott, T.B., Jackman, S.A.,Thompson, I.P., “Optimization of nano-scale nickel/iron particles for thereduction of high concentration chlorinated aliphatic hydrocarbon solutions”,Chemosphere 79 (4), pp. 448–454, 2010.

[66] Schrick, B., Blough, J.L., Jones, A.D., Mallouk, T.E., “Hydrodechlorinationof trichloroethylene to hydrocarbons using bimetallic nickel-ironnanoparticles”, Chem. Mater., 14 (12), pp. 5140–5147, 2002.

[67] Chen, L., Huang, C., Lien, H., “Bimetallic iron–aluminum particles fordechlorination of carbon tetrachloride”, Chemosphere, 73 (5), pp. 692–697,2008.

[68] Rivero-Huguet, M., Marshall, W.D., “Reduction of hexavalent chromiummediated by micro- and nano-sized mixed metallic particles”, J. Hazard.Mater., 169, pp. 1081–1087, 2009.

[69] Wu L. F., and Ritchie, S. M. C., “Enhanced dechlorination oftrichloroethylene by membrane-supported Pd-coated iron nanoparticles”,Environ. Prog., 27,pp. 218-224, 2008.

[70] Smuleac, V., Bachas, L., and Bhattacharyya, D., “Aqueous-phase synthesis ofPAA in PVDF membrane pores for nanoparticle synthesis anddichlorobiphenyl degradation”, J. Membr. Sci., 346, pp. 310-317, 2009.

[71] Shih, Y., Chen, Y., Chen, M., Tai, Y., and Tso, C., “Dechlorination ofhexachlorobenzene by using nanoscale Fe and nanoscale Pd/Fe bimetallicparticles”, Colloid Surface A, 332, pp. 84-89, 2009.

[72] Han, Y., Li, W., Zhang, M., and Tao, K., “Catalytic dechlorination ofmonochlorobenzene with a new type of nanoscale Ni(b)/Fe(b) bimetalliccatalytic reductant”, Chemosphere, 72, pp.53-58, 2008.

[73] Meyer, D., and Bhattacharyya, D., “Impact of membrane immobilization onparticle formation and trichloroethylene dechlorination for bimetallic Fe/Ninanoparticles in cellulose acetate membranes”, J. Phys. Chem. B, 111,pp.7142-7154, 2007.

[74] Zhu, B., and Lim, T., “Catalytic reduction of chlorobenzenes with Pd/Fenanoparticles: Reactive sites, catalyst stability, particle aging, andregeneration”, Environ. Sci.Technol., 41, pp.7523-7529, 2007.

[75] Hadnagy, E., Rauch, L., and Gardner, K., “Dechlorination of polychlorinatedbiphenyls, naphthalenes and dibenzo-p-dioxins by magnesium/palladiumbimetallic particles”, J. Environ. Sci. Heal. A, 42, pp. 685-695, 2007.

Page 7: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

125

[76] Zhu, H., Jiang, R., Xiao, L., Chang, Y., Guan, Y., Li, X., Zeng, G.,“Photocatalytic decolorization and degradation of Congo Red on innovativecrosslinked chitosan/nano-CdS composite catalyst under visible lightirradiation”, J. Hazard.Mater., 169, pp. 933–940, 2009.

[77] Mills, A., Hunte, S.L., “An overview of semiconductor photocatalysis”, J.Photochem. Photobiol. A Chem., 108 (1), pp.1–35, 1997.

[78] Fu, H., Jing, L., Qu, Y., Wang, B., Li, S., Jiang, B., Yang, L., Fu, W., Sun, J.,“Review of photoluminescence performance of nano-sized semiconductormaterials and its relationships with photocatalytic activity”, Sol. EnergyMater. Sol. Cells, 90 (12), pp. 1773–1787, 2006.

[79] Konstantinou, I.K., Albanis, T.A., “TiO2-assisted photocatalytic degradationof azo dyes in aqueous solution: kinetic and mechanistic investigations: Areview”, Appl. Catal. B Environ., 49 (1), pp.1–14, 2004.

[80] Daneshvar, N., Salari, D., Khataee, A. R., “Photocatalytic degradation of azodye acid red 14 in water on ZnO as an alternative catalyst to TiO2”, J.Photochem. Photobiol. A Chem., 162, pp. 317–322, 2004.

[81] Lin, H.F., Liao, S.C., Hung, S.W., “The dc thermal plasma synthesis of ZnOnanoparticles for visible-light photocatalyst”, J. Photochem. Photobiol. AChem., 174 (1), pp. 82–87, 2005.

[82] Sathish, M., Viswanathan, B., Viswanath, R.P., “Alternate synthetic strategyfor the preparation of CdS nanoparticles and its exploitation for watersplitting”,Int. J. Hydrogen Energy, 31 (7), pp. 891–898, 2006.

[83] Liu, B. J., Torimoto, T., Yoneyama, H., “Photocatalytic reduction of CO2using surface-modified CdS photocatalysts in organic solvents”, J.Photochem. Photobiol. A Chem., 113 (1), pp. 93–97, 1998.

[84] Datta, A., Priyam, A., Bhattacharyya, S. N., Mukherjea, K. K., Saha, A.,“Temperature tunability of size in CdS nanoparticles and size dependentphotocatalytic degradation of nitro aromatics”, J. Colloid Interf. Sci. 322 (1),pp. 128–135, 2008.

[85] Lu, G., Li, X., Qu, Z., Zhao, Q., Li, H., Shen, Y., Chen, G., “Correlations ofWO3 species and structure with the catalytic performance of the selectiveoxidation of cyclopentene to glutaraldehyde on WO3/TiO2 catalysts”, Chem.Eng. J. 159, pp. 242–246, 2010.

[86] Kwon, Y.T., Song, K.Y., Lee, W.I., Choi, G.J., Do, Y.R., “Photocatalyticbehavior of WO3-loaded TiO2 in an oxidation reaction”, J. Catal. 191 (1),pp.192–199, 2000.

[87] Varanasi, P., Fullana, A., Sidhu, S., “Remediation of PCB contaminated soilsusing iron nanoparticles”, Chemosphere, 66 (6), pp. 1031–1038, 2007.

Page 8: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

126

[88] Konstantinou, I.K., Albanis, T.A., “TiO2-assisted photocatalytic degradationof azo dyes in aqueous solution: kinetic and mechanistic investigations: Areview”, Appl. Catal. B Environ., 49 (1), pp. 1–14, 2004.

[89] Daneshvar, N., Salari, D., Khataee, A. R., “Photocatalytic degradation of azodye acid red 14 in water on ZnO as an alternative catalyst to TiO2”, J.Photochem. Photobiol. A Chem., 162, pp. 317–322, 2004.

[90] Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B.,Ramirez, J. T., and Yacaman, M. J., “The bactericidal effect of silvernanoparticles”, Nanotechnology, 16,pp.2346-2353, 2005.

[91] Sondi, I. and Salopek-Sondi, B,. “Silver nanoparticles as antimicrobial agent:A case study on E-coli as a model for Gram-negative bacteria”, J. ColloidInterf. Sci., 275, pp.177-182, 2004.

[92] Fabrega, J., Fawcett, S. R., Renshaw, J. C., and Lead, J. R., “Silvernanoparticle impact on bacterial growth: Effect of pH, concentration, andorganic matter”, Environ. Sci. Technol., 43, pp.7285-7290, 2009.

[93] Marambio-Jones, C., and Hoek, E. M. V., “A review of the antibacterialeffects of silver nanomaterials and potential implications for human healthand the environment”, J. Nanoparticle Res., 12, pp. 1-21, 2010.

[94] Stoimenov, P. K., Klinger, R. L., Marchin, G. L., and Klabunde, K. J.,“Metal oxide nanoparticles as bactericidal agents”, Langmuir, 18, pp. 6679-6686, 2002.

[95] Sharma, Y. C., Srivastava, V., Upadhyay, S. N., and Weng, C. H., “Aluminananoparticles for the removal of Ni(II) from aqueous solutions”. Ind. Eng.Chem. Res., 47, pp. 8095-8100, 2008.

[96] Sharma, Y. C., Srivastava, V., Singh, V. K., Kaul, S. N., and Weng, C. H.,“Nano-adsorbents for the removal of metallic pollutants from water andwastewater”, Environ. Technol., 30, pp.583-609, 2009.

[97] Xin, Z., Lu. LV., Bingcai, P., Weiming, Z., Shujuan, Z., Quanxing, Z.,“Polymer –supported nanocomposites for environmental application: Areview”, Chem.Eng.J., 170, pp.381-394,2011.

[98] Badr, Y., Mahmoud, M. A., “Photocatalytic degradation of methyl orange bygold silver nano-core/silica nano-shell”, J. Phys. Chem. Solid, 68 (3), pp.413–419, 2007.

[99] Hirano, M., Ota, K., Iwata, H., “Direct formation of anatase (TiO2)/silica(SiO2) composite nanoparticles with high phase stability of 1300ºC fromacidic solution by hydrolysis under hydrothermal condition”, Chem. Mater.,16 (19), pp. 3725–3732, 2004.

Page 9: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

127

[100] Jang, M., Chen, W.F., Cannon, F.S., “Preloading hydrous ferric oxide intogranular activated carbon for arsenic removal”, Environ. Sci. Technol., 42,pp. 3369–3374, 2008.

[101] Li, Y., Li, X., Li, J., Yin, J., “Photocatalytic degradation of methyl orange byTiO2-coated activated carbon and kinetic study”, Water Res., 40 (6),pp.1119–1126, 2006.

[102] Zhuang, J. M., Hobenshield, E., Walsh, T., “Arsenate sorption by hydrousferric oxide incorporated onto granular activated carbon with phenolformaldehyde resins coating”, Environ. Technol., 29, pp. 401–411, 2008.

[103] Vaughan, R.L., Reed, B.E., “Modeling As(V) removal by a iron oxideimpregnated activated carbon using the surface complexation approach”,Water Res., 39, pp.1005–1014, 2005.

[104] Hansen, B.O., Kwan, P., Benjamin, M.M., Li, C.W., Korshin, G.V., “Use ofiron oxide-coated sand to remove strontium from simulated Hanford tankwastes”, Environ. Sci. Technol., 35, pp. 4905–4909, 2001.

[105] Tsadilas, C. D., Dimoyiannis, D., Samaras, V., “Boron sorption bymanganese oxide coated Sand”, Commun. Soil Sci. Plan., 29, pp. 2347–2353,1998.

[106] Zachara, J. M., Smith, S. C., Kuzel, L. S., “Adsorption and dissociation ofCo-EDTA complexes in iron oxide-containing subsurface sands”, Geochim.Cosmochim. Acta, 59, pp. 4825–4844, 1995.

[107] Szecsody, J. E., Zachara, J. M., Bruckhart, P. L., “Adsorption–dissolutionreactions affecting the distribution and stability of Co(II)-EDTA in iron-coated sand”, Environ. Sci. Technol., 28, pp.1706–1716, 1994.

[108] Hunne, M. A., Rojas, O. J., Lucia, L. A., Sain, M., “Cellulosicnanocomposites: a Review”, Bioresources, 3 (3), pp. 929–980, 2008.

[109] Guo, X. J., Chen, F. H., “Removal of arsenic by bead cellulose loaded withiron oxyhydroxide from groundwater”, Environ. Sci. Technol., 39, pp. 6808–6818, 2005.

[110] Blaney, L. M., Cinar, S., SenGupta, A.K., “Hybrid anion exchanger for tracephosphate removal from water and wastewater”, Water Res., 41, pp.1603–1613, 2007.

[111] Cumbal, L., Sengupta, A.K., “Arsenic removal using polymer-supportedhydrated iron(III) oxide nanoparticles: role of Donnan membrane effect”,Environ. Sci. Technol., 39, pp. 6508–6515, 2005.

Page 10: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

128

[112] Zhang, Q. J., Pan, B.C., Chen, X. Q., Zhang, W. M., Pan, B. J., Zhang, Q. X.,Lv, L., Zhao, X. S., “Preparation of polymer-supported hydrated ferric oxidebased on Donnan Membrane effect and its application for arsenic removal”,Sci.China B, 51, pp. 379–385, 2008.

[113] Zouboulis, A. I., Katsoyiannis, I. A., “Arsenic removal using iron oxideloaded alginate Beads”, Ind. Eng. Chem. Res., 41, pp. 6149–6155, 2002.

[114] Chen, K. L., Mylon, S. E., Elimelech, M., “Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium,strontium, and barium cations”, Langmuir, 23, pp. 5920–5928, 2007.

[115] Sylvester, P., Westerhoff, P., Möller, T., Badruzzaman, M., Boyd, O., “Ahybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenicremoval from drinking water”, Environ. Eng. Sci., 24, pp.104–112, 2007.

[116] Katsoyiannis, I. A., Zouboulis, A. I., “Removal of arsenic from contaminatedwater sources by sorption onto iron-oxide-coated polymeric materials”, WaterRes., 36, pp. 5141–5155, 2002.

[117] Jiang, Z. M., Lv, L., Zhang, W. M., Du, Q., Pan, B. C., Yang, L., Zhang, Q.X., “Nitrate reduction using nanosized zero-valent iron supported bypolystyrene resins: Role of surface functional groups”, Water Res., 45, pp.2191-2198, 2011.

[118] Shu, H.Y., Chang, M. C., Chen, C. C., “Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution”, J.Hazard. Mater.,184, pp. 499–505, 2010.

[119] Huang, Q., Shi, X., Pinto, R. A., “Tunable synthesis and immobilizationofzero-valent iron nanoparticles for environmental applications”, Environ.Sci.Technol., 42 (23), pp. 8884–8889, 2008.

[120] Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., “Surface chemistry andelectrochemistry of supported zerovalent iron nanoparticles in theremediation of aqueous metal contaminants”, Chem. Mater., 13 (2), pp. 479–486, 2001.

[121] Lin, C.J., Liou, Y.H., Lo, S.L., “Supported Pd/Sn bimetallic nanoparticles forreductive dechlorination of aqueous trichloroethylene”, Chemosphere, 74 (2),pp. 314–319, 2009.

[122] Yang, D., Li, J., Jiang, Z., Lu, L., Chen, X., “Chitosan/TiO2 nanocompositepervaporation membranes for ethanol dehydration”, Chem. Eng. Sci., 64 (13),pp. 3130–3137, 2009.

[123] Zouboulis, A.I., Katsoyiannis, I.A., “Arsenic removal using iron oxide loadedalginate Beads”, Ind. Eng. Chem. Res., 41, pp. 6149–6155, 2002.

Page 11: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

129

[124] Chico, B., Camacho, C., Marilín, P., Longo, M. A., Sanromán, M. A.,Pingarrón, J. M., Villalonga, R., “ Polyelectrostatic immobilization of goldnanoparticles-modified peroxidase on alginate-coated gold electrode formediatorless biosensor construction”,J. Electroanal. Chem., 629, pp.126–132,2009.

[125] Smith, A., “Nanotech- The way forward for clean water?”, Filtration andseparation, 43(8), pp. 32-33, 2006.

[126] Yang, Y., Zhang, H., Wang, P., Zheng, Q., Li, J., “The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane”,J.Membr.Sci., 288, pp. 231-238, 2007.

[127] Ballinas, L., Torras, C., Fierro, V.,Garcia-Valls, R., “Factors influencingactivated carbon –polymeric composite membrane structure andperformance”, J.Phys.Chem.Solids, 65, pp. 633-637, 2004.

[128] Yew, S. P., Tang, H.Y., Sudesh, K., “Photocatalytic activity andbiodegradation of polyhydroxybutyrate films containing titanium dioxide”,Polym. Degrad. Stab.,91 (8), pp.1800–1807, 2006.

[129] Li, X., Wang, D., Cheng, G., Luo, Q., An, J., Wang, Y., “Preparation ofpolyanilinemodified TiO2 nanoparticles and their photocatalytic activityunder visible light illumination”, Appl. Catal. B. Environ., 81, pp.267–273,2008.

[130] Iketania, K., Sunb, R. D., Tokib, M., Hirotaa, K., Yamaguchi, O., “Sol–gel-derived TiO2/poly(dimethylsiloxane) hybrid films and their photocatalyticactivities”, J. Phys. Chem. Solid, 64 (3), pp. 507–513, 2003.

[131] Wang, D. S., Zhang, J., Luo, Q., Li, X.Y., Duan, Y., An, J.,“Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light”, J.Hazard. Mater. 169, pp. 546–550, 2009.

[132] Uchida, H., Katoh, S., “Photocatalytic degradation of trichlorobenzene usingimmobilized TiO2 films containing poly(tetrafluoroethylene) and platinummetal catalyst”, Electrochim. Acta, 43, pp. 2111–2116, 1998.

[133] Song, L., Qiu, R., Mo, Y., Zhang, D., Wei, H., “Photodegradation of phenolin a polymer-modified TiO2 semiconductor particulate system under theirradiation of visible light”, Catal. Commun. 8, pp. 429–433, 2007.

[134] Ameen, S., Akhtar, M.S., Kim, Y.S., Shin, H.S., “Nanocomposites of poly(1-naphthylamine)/SiO2 and poly(1-naphthylamine)/TiO2: Comparativephotocatalytic activity evaluation towards methylene blue dye”, Appl. Catal.B Environ., 103, pp.136-142, 2011.

Page 12: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

130

[135] Naskar, S., Pillay, S. A., Chanda, M., “Photocatalytic degradation of organicdyes in aqueous solution with TiO2 nanoparticles immobilized on foamedpolyethylene sheet”, J. Photochem. Photobiol. A Chem., 113 (3), pp. 257–264, 1998.

[136] Tennakone, K., Kottegoda, I.R.M., “Photocatalytic mineralization of paraquatdissolved in water by TiO2 supported on polythene and polypropylene films”,J. Photochem. Photobiol. A Chem., 93 (1),pp.79–81, 1996.

[137] Chen, K.T., Lu, C.S., Chang, T. H., Lai, Y.Y., Chang, T. H., Wu, C.W.,Chen, C.C., “Comparison of photodegradative efficiencies and mechanismsof Victoria Blue R assisted by Nafion-coated and fluorinated TiO2photocatalysts”, J. Hazard. Mater. 174, pp. 598–609, 2010.

[138] Wang, W., Zhou, M., Jin, Z., “Reactivity characteristics of poly(methylmethacrylate) coated nanoscale iron particles for trichloroethyleneremediation”, J. Hazard. Mater., 173, pp.724–730, 2010.

[139] Wang, Q., Qian, H.J., Yang, Y.P., Zhang, Z., Naman, C., Xu, X.H.,“Reduction of hexavalent chromium by carboxymethyl cellulose-stabilizedzero-valent iron Nanoparticles”, J. Contam. Hydrol. 114, pp.35–42, 2010.

[140] Wu, L. F., Ritchie, S. M. C., “Removal of trichloroethylene from water bycellulose acetate supported bimetallic Ni/Fe nanoparticles”, Chemosphere, 63(2), pp. 285–292, 2006.

[141] Yaohui Lv., Hong Liu., Zhen Wang., Shujiang Liu., Lujiang Hao., YuanhuaSang., Duo Liu., JiyangWang., Boughton, R. I., “Silver nanoparticle-decorated porous ceramic composite for water treatment”, J.Membr.Sci., 331,pp.50-56, 2009.

[142] Choi ,J. H., Jegal, J., and Kim, W. N., “Fabrication and characterization ofmulti-walled carbon nanotubes/polymer blend membranes, J.Membr.Sci.,284,pp. 406-415, 2006.

[143] Ji-Woon Kwon., Seok Hwan Yoon., Seung Soo Lee., Kook Won Seo., and Il-Wun Shim., “Preparation of Silver Nanoparticles in Cellulose AcetatePolymer and the Reaction Chemistry of Silver Complexes in the Polymer”,Bull. Korean Chem. Soc., 26(5), pp. 837-840, 2005.

[144] Hatijah Basri., Ahmad Fauzi Ismail., Madzlan Aziz., “Effect of differentsolvent in the preparation of polyethersulfone(PES)-AG polymer composite”,Jurnal Teknologi, 49(F), pp-133-14, 2008.

[145] George Mulongo., Jolocam Mbabazi., P. Nnamuyomba., Song Hak-Chol.,“Water Bactericidal Properties of Nanosilver- Polyurethane Composites,Nanoscience and Nanotechnology,1(2), pp. 40-42, 2011.

Page 13: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

131

[146] Prashant Jain., Pradeep, T., (2005) “Potential of Silver Nanoparticle-CoatedPolyurethane Foam As an Antibacterial Water Filter”, Wiley InterScience,Wiley Periodicals, Inc.,

[147] Wu, D. M., Meng, Q.Y., Liu, Y., Ding, Y. M., Chen, W. H., Xu, H., Ren,D.Y., “In situ bubble-stretching dispersion mechanism for additives inpolymers”, J. Polym.Sci. B Polym. Phys., 41 (10), pp.1051–1058, 2003.

[148] Chen, J. F., Wang, G. Q., Zeng, X. F., Zhao, H. Y., Cao, D. P., Yun, J.,Tan, C. K., “Toughening of polypropylene-ethylene copolymer withnanosized CaCO3 and styrene butadiene-styrene”, J. Appl. Polym. Sci., 94(2), pp.796–802, 2004.

[149] Zhang, Q.X., Yu, Z.Z., Xie, X.L., Mai, Y.W., “Crystallization and impactenergy of polypropylene/CaCO3 nanocomposites with nonionic modifier”,Polymer 45 (17), pp.5985–5994, 2004.

[150] Liang, J.Z., “Melt rheology of nanometer-calcium-carbonate-filledacrylonitrilebutadiene-styrene (ABS) copolymer composites during capillaryextrusion”, Polym. Int., 51 (12), pp. 1473–1478, 2002.

[151] Lee, D.K., Kang, Y.S., “Structure and characterization of nanocompositeLangmuir–Blodgett films of poly(maleic monoester)/Fe3O4nanoparticlecomplexes”, J. Phys. Chem. B, 106 (29), pp. 7267–7271, 2002.

[152] Tong, Y., Li, F., Xie, M., Ding., “Preparation and characteristics ofpolyimide-TiO2 nanocomposite film”, Polym. Int., 49, pp.1543–1547, 2000.

[153] Ahmad, S., Ahmad, S., Agnihotry, S.A., “Synthesis and characterization of insitu prepared poly (methyl methacrylate) nanocomposites”, Bull. Mater. Sci.,30 (1), pp. 31–35, 2007.

[154] Luo, Y., Li, W., Wang X., Xu, D., Wang, Y., “Preparation and properties ofnanocomposites based on poly(lactic acid) and functionalized TiO2”, ActaMater., 57 (11), pp.3182–3191, 2009.

[155] Sanz, R., Luna, C., Hernandez-Velez, M., Vazquez, M., Lopez, D.,Mijangos, C., “A magnetopolymeric nanocomposite: Co80Ni20 nanoparticlesin a PVC matrix”, Nanotechnology, 16 (5), pp. S278–S281, 2005.

[156] Wua, W., He, T., Chen, J.F., Zhang, X., Chen, Y., “Study on in situpreparation of nano calcium carbonate/PMMA composite particles”, Mater.Lett., 60 (19), pp. 2410–2415, 2006.

[157] Myeong-Jin Han., Dibakar Bhattacharya., “Changes in morphology andtransport characteristics of polysulfone membranes prepared by differentdemixing conditions”, J. of Memb. Sci., 98, pp. 191-200, 1995.

[158] Strathmann, H., “Production of microporous media by phase inversionprocesses”, ACS Symp. Ser., 269, pp. 165, 1985.

Page 14: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

132

[159] Strathmann, H., and Koch, K., “The formation mechanism of phase inversionmembranes”, Desalination, 21, pp. 241-255, 1977.

[160] Wijmans, J. G., and Smolders, C. A., in Londsdale, H. K., and Pinho, M.H., (Eds.)., (1986) “Preparation of asymmetric membranes by the phaseinversion process”., Synthetic Membranes: Science, Engineering andApplications, Reidel, Dordrecht, The Netherlands, pp. 39-56.

[161] Zeman, L., and Fraser, T., “Formation of air-cast cellulose acetatemembranes. Part I. Study of macrovoid formation”, J. Membrane Sci., 84, pp.93-106, 1993.

[162] Zeman, L., and Fraser, T., “Formation of air-cast cellulose acetatemembranes. Part II. Kinetics of demixing and microvoid growth”., J.Membrane Sci., 87, pp. 267-279, 1994.

[163] Pratheep Kumar Annamalai., Celine Pochat-Bohatier., Denis Bouyer., Chia-Ling Li., André Deratani., Da-Ming Wang., “Kinetics of mass transfer duringvapour-induced phase separation (VIPS) process and its infl uence on poly-(vinylidene fl uoride) (PVDF) membrane structure and surface morphology”,Desalin. Water Treat., 34, pp. 204–210, 2011.

[164] Gui-E Chen., Jing-Feng Li., Ling-Feng Han., Zhen-Liang Xu., and Li-YunYu., “Preparation of Micro-porous Polyethersulphone Hollow FibreMembranes Using Non-solvent Vapour-induced Phase Separation”.,Iran.Polym.J., 19 (11), pp. 863-873, 2010.

[165] Kesting, R.E., (1985), “Synthetic Polymeric Membranes, A structuralperspective”, second edition, John Wiley and Sons, New York.

[166] Mulder, M., (2003), “Basic Principles of Membrane Technology”, secondedition, Dordrecht, Kluwer Academic, Netherlands.

[167] Boom, R.M., Wienk, I.M., Van den Boomgaard, Th., Smolders, C.A., “Microstructures in phase inversion membranes. Part 2. The role of apolymeric additive”, J. Membr. Sci.,73, pp. 277–292, 1992.

[168] Cheng, L., Lin, D., Shin, C., Dwan, A., and Gryte, C. C., “PVDF membraneformation by diffusion-induced phase separation morphology predictionbased on phase behavior and mass transfer modeling”., J. Polym. Sci., Part B:Polym. Phys., 37, pp. 2079-2092, 1999.

[169] Li, S.G., van den Boomgaard, T., Smolders, C.A., and Strathmann, H.,“Physical gelation of amorphous polymers in a mixture of solvent andnonsolvent”., Macromolecules, 29, pp. 2053-2059, 1996.

[170] Arnauts, J., and Berghmans, H., “Amorphous gels from atactic polystyrene”,Polymer Comm., 28, pp.66-68, 1987.

Page 15: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

133

[171] Ismail, A. F., and Yean, L.P., “Review on the development of defect-free andultrathin-skinned asymmetric membranes for gas separation throughmanipulation of phase inversion and rheological factors”, J. Appl. Polym.Sci., 88, pp. 442-451, 2003.

[172] Barth, C., Goncalves, M.C., Pires, A.T.N., Roeder, J., and Wolf, B.A.,“Asymmetric polysulfone and polyethersulfone membranes: effects ofthermodynamic conditions during formation on their performance”, J.Membr. Sci., 169, pp. 287-299, 2000.

[173] Witte, P., van de, P.J., Dijkstra, J. W. A., van den Berg., and Feijin, J., “Phaseseparation processes in polymer solutions in relation to membraneformation”., J. Membr. Sci., 117, pp. 1-31, 1996.

[174] Chenggui Sun., (2009), “Poly(vinylidene fluoride) membranes: Preparation,modification, characterization, and applications”, Dissertation, Universityof Waterloo, Ontario, Canada.

[175] Wijmans, J. G., Baaij, J. P. B., Smolders, C. A., “The mechanism offormation of microporous or skinned membranes produced by immersionprecipitation”, J.Membr.Sci., 14, pp. 263-274, 1983.

[176] Tai-HornYoung., Leo-Wang Chen., “Pore formation mechanism ofmembranes from phase inversion process”, 103, pp.233-247, 1995.

[177] Dar-Jong Lin., Cheng-Liang Chang., Tzung-Chin Chen., and Liao-PingCheng., “On the structure of porous poly(vinylidene fluoride) membraneprepared by phase inversion from Water-NMP-PVDF System”, TamkangJ.Sci.Eng., 5(2), pp. 95-98, 2002.

[178] Cohen, C., Tanny, G.B., and Prager, S., “Diffusion controlled formation ofporous structures in ternary polymer systems”, J. Polym. Sci., Polym. Phys.Ed., 17, pp. 477-489, 1979.

[179] Reuvers, A. J., and Smolders, C. A., “Formation of membranes by means ofimmersion precipitation. II. The mechanism of formation of membranesprepared from the system celluloseacetate-acetone-water”, J. Membrane Sci.,34,pp. 67-86, 1987.

[180] Tsay, C. S., and McHugh, A. J., “Mass transfer modeling of asymmetricmembrane formation by phase inversion”, J. Polyn. Sci., Part B, Polym.Phys., 28, pp. 1327-1365, 1990.

[181] Radovanovic, P., Thiel, S. W., and Hwang, S. T., “Formation of asymmetricpolysulfone membranes by immersion precipitation. Part I: Modelling masstransport during gelation”., J. Membrane Sci., 65, pp. 213-229, 1992.

[182] Al-Bastaki, N., and Abbas, A., “Use of fluid instabilities to enhancemembrane performance: a review”., Desalination, 136, pp. 255-262, 2001.

Page 16: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

134

[183] Sumitra Subrahmanyan, (2003), “An investigation of pore collapse inasymmetric polysulfone membranes”, Dissertation, Virginia PolytechnicInstitute and State University, Blacksburg, Virginia.

[184] Schmidt, K.F., (2007) “Nanofrontiers, visions for the future ofnanotechnology. Project on Emerging Technologies, Woodrow, WilsonInternational Center for scholars, National Institutes of health , Washington,D.C, USA.

[185] Petersen, R. J., “Composite reverse osmosis and nanofiltration membranes”,J.Membr.Sci., 83, pp. 81-150,1993.

[186] Wijmans, J. G., and Baker, R. W., “The solution-diffusion model: a review”,J.Membr.Sci., 107, pp.1-21, 1995.

[187] Peters, J. M. M., Boom, J. P., Mulder, M. H. V., and Strathmann, H.,“Retention Measurements of Nanofiltration Membranes with ElectrolyteSolutions”, J. Membr. Sci. 145, 199-209,1998.

[188] Michael Dunlap., Adaskaveg, J.E., (1997), “Introduction to the ScanningElectron Microscope, Theory, Practice and Procedures”, Facility andAdvanced Instrumentation, U.C, Davis.

[189] Brent Fultz., James M. Howe., (2008) “Tranmission Electron Microscopy andDiffractometry of Materials”, 3rd edition, Springer-Verlag, Berlin Heidelberg.

[190] David B.Williams., Barry Carter ,C., (2009)“Transmission ElectronMicroscopy: A Text book for Materials Science, 2nd edition, Springer.

[191] Suryanarayana, C., Norton, M.G., (1998) “X-ray Diffraction, A PracticalApproach”, pp. 207-221.

[192] Hammond, C., (2001), “The basics of crystallography and diffraction”, 2nded. OUP,

[193] Birkholz, M., (2006), “Thin film analysis by X-ray Scattering”, Wiley-VchVerlag GmbH & Co.

[194] Cullity, B.D., (1956), “Elements of X-ray diffraction”, Addison-WesleyPublishing Company, Inc., Massachusetts.

[195] Robert D. Braun., (2006), “Introduction to Instrumental Analysis, InfraredSpectroscopy”, Pharma Book Syndicate, pp. 371-373, Hyderabad.

[196] Skoog, Holler & Nieman., (1998), “Principles of instrumental analysis”, 5th

edition, Sounders College Publishing, USA.

[197] Ewing, G. W., (1985), “Instrumental methods of chemical analysis”, 5th

edition, Mc Graw-Hill international editions, Singapore.

Page 17: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

135

[198] Clark, B. J., Frost, T., and Russel, M. A., (1993), “UV Spectroscopy:Techniques, instrumentation and data handling”, Chapman and Hall, London,UK.

[199] Michael Thomas., (1996), “Ultraviolet and Visible spectroscopy” 2nd edition,John Wiley and Sons, England.

[200] Bruce B. Weiner., Walther W. Tscharnuter., David Fairhurst., (1993), “ZetaPotential: A New Approach” Brookhaven Instruments Corporation,Holtsville, NY, US.

[201] Paul van der Heide., (2011), “X-ray photoelectron spectroscopy: Anintroduction to principles and practices”, John Wiley and Sons, Inc.,

[202] Barr, T. L., (1994), “Modern ESCA The Principles and Practice of X-RayPhotoelectron Spectroscopy”, CRC Press, Inc.

[203] Watts, J. F., and Wolstenholme, J., (2003), “An introduction to surfaceanalysis by XPS and AES”, John Wiley and Sons, Chichester, England.

[204] Langmuir, I., “The adsorption of gases on plane surfaces of glass, mica, andplatinum”, J. Amer. Chem. Soc., 40, pp.1361-1368, 1918.

[205] Rouquerol, F., Rouquerol, J., Sing, K. S. W., “Adsorption by Powders andPorous Solids”, Academic Press, pp.1-25, 1999.

[206] Sing, K. S. W., et al., “Reporting Physisorption Data for Gas/Solid Systems”,Pure and Appl. Chem., 57, pp. 603-619, 1985.

[207] Robert Thomas., (2004)., “Practical Guide to ICP-MS”, Marcel Dekker, Inc.,New York, Basel.

[208] Iqbal Ahmed., Zainal Abidin., Mohd Yusof., and Beg, M.D.H., “Fabricationof Polymer Based Mix Matrix Membrane –A Short Review”, IJBAS-IJENS,10 (2), pp.17-27, 2010.

[209] Munari, S., Botino, A., Camera Roda, G. and Capannelli, G., “Preparation ofUltrafiltration Membranes. State of the Art”, Desalination, 77, pp.85 -100,1990.

[210] Idris Ani., Lee, K. Y., Hing, H.K., “Preparation of flat sheet celluloseacetate dialysis membrane suitable for separation of BSA solution”. JurnalTeknologi, 42(F), pp. 35-46, 2005.

[211] Arthanareeswaran, G., Thanikaivelan, P., Srinivasan, K., Mohan, D.,Rajendran, M., “Synthesis, characterization and thermal studies on celluloseacetate membranes with additive”. Eur.Polym.J., 40, pp. 2153-2159, 2004.

[212] Xu Ying., Baoku Zhu., Youyi Xu., “A study on formation of regularhoneycomb pattern in polysulfone film”. Polymer, 46, pp.713-717, 2005.

Page 18: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

136

[213] Kim Sue Ryeon., Kew Ho Lee., Mu Shik Jhon., “The effect of ZnCl2 on theformation of polysulfone membrane”. J. Membr. Sci., 119, pp.59-64, 1996.

[214] Dai Ying., Xigao Jian., Shouhai Zhang., Michael, D. Guliver.,“Thermostable ultrafiltration and nanofiltration membranes from sulfonatedpoly(phthalazinone ether sulfone ketone)”, J. Membr. Sci., 188, pp.195-203,2001.

[215] Yang Fajie., Shouhai Zhang., Daling Yang., Xigao Jian., “Preparation andcharacterization of polypiperazine amide/PPRSK hollow fiber compositenanofiltration membrane”. J. Membr. Sci., 301, pp.85-92, 2007.

[216] Kim In-Chul., Hyung-Gu Yun., Kew-Ho Lee., “Preparation of asymmetricpolyacrylonitrile membrane with small pore size by phase inversion and post-treatment process”, J. Membr. Sci., 199,pp. 75-84, 2002.

[217] Han Myeong-Jin., Suk-Tae Nam., “Thermodynamic and rheological variationin polysulfone solution by PVP and its effect in the preparation of phaseinversion membrane”, J. of Membr. Sci. 202, pp. 55-61, 2002.

[218] Chakrabarty, B., Ghoshal, A. K., Purkait, M. K., “Preparation,characterization and performance studies of polysulfone membranes usingPVP as an additive”. J. Membr. Sci., 315,pp. 36-47, 2008.

[219] Reverchon, E., Cardea, S., “Formation of polysulfone membranes bysupercritical CO2”. J. of Supercrit. Fluids , 35, pp. 140-146, 2005.

[220] Ramaswamy Shivaraman., Gopalakrishnan, C., Satyavijaya Kumar, N.,Angeline Littleflower., Ponnavaikko, M., “Fabrication of Ni nanodotstemplated by nanoporous polysulfone membrane: Structural and Magneticproperties”. Appl. Phys. A, 98(3),pp. 481-485, 2010.

[221] Han Myeong-Jin., Dibakar Bhattacharya., “Changes in morphology andtransport characteristics of polysulfone membranes prepared by differentdemixing conditions”., J. Membr. Sci., 98, pp.191-200, 1995.

[222] Munari, S., Bottino, A., Capannelli, G., Moretti, P., “Membrane morphologyand transport properties”, Desalination, 53, pp.11–23,1985.

[223] Bhattacharya, A., Mukherjeeb, D.C., Gohila, J.M., Kumara, Y., Kunduc, S.,“Preparation, characterization and performance of conducting polypyrrolecomposites based on polysulfone”, Desalination, 225, pp. 366-372, , 2008.

[224] Kripal Singh., Pravin G. Ingole., Jayesh Chaudhari, Harshad Bhrambhatt,Amit Bhattacharya, Hari C. Balaji., “Resolution of racemic mixture of a -amino acid derivative through composite membrane”, 378, pp. 531-540,2011.

Page 19: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

137

[225] Khanna, P. K.,Narendra Singh., Shobhit Charan., Subbarao, V. V. S.,Gokhale, R., Mulik, U. P., “Synthesis and characterization of Ag/PVAnanocomposite by chemical reduction method”. Mater. Chem. Phys., 93,pp.117-121, 2005.

[226] Gopalakrishnan, C.,Shivaraman Ramaswamy., Usha Memoriya., “AtomicForce Microscopy Studies of Silver Nanoislands synthesized fromAspergillus versicolor”, Journal of Scanning Probe Microscopy, 2, pp.1-5,2007.

[227] Belfort, G., Davis, R. H. & Zydney, A. L., “The behavior of suspensions andmacromolecular solutions in crossflow microfiltration”, “J. Membr.Sci. 96,pp. 1-58, 1994.

[228] Wei, X., Wang, R., Fane, A.G., “Development of a novel electrophoresis-UVgrafting method to modify PES UF membranes used for NOM removal”. JMemb. Sci., 273, pp. 47-57, 2006.

[229] Fane, A.G., Fell, C.J.D., “A review of fouling and fouling control inultrafiltration”. Desalination, 62, pp.117-136, 1987.

[230] Buckley, C. A., & Hurt, Q. E., (1996), “Membrane Applications: AContaminant-Based Perspective, in Water Treatment: Membrane Processes”,McGraw Hill Co., New York, NY. 3.1-3.24.

[231] Song, L. F., & Elimelech, M., “Theory of concentration polarization in cross-flow Filtration”. J. Chem. Soc., Faraday Trans., 91, pp. 3389-3398, 1995.

[232] Kenneth M. Persson., Vassilis Gekas., Gun Tragardh., “Study of membranecompaction and its influence on ultrafiltration water permeability”,J.Membr.Sci., 100, pp.155-162, 1995.

[233] Jonsson, G., “The influence of pressure in the compaction of asymmetriccellulose acetate membranes” Proceedings of the 6th InternationalSymposium in Fresh Water from Sea, “PVP- Vol. 3”, in Delyannis andDelyannis (Eds.), Athens, 1978.

[234] Bowen, W.R., and Mohammad, A.W., “Characterization and prediction ofnanotiltration membrane performance -a general assessment”, Trans.IChemE., 76(A), pp. 885-893, 1998.

[235] Mika, A.M., Childs, R.F., Dickson, J.M., McCarry, B.E., Gagnon, D.R.. “Anew class of polyelectrolyte-filled microfiltration membranes withenvironmental controlled porosity”, J. Membr. Sci., 108, pp. 37-56, 1995.

[236] Hoffer, E., Kedem, O., “Negative rejection of acids and separation of ions byhyperfiltration”. Desalination, 5, pp.167-172, 1968.

Page 20: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

138

[237] Hayashita, T., Takagi, M., Ueno, K., “Negative rejection of group IB metalcyanide complexes in the hyperfiltration by cellulose acetate membranes.Donnan membrane effect”, Sep. Sci. Tech., 18, pp. 461-466, 1983.

[238] Hoffer, E., Kedem, O., “Hyperfiltration in charged membranes: The fixedcharged model”, Desalination, 2, pp. 25-9, 1967.

[239] Akred, A. R., Fane, A. G., Friend, J. P., (1980) “Ultrafiltration Membranesand Applications” Cooper, A. R., Ed.; Plenum Press: New York, pp. 353-372.

[240] Vonk, M. W., Smit, J. A.M., “Positive and negative ion retention curves ofmixed electrolytes in reverse osmosis with a cellulose acetate membrane. Ananalysis on the basis of the generalized Nernst—Planck equation” J.ColloidInterface Sci., 96, pp.121-134, 1983.

[241] Tsuru, T., Urairi, M., Nakao, S.-I., Kimura, S., “Negative rejection of anionsin the loose reverse osmosis separation of mono- and divalent ion mixtures”,Desalination,81,pp.219-227, 1991.

[242] Johnston, S. T., Smith, K. A., & Deen, W. M., “Concentration polarization instirred ultrafiltration cells”. AIChE J.,47, pp.1115-1125, 2001.

[243] Bhattacharyya, D., Mc Carthy, J.M., Grieves, R.B., “Charged membraneultrafiltration of inorganic ion in single and multi-salt systems”, AIChE J., 20,pp.1206-1212,1974.

[244] Jitsuhara, I., Kimura, S., “Structure and properties of charged ultrafiltrationmembranes made of sulfonated polysulfone”, J. Chem. Eng. Jpn., 16, pp.389-393, 1983.

[245] Tsuru, T., Nakao, S.I., Kimura, S., “Effective charge-density and porestructure of charged ultrafiltration membranes”. J Chem Eng. Jpn., 23, pp.604-610, 1990.

[246] Tsuru, T., Nakao, S., Kimura, S., “Calculation of ion rejection by extendedNernst-Planck equation with charged reverse osmosis membranes for singleand mixed electrolyte solutions”, J. Chem. Eng. Jpn., 24(4), pp. 511-517,1991.

[247] Homayoonfal, M., and Akbari, A., “Preparation of Polysulfone nano-structured membrane for sulphate ions removal from water”, IJEHSE, 7(5),pp. 407-412, 2010.

[248] Arza seidel., John J. Waypa., and Menachem Elimelech., “Role of Charge(Donnan) Exclusion in Removal of Arsenic from Water by a NegativelyCharged Porous Nanofiltration Membrane” Environ. Eng. Sci., 18 (2), pp.105-113, 2001.

Page 21: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

139

[249] In-Chul Kim., Kew-Ho Lee., Tae-Moon Tak., “Preparation andcharacterization of integrally skinned uncharged polyetherimide asymmetricnanofiltration membrane”, J.Membr.Sci., 183, pp. 235-247, 2001.

[250] Xiaofeng Lu., Xiaokai Bian., Liuqing Shi., “Preparation andcharacterization of NF composite membrane”, J.Membr.Sci., 210, pp. 3-11,2002.

[251] Genne, I., Kuypers, S., Leysen, R., “Effect of the addition of ZrO2 topolysulfone based UF membranes”, J. Membr. Sci., 113, pp. 343–350, 1996.

[252] Li, J.B., Zhu, J.W., Zheng, M.S., “ Morphologies and properties ofpoly(phthalazinone ether sulfone ketone) matrix ultrafiltration membraneswith entrapped TiO2 nanoparticles”, J. Appl. Polym. Sci., 103, pp. 3623–3629, 2006.

[253] Aerts, P., Genne, I., Kuypers, S., Leysen, R., Vankelecom, I.F.J., Jacobs,P.A.,“Polysulfone–aerosil composite membranes. Part 2. The influence of theaddition of aerosil on the skin characteristics and membrane properties”, J.Membr.Sci., 178, pp.1–11, 2000.

[254] Wara, N. M., Francis, L. F., Velamakanni, B.V., “Addition of alumina tocellulose acetate membranes”, J. Membr. Sci., 104, pp. 43–49, 1995.

[255] He, X., Shi, Q., Zhou, X., Wan, C., Jiang, C., “In situ composite of nanoSiO2-P(VDFHFP) porous polymer electrolytes for Li-ion batteries”,Electrochim. Acta, 51,pp.1069–1075, 2005.

[256] Mulongo George, Mbabazi Jolocam and Song Hak-Chol., “Synthesis andCharacterisation of Silver Nanoparticles using High Electrical ChargeDensity and High Viscosity Organic Polymer”, Res. J. Chem. Sci., 1(4),pp.18-21, 2011.

[257] Klefenz, H., “Nanobiotechnology: from molecules to systems”, Eng. Life Sci.4 (3),pp. 211–218, 2004.

[258] Masciangioli, T., Zhang, W.X., “Environmental technologies at thenanoscale”, Environ. Sci. Technol., 37 (5), pp. 102A–108A, 2003.

[259] Zhang, L., Fang, M., “Nanomaterials in pollution trace detection andenvironmental Improvement”, Nano Today, 5 (2), pp.128–142, 2010.

[260] Evanoff Jr. D. D., and Chumanov, G., “Synthesis and Optical Properties ofSilver Nanoparticles and Arrays”, Chem Phys. Chem., 6(7), pp.1221-1231,2005.

[261] Meyer, D.E., Wood, K., Bachas, L.G., Bhattacharyya, D., “Degradation ofchlorinated organics by membrane-immobilized nanosized metals”, Environ.Prog., 23, pp. 232–242, 2004.

Page 22: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

140

[262] Monticelli, O., Bottino, A., Scandale, I., Capannelli, G., Russo, S.,“Preparation and properties of polysulfone–clay composite membranes”, J.Appl. Polym. Sci.,103, pp.3637–3644, 2007.

[263] Wara, N.M., Francis, L.F., Velamakanni, B.V., “Addition of alumina tocellulose acetate membranes”, J. Membr. Sci., 104, pp. 43–49, 1995.

[264] Yan, L., Li, Y.S., Xiang, C.B., Xianda, S., “Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance”, J. Membr.Sci., 276, pp.162–167, 2006.

[265] Yang, Y., Zhang, H., Wang, P., Zheng, Q., Li, J., “The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane”,J. Membr. Sci.,288,pp. 231–238, 2007.

[266] Yu, D.G., Teng, M.Y., Chou, W.L., Yang, M.C., “Characterization andinhibitory effect of antibacterial PAN-based hollow fiber loaded with silvernitrate”, J. Membr.Sci., 225, pp.115–123, 2003.

[267] Aerts, P., Genne, I., Kuypers, S., Leysen, R., Vankelecom, I.F.J., Jacobs,P.A.,“Polysulfone–aerosil composite membranes. Part 2. The influence of theaddition of aerosil on the skin characteristics and membrane properties”, J.Membr.Sci., 178, pp.1–11, 2000.

[268] Aerts, P., VanHoof, E., Leysen, R., Vankelecom, I.F.J., Jacobs, P.A.,“Polysulfone–aerosil composite membranes. Part 1. The influence of theaddition of Aerosil on the formation process andmembrane morphology”,J.Membr. Sci., 176, pp. 63–73, 2000.

[269] Ballinas, L., Torras, C., Fierro, V., Garcia-Valls, R., “Factors influencingactivated carbon–polymeric composite membrane structure andperformance”, J. Phys.Chem. Solids, 65, pp.633–637, 2004.

[270] Bottino, A., Capannelli, G., Comite, A., “Preparation and characterization ofnovel porous PVDF–ZrO2 composite membranes”, Desalination, 146, pp. 35–40, 2002.

[271] Bottino, A., Capannelli, G., Asti, V. D., Piaggio, P., “Preparation andproperties of novel organic–inorganic porous membranes”, Separ. Purif.Technol., 22(23), pp.269–275, 2001.

[272] Chou, W.L., Yu, D.G., Yang, M.C., “The preparation and characterizationof silverloading cellulose acetate hollow fiber membrane for watertreatment”, Polym. Advan. Technol., 16, pp. 600–607, 2005.

[273] Genne, I., Kuypers, S., Leysen, R., “Effect of the addition of ZrO2 topolysulfone based UF membranes”, J. Membr. Sci., 113, pp.343–350, 1996.

Page 23: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

141

[274] Li, J.B., Zhu, J.W., Zheng, M.S., “Morphologies and properties ofpoly(phthalazinone ether sulfone ketone) matrix ultrafiltration membraneswith entrapped TiO2 nanoparticles”, J. Appl. Polym. Sci., 103, pp.3623–3629,2006.

[275] Ahmad M. B., Shameli K., and Yunus W. M. Z. W., “Synthesis andAntibacterial Activity of Silver/Montmorillo-nite Nanocomposites”, Res. J.Biol. Sci., 4(9), pp.1032-1036, 2009.

[276] Chou, W.L., Yu, D.G., Yang, M.C., “The preparation and characterization ofsilverloading cellulose acetate hollow fiber membrane for water treatment”,Polym. Advan. Technol., 16, pp. 600–607, 2005.

[277] Yu, D.G., Teng, M.Y., Chou, W.L., Yang, M.C., “Characterization andinhibitory effect of antibacterial PAN-based hollow fiber loaded with silvernitrate”, J. Membr. Sci., 225, pp. 115–123, 2003.

[278] Holt, K. B., and Bard, A.J., “Interaction of Silver (I) ions with the RespiratoryChain of E. Coli: An Electrochemical and Scanning Electron MicroscopyStudy of the Antimi-crobial Mechanism of Micromolar Ag+”, Biochemistry,44, pp.13214- , 2005.

[279] Son, W.K., Youk, J.H., Lee, T.S., Park, W.H., “Preparation ofantimicrobial ultrafine cellulose acetate fibers with silver nanoparticles”,Macromol. Rapid Commun.,25, pp. 1632–1637, 2004.

[280] Majumder, M., Chopra, N., Andrews, R., Hinds, B.J., “Nanoscalehydrodynamics-Enhanced flow in carbon nanotubes”. Nature, 438, pp-44,2005.

[281] Kumar, C.G., and Anand, S.K., “Significance of microbial biofilms in foodindustry: a review., International journal of food microbiology, 42, pp-9-27,1998.

[282] Ridgway, H.F., Flemming, H. C., “Membrane biofouling”, Water Treat.Membr. Process., pp.6.1–6.62, 1996.

[283] Lewandowsky, Z., Beyenal, H., “Fundamentals of Biofilm Research”, CRCPress, Boca Raton, 2007.

[284] Le-Clech, P., Chen, V., and Fane, T. A. G., “Fouling in membranebioreactors used in wastewater treatment”. J. Memb. Sci., 284, pp. 17-53,2006.

[285] Yang, W., Cicek, N., and Ilg, J., “State-of-the-art of membrane bioreactors:Worldwide research and commercial applications in North America”, J.Memb. Sci.,270, pp.201-211, 2006.

Page 24: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

142

[286] Ang, W. S., Lee, S., and Elimelech, M., “Chemical and physical aspects ofcleaning of organic-fouled reverse osmosis membranes”. J. Memb. Sci., 272,pp.198-210, 2006.

[287] Shintani, T., Matsuyama, H., and Kurata, N., “Development of a chlorine-resistant polyamide reverse osmosis membrane”. Desalination, 207, pp. 340-348, 2007.

[288] Alley, E. R., (2006), Water quality control handbook, McGraw Hill, NewYork, NY.

[289] Park, H. B., Freeman, B. D., Zhang, Z.-B., Sankir, M. & McGrath, J. E.,“Highly chlorine-tolerant polymers for desalination”. Angewandte ChemieInternational Edition 47, pp.6019-6024, 2008.

[290] Nangmenyi, G., Xao, W., Mehrabi, S., Mintz, E., Economy, J., “Bacterialactivity of Ag nanoparticle-impregnated fiberglass for water disinfection”., J.Water Health, 7, pp.657-663, 2009.

[291] Choi, H., Stathatos, E., Dionysiou, D.D., “Photocatalytic TiO2 films andmembranes for the development of efficient waste water treatment and reusesystems, Desalination, 202, pp.199-206, 2007.

[292] Vickaryous, W.J., Herges, R., Johnson, D.W., “Arsenin-pi interactionsstabilize a self-assembled As2L3 supramolecular complex”, Angew. Chem.-Int.Edit., 43, pp.5831-5833, 2004.

[293] Diallo, M.S., Christie, S., Swaminathan, P., Johnson, J.H., Goddard, W.A.,“Dendrimer enhanced ultrafiltration. 1. Recovery of Cu (II) from aqueoussolutions using PAMAM dendrimers with ethylene diamine core and terminalNH2 groups. Environ.Sci.Technol., 39, pp. 1366-1377, 2005.

[294] Lin, Y.H., Cui, X.L., “Novel hybrid materials with high stability forelectrically switched ion exchange: carbon nanotube-polyaniline-nickelhexacyanoferrate nanocomposites”, Chem.Commun., (17) ,pp. 2226-2228,2005.

[295] Nair, A.S., Pradeep.T., “Halocarbon mineralization and catalytic destructionby metal nanoparticles”, Curr.Sci., 84,pp.1560-1564, 2003.

[296] Phenrat, T., Liu,Y.Q., Tilton,R.D., Lowry,G.V., “Adsorbed polyelectrolytecoatings decrease Fe-O nanoparticle reactivity with TCE in water:Conceptual model and mechanisms”, Environ.Sci.Technol., 43,pp.1507-1514,2009.

[297] Holt, K.B., Bard, K.B., “Interaction of silver(I) ions with the respiratory chainof Escherichia coli: an electrochemical and scanning electrochemicalmicroscopy study of the antimicrobial mechanism of micromolar Ag+”,Biochemistry, 44,pp.3214-13223, 2005.

Page 25: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

143

[298] Lizhi Zhang., Jimmy Yu, C., Ho Yin Yip., Quan Li; Kwan Wai Kwong., An-Wu Xu.,Po Keung Wong., “Ambient Light Reduction Stratefy to synthesizeSilver Nanoparticles and Silver-Coated TiO2 with Enchanced Photocatalyticand Bactericidal Activities”, Langmuir, 19,pp.10372-10380, 2003.

[299] Ananthanarayan, R., Jayaram Paniker, C. K., “Textbook of Microbiology”,7th Ed.; Jayaram Paniker, C.K.; Orient Longman: Hyderabad, India, pp. 271-273, 2005.

[300] Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G., “Bergery’s manual ofsystematic bacteriology, Williams and Wilkins. USA, vol.2,1986.

[301] Castnon Martinez. G. A., Nino-Martinez, N., Martinez-Gutierrez, F.,Martinez-Mendoza, J. R., Facundo Ruiz., “Synthesis and antibacterial activityof silver nanoparticles with different sizes”. J.Nanopart Res., 10, pp.1343-1348, 2008.

[302] Davies, R.L., Etris, S.F., “The development and functions of silver in waterpurification and disease control”, Catalysis Today, 36, pp.107-114, 1997.

[303] Feng, Q.L., Wu,J., Chen, G.Q., Cui, F.Z., Kim, T.N., “A mechanistic study ofthe antibacterial effect of silver ions on Escherichia coli and Staphylococcusaureus”, J.Biomed.Mater.Res., 52, pp. 662-668, 2000.

[304] Russel, A.D., Hugo, W.B., “Antimicrobial activity and action of silver”,Prog.Med.Chem., 31, pp. 351-370, 1994.

[305] Trevors, J.T., “Silver Ressistance and Accumulation in Bacteria. Enzyme andMicrobial Technology”, 9, pp.331-333, 1987.

[306] Hwang, E.T., Lee, J.H., Chae, Y.J., Lim, Y.S., Kim, B.C., Sang, B.I., Gu,M.B., “Analysis of the toxic mode of action of silver nanoparticles usingstress-specific bioluminescent bacteria”, 4, pp.746-750, 2008.

[307] Kim Jun Sung., Eunye Kuk., Kyeong Nam Yu., Jong-Ho Kim., Sung JimPark., Hu Jang Lee., So Hyun Kim., Young Kyung Park., Yong Ho Park.,Cheol-Yong Hwang., Yong-Kwong Kim., Yoon-Sik Lee., Dae Hong Jeong.,Myung-Haing Cho., “Antimicrobial effects of silver nanoparticles”,Nanomedicine: Nanotechnology, Biology and Medicine, 3, pp.95-101, 2007.

[308] Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N.,Sharma, V.K., Neveena, T., Zboril, R., “Silver colloid nanoparticles:Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B.,110, pp. 16248-16253, 2006.

[309] Hamouda, T., Myc, A., Donovan, B., Shih, A., Reuter, J. D., Baker Jr, J.R., “A novel surfactant nano emulsion with a unique non-irritant topicalantimicrobial activity against bacteria, enveloped viruses and fungi”,Microbiol. Res., 156, pp.1-7, 2000.

Page 26: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

144

[310] Dibrov, P., Dzioba, J., Gosink,K. K., Hase, C.C., “Chemiosmotic mechanismof antimicrobial activity of Ag(+) in vibrio cholera”, Antimicrob AgentsChemother.,46, pp. 2668-2670, 2002.

[311] Dragieva, I., Stoeva, S., Stoimenov, P., Pavlikianov, E., Klabunde, K.,“Complex formatiuon in solutions for chemical synthesis of nanoscaledparticles prepared by borohydride reduction process”. Nanostruct. Mater.,12, pp.267-270, 1999.

[312] Gleiter, H., “Nanostructured materials, basic concepts and microstructure”,Acta Mater., 48, pp.1–12, 2000.

[313] Curtis, A., and Wilkinson, C., “Nanotechniques and approaches inbiotechnology Trends Biotechnol”., 19, pp. 97–101, 2001.

[314] Waren, C. W., and Nie, S., “Quantum dot bioconjugates for ultra sensitivenonisotopic detection” Science, 281,pp. 2016–20188, 1998.

[315] Vaseashta, A., and Dimova-Malinovska, D., “Nanostructured and nanoscaledevices, sensors and detectors” Sci. Technol. Adv. Mater. 6, pp. 312–318,2005.

[316] Langer, R., “Drug delivery: drugs on target”, Science, 293, pp. 58–59,2001.

[317] Roy, K., Mao, H. Q., Huang, S. K., and Leong, K. W., “Oral gene deliverywith Chitosan-DNA nanoparticles generates immunologic protection in amurine model of peanut allergy”, Nat. Med., 5, pp. 387–391, 1999.

[318] Sachlos, E., Gotora, D., and Czernuszka, J. T., “Collagen scaffolds reinforcedwith biomimetic composite nano-sized carbonate-substituted hydroxyapatitecrystals and shaped by rapid prototyping to contain internal microchannels”,Tissue Eng. 12, pp. 2479–2487, 2006.

[319] Xu, Z. P., Zeng, Q. H., Lu, G. Q., and Yu, A. B., “Inorganic nanoparticles ascarriers for efficient cellular delivery”, Chem. Eng. Sci., 61, pp. 1027–1040,2006.

[320] Stoimenov, P .K., Klinger, R. L., Marchin, G .L., and Klabunde, K. J., “Metaloxide nanoparticles as bactericidal agents”, Langmuir, 18, pp. 6679–6686,2002

[321] Cho, K. H., Park, J. E., Osaka, T., Park, S. G., “The study of antimicrobialactivity and preservative effects of nanosilver ingredient”, Electrochim. Acta,51, pp. 956–960, 2005.

[322] Ji, J. H., Bae, G. N., Yun, S. H., Jung, J. H., Noh, H. S., Kim, S. S.,“Evaluation of a silver nanoparticle generator using a small ceramic heaterfor inactivation of S. epidermidis bioaerosols”, Aerosol Sci. Technol. 41, pp.786–793, 2007.

Page 27: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

145

[323] Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B.,Yacaman, M. J., “The bactericidal effect of silver nanoparticles”,Nanotechnology 16, pp. 2346–2353, 2005.

[324] Li, P., Li, J., Wu, C., Wu, Q., Li, J., “Synergistic antibacterial effects of -lactam antibiotic combined with silver nanoparticles”, Nanotechnology 16,pp. 1912–1917, 2005.

[325] Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N.,Sharma, V. K., Nevecna, T., and Zboril, R., “Silver colloid nanoparticles:synthesis, characterization, and their antibacterial activity”, J. Phys. Chem.B, 110, pp. 16248–16253, 2006.

[326] Nelson,. Priscyla, D., Marcato1., Gabriel, I. H., De Souza., Oswaldo, L.,Alves., and Elisa, E., “Antibacterial effect of silver nanoparticles produced byfungal process on textile fabrics and their effluent treatment”, J. Biomed.Nanotech., 3, pp.203-208,2007.

[327] Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J., and Shah, S.I, “Synthesisand antibacterial properties of silver nanoparticles” J. Nanosci. Technol., 5,pp. 244-249, 2005.

[328] Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R., Minaian, M.S., “Synthesisand effect of silver nanoparticles on the antibacterial activity of differentantibiotics against Staphylococcus aureus and Escherichia coli”.Nonomedicine, 3, pp. 168-171, 2007.

[329] Pal, S., Kyung, Y., Myong Song, J., “Does the Antibacterial Activity ofSilver Nanoparticles Depend on the Shape of the Nanoparticle? A Study ofthe Gram-Negative Bacterium Escherichia coli”., Appl. Environ. Microbiol.,73(6), pp. 1712-1720, 2007.

[330] Aymonier, C., Scholotterbeck, U., Antonietti, L., Zacharias, P., Thomann,R., T iller, J.C., and Mecking, S., “Hybrids of silver nanoparticles withamphiphilic hyperbranched macromolecules exhibiting antimicrobialproperties”, Chem. Commun.,21(24),pp. 3018-3019, 2002.

[331] Sung, J. H., Ji, J. H., Park, J. D., Yoon, J. U. Kim, D. S., Jeon, . K.S., Song,M.Y., Jeong, J. Han, B. S., Han, J. H., Chung, Y. H., Chang, H. K., Lee, J.H., Cho, M. H. Kelman, B. J., Yu, I. J., “Subchronic inhalation toxicity ofsilver nanoparticles”, Toxicol. Sci., 108, pp.452–461, 2009.

[332] Morris, J., Willis, J., U.S. Environmental Protection Agency NanotechnologyWhite Paper; U.S. Environmental Protection Agency: Washington, DC,February, 2007.

[333] Li, Y., Leung, .P, Yao, L., Song, Q. W., and Newton, E., “Antimicrobialeffect of surgical masks coated with nanoparticles” J. Hosp. Infec., 62, pp.58–63, 2006.

Page 28: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

146

[334] Wiesner, M. R., Lowry, G. V., “Assessing the Risks of ManufacturedNanomaterials.”, Environ. Sci. and Tech., 40, pp. 4336-4345. 2006.

[335] Park, S.J., Taton, T. A., Mirkin, C. A., “Arry-based electrical detection ofDNA with nanoparticle”, Science, 295, pp.1503-1506, 2002.

[336] Li, J., Xue, M.,Wang, H., Cheng, L., Gao, L., Lu, Z., Chan, M., “Amplifyingthe electrical hybridization signals of DNA array by multilayer assembly ofAu nanoparticles probes”., Analyst, 128,pp. 917-923, 2003.

[337] Prakash, D., Nallathamby., and Xiao-Hong Nancy Xu., “Study of cytotoxicand therapeutic effects of stable and puri ed silver nanoparticles on tumorcells”, Nanoscale, 2, pp. 942-952, 2010.

[338] Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H.,Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H,Cho, M. H., “Antimicrobial effects of silver nanoparticles. Nanomedicine”,3(95), pp. 101, 2007.

[339] AshaRani, P. V., Low Kah Mun, G., Hande, M.P., Valiyaveettil, S.,“Cytotoxicity and genotoxicity of silver nanoparticles in human cells”, ACSNano, 3, pp. 279–290,2009.

[340] Carlson, C., Hussain, S. M., Schrand, A.M., Braydich-Stolle, L. K., Hess, K.L., Jones, R.L., Schlager, J.J., “Unique cellular interaction of silvernanoparticles:size- dependent generation of reactive oxygen species”,J.Phys.Chem.B, 112, pp. 13608-13619, 2008.

[341] Choi, O., Hu, Z., “Size dependent and reactive oxygen species relatednanosilver toxicity to nitrifying bacteria”, Environ.Sci.Technol., 42, pp.4583-4588, 2008.

[342] Kvitek, L., Panacek, A., Soukupova, J.,kolar,M.,Vecerova, R., Prucek, R.,Holecova, M., Zboril, R., “Effect of surfactants and polymers on stability andantibactrerial activity of silver nanoparticles (NPs), J.Phys.Chem.C, 112,pp.5825-5834, 2008.

[343] Lok, C., Ho, C., Chen, R., He, Q., Yu, W., Sun,H., Tam, P., Chiu, J., Che, C.,“Silver nanoparticles :partial oxidation and antibacterial activities”,J.Biol.Inorg. Chem., 12, pp. 527-534, 2007.

[344] Pal, S., Tak, Y. K., Joardar, J., Kim, W., Lee, J. E., Han, M. S., Song, J. M.,“Nanocrystalline silver supported on activated carbon matrix from hydrosol:antibacterial mechanism under prolonged incubation conditions”,J.Nanosci.Nanotechnol., 9, pp. 2092-2103, 2009.

[345] Smetana, A., Klabunde, K., Marchin, G., Sorensen, C., “Biocidal activity ofnanocrystalline silver powders and particles”, 24, pp. 7457-7464, 2008.

Page 29: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

147

[346] Lok, C., Chen, R., He, Q., Yu, W., Sun,H., Tam, P., Chiu, J., Che, C.,“Proteomic analysis of the mode of antibacterial action of silvernanoparticles”, J.Proteome.Res., 5, pp. 916-924, 2006.

[347] Nel, A., Xia, T., Madler, L., Li, N. “Toxic Potential of Materials at theNanolevel” Science 311 (5761), pp. 622-627, (2006).

[348] Xie, Y., Ye, R., Liu, H., “Synthesis of silver nanoparticles in reverse micellesstabilized by natural biosurfactant” , Colloids and Surfaces A, 279, pp.175-178. 2006.

[349] Maillard, M., Giorgo, S., Pileni, M.P., “Silver nanodisks”, Adv.Mater.14(15), pp.1084- 1086, 2002.

[350] Pillai Z.S., Kamat P.V., “ What Factors Control the Size and Shape of SilverNanoparticles in the Citrate Ion Reduction Method?”, J.Phys.Chem.B, 108,pp.945-951,2004.

[351] Patel, K., Kapoo,r S., Dave, D.P., Murherjee, T., “Synthesis of nanosizedsilver colloids by microwave dielectric heating”, J.Chem.Sci., 117(1), pp.53-60, 2005.

[352] Pal, A., Shah, S., Devi, S., “Synthesis of Au, Ag and Au-Ag AlloyNanoparticles in Aqueous Polymer Solution,” Colloids Surface A:Physicochemical and Engineering Aspects, 302, 51-57, 2007.

[353] Rosemary, M. J., Pradeep, T., “Solvothermal synthesis of silver nanoparticlesfrom thiolates” Colloids and Surfaces A, 268, pp.81-84, 2003.

[354] Salkar R. A., Jeevanandam P., Aruna S.T., Koltypin, Y., Gedanken, A., “Thesonochemical preparation of amorphous silver nanoparticles”,J.Mater.Chem., 9, pp.1333-1335, 1999.

[355] Soroushian, B., Lampre, I., Belloni J., Mostafavi, M., “Radiolysis of silverion solutions in ethylene glycol: solvated electron and radical scavengingyields,”, Radiation Physics and Chemistry, 72, pp.111-118, 2005.

[356] Starowicz, M., Stypula, B., Banaoe., “Electrochemi-cal Method for theSynthesis of Silver Nanoparticles,” J. Electrochemistry Communications, 8,pp.227-230. 2006.

[357] Zhu, J. J., Liao, X. H., Zhao, X. N., Hen, H. Y., “Preparation of silvernanorods by electrochemical methods”, Materials Letters, 49, pp.91-95.2001.

[358] Liu, S., Chen, S., Huang, W., Avivi, S., Gedanken, A., “Synthesis of X-rayamorphous silver nanoparticles by the pulse sonochemical method”, J.Non-cryst.solids, 283, pp.231-236, 2001.

Page 30: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

148

[359] Fukumi, K., Chayahara, A., Kadono, K., et al.,”Gold nanoparticles ionimplanted in glass with enhanced nonlinear optical properties”, J. Appl. Phys.75, pp. 3075- 3080,1994.

[360] Chou, K., Ren, C. Y., “Synthesis of nanosized silver particles by chemicalreduction method”., Mater. Chem. Phys. 64, pp.241-246, 2000.

[361] Christophe, P., Patricia, L., Marie-Paule, P. J., “In situ synthesis of silvernanocluster in AOT reverse micelles”, Phys. Chem. 97, pp.12974-12983,1993.

[362] Vorobyova, S. A., Lesnikovich, A. I., Sobal, N. S., “Preparation of silvernanoparticles by interphase reduction”, Colloids. Surf., A, 152, pp. 375-379,1999.

[363] Mroz, R. M., Schins, R. P., Nimenez, L. A., Drost, E. M., Holownia, A.,MacNee, W., Donaldson, K., “Nanoparticle-driven DNA damage mimicsirradiation-related carcinogenesis pathways,” , J. Euro. Respir, 31, pp. 241–251, 2008.

[364] Midander, K., Cronholm, P., Karlsson, H. L., Elihn, K., Möller, L., Leygraf,C., Wallinder, I. O., “Surface characteristics, copper release, and toxicity ofnano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study”, Small 5(3), pp.389–399, 2009.

[365] Limbach, L. K., Wick, P., Manser, P., Grass, R. N., Bruinink, A., Stark, W.J.,“Exposure of engineered nanoparticles to human lung epithelial cells:influence of chemical composition and ,atalytic activity on oxidative stress”,Environ Sci Technol 41(11), pp.4158–4163, 2007.

[366] Ahamed, M., Karns, M. Goodson, M., Rowe, J., Hussain, S.M., Schlager,J.J., Hong, Y., “DNA damage response to different surface chemistry ofsilver nanoparticles in mammalian cells”, Toxicol. Appl. Pharmacol. 233,pp.404–410, 2008.

[367] Kumaravel, T. S., Jha, A. N., “Reliable comet assay measurements fordetecting DNA damage induced by ionising radiation and chemicals”, Mutat.Res. 605, pp.7–16, 2006.

[368] Kumaravel, T. S., Vilhar, B., Faux, S. P., Jha, A. N.,” Comet assaymeasurements: a perspective”, Cell Biol. Toxicol. 25, pp. 53–64, 2009.

[369] Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A.,Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J.C., Sasaki, Y.F., “ Singlecell gel/comet assay: guidelines for in vitro and in vivo genetic toxicologytesting”, Environ. Mol. Mutagen. 35, pp. 206–221, 2000.

[370] Collins, A. R., Dusinska, M., Horska, A., “ Detection of alkylation damagein human lymphocyte DNA with the comet assay”, Acta Biochim. Pol. 48,pp.611–614, 2001.

Page 31: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

149

[371] Fairbairn, D. W., Olive, P. L., O’Neill, K. L.,“The comet assay: acomprehensive review”, Mutat. Res. 339, pp.37–59, 1995.

[372] Collins, A. R. , Oscoz,, A. A., Brunborg, G., Gaivao, I., Giovannelli, L.,Kruszewski, M., Smith, C.C., Stetina, R.,” The comet assay: topical issues”,Mutagenesis, 23, pp.143–151,2008.

[373] Sestili, P., “The fast-halo assay for the assessment of DNA damage at thesinglecell level, Methods”, Mol. Biol., 521, pp.517–533, 2009.

[374] OECD guidelines for the testing of chemicals. Section 4. Health effects.

[375] Horvathova, E., Slamenova, D., Hlincikova, L., Mandal, T. K. , Gabelova, A.,Collins, A. R., “The nature and origin of DNA single-strand breaksdetermined with the comet assay”, Mutat. Res., 409,pp.163–171, 1998.

[376] Horvathova, E., Slamenova, D., Gabelova, A., “Use of single cell gelelectrophoresis (comet assay) modifications for analysis of DNA damage”,Gen. Physiol. Biophys.,18, pp.70–74, 1999.

[377] Azevedo, F., Marques, F., Fokt, H., Oliveira, R., Johansson, B., “Measuringoxidative DNA damage and DNA repair using the yeast comet assay”, Yeast,28, pp.55–61, 2011.

[378] Liu, W., Wu, Y., Wang, C., Li, H. C., Wang, T., Liao, C. Y., Cui, L.,Zhou, Q. F., Yan, B., Jiang, G. B., “ Impact of silver nanoparticles on humancells: effect of particle size”, Nanotoxicology, 4, pp. 319–330, 2010.

[379] Piao, M. J., Kang, K.A., Lee, I. K., Kim, H. S., Kim, S., Choi, J. Y., Choi,J., Hyun, J. W., “Silver nanoparticles induce oxidative cell damage in humanliver cells through inhibition of reduced glutathione and induction ofmitochondria-involved apoptosis”, Toxicol. Lett. 201, pp. 92–100, 2011.

[380] Prevenslik, T. V., “Nanoparticle induced DNA Damage, IEEE Nanomed2009, Tainan, 18-21 October, 2009.

[381] Mroz, et al., R. M., “Nanoparticle-driven DNA damage mimics irradiation-related carcinogenesis pathways,” Euro. Respir. J., 31, pp. 241–251, 2008.

[382] Ahmed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S. M., Schlaqer, J.J., Hong, Y., “DNA damage .response to different surface chemistry of silvernanoparticles in mammalian cells,” Toxico. Appl. Pharmacol, 233, pp. 404-410, 2008.

[383] Donaldson, K,. Craig, A. P., Roel, P. F. S., “Possible genotoxic mechanismsof nanoparticles: criteria for improved test strategies”, N.anotechnology, 4,pp.414–420, 2010.

Page 32: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../17/17_references.pdf · [33] Donnan, F.G., “Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht

150

[384] Reeves, J. F., Davies, S.J., Dodd, N.J., Jha, A.N., “Hydroxyl radicals (*OH)are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicityand oxidative DNA damage in fish cells”, Mutat. Res., 640, pp.113–122,2008.

[385] Dodd, N. J.,Jha, A. N., “Titanium dioxide induced cell damage: a proposedrole of the carboxyl radical”, Mutat. Res., 660,pp.79–82, 2009.

[386] Vevers, W. F., Jha, A. N., “Genotoxic and cytotoxic potential of titaniumdioxide (TiO2) nanoparticles on fish cells in vitro”, Ecotoxicology, 17,pp.410–420, 2008.

[387] Dodd, N. J., Jha, A. N., “Photoexcitation of aqueous suspensions of titaniumdioxide nanoparticles: an electron spin resonance spin trapping study ofpotentially oxidative reactions”, Photochem. Photobiol., 87, pp. 632–640,2011.

[388] Ionita, P., Spafiu, F., Ghica, C., “Dual behavior of gold nanoparticles, asgenerators and scavengers for free radicals”, J. Mater. Sci., 43, pp. 6571–6574, 2008.