segre/phys570/15s/lecture_14.pdfscattering amplitude fcrystal(q~) = xn l f l(q~)ei q~~r l = xn r~...

150
Today’s Outline - March 05, 2015 C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22

Upload: others

Post on 28-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:Chapter 4: 2, 4, 6, 7, 10due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22

Page 2: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:Chapter 4: 2, 4, 6, 7, 10due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22

Page 3: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:Chapter 4: 2, 4, 6, 7, 10due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22

Page 4: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:Chapter 4: 2, 4, 6, 7, 10due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22

Page 5: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:Chapter 4: 2, 4, 6, 7, 10due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22

Page 6: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:Chapter 4: 2, 4, 6, 7, 10due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22

Page 7: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:Chapter 4: 2, 4, 6, 7, 10due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22

Page 8: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Types of lattice vectors

a2

a1

a2

a1

a2

a1

~Rn = n1~a1 + n2~a2

primitive

non-primitive

non-conventional

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 2 / 22

Page 9: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Types of lattice vectors

a2

a1

a2

a1

a2

a1

~Rn = n1~a1 + n2~a2

primitive

non-primitive

non-conventional

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 2 / 22

Page 10: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Types of lattice vectors

a2

a1

a2

a1

a2

a1

~Rn = n1~a1 + n2~a2

primitive

non-primitive

non-conventional

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 2 / 22

Page 11: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Types of lattice vectors

a2

a1

a2

a1

a2

a1

~Rn = n1~a1 + n2~a2

primitive

non-primitive

non-conventional

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 2 / 22

Page 12: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

More about lattice vectors

a2

a1

a2

a1

sometimes conventional axes...

...are not primitive

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 3 / 22

Page 13: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

More about lattice vectors

a2

a1

a2

a1

sometimes conventional axes...

...are not primitive

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 3 / 22

Page 14: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Miller indices

a2

a1

(10)(20)

(11)

planes designated (hk), intercept theunit cell axes at

a1h,

a2k

for a lattice with orthogonal unit vec-tors

1

d2hk

=h2

a21+

k2

a22

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 4 / 22

Page 15: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Miller indices

a2

a1

(10)(20)

(11)

planes designated (hk), intercept theunit cell axes at

a1h,

a2k

for a lattice with orthogonal unit vec-tors

1

d2hk

=h2

a21+

k2

a22

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 4 / 22

Page 16: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Miller indices

a2

a1

(10)(20)

(11)

planes designated (hk), intercept theunit cell axes at

a1h,

a2k

for a lattice with orthogonal unit vec-tors

1

d2hk

=h2

a21+

k2

a22

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 4 / 22

Page 17: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Reciprocal lattice

a2

a1

a* = 2π/a1 1

a* = 2π/a2 2

~a∗1 =2π

Vc~a2 × ~a3 ~a∗2 =

Vc~a3 × ~a1 ~a∗3 =

Vc~a1 × ~a2

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 5 / 22

Page 18: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Reciprocal lattice

a2

a1

a* = 2π/a1 1

a* = 2π/a2 2

~a∗1 =2π

Vc~a2 × ~a3 ~a∗2 =

Vc~a3 × ~a1 ~a∗3 =

Vc~a1 × ~a2

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 5 / 22

Page 19: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Reciprocal lattice

a2

a1

a* = 2π/a1 1

a* = 2π/a2 2

~a∗1 =2π

Vc~a2 × ~a3 ~a∗2 =

Vc~a3 × ~a1 ~a∗3 =

Vc~a1 × ~a2

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 5 / 22

Page 20: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)then the crystal is described by the function

C(x) =∑n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =∑n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞−∞L(x ′)B(x − x ′)dx ′ =

∫ ∞−∞

∑n

δ(x ′ − na)B(x − x ′)dx ′

=∑n

∫ ∞−∞

δ(x ′ − na)B(x − x ′)dx ′ =∑n

B(x − na) = C(x)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 6 / 22

Page 21: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)then the crystal is described by the function

C(x) =∑n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =∑n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞−∞L(x ′)B(x − x ′)dx ′ =

∫ ∞−∞

∑n

δ(x ′ − na)B(x − x ′)dx ′

=∑n

∫ ∞−∞

δ(x ′ − na)B(x − x ′)dx ′ =∑n

B(x − na) = C(x)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 6 / 22

Page 22: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)then the crystal is described by the function

C(x) =∑n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =∑n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞−∞L(x ′)B(x − x ′)dx ′ =

∫ ∞−∞

∑n

δ(x ′ − na)B(x − x ′)dx ′

=∑n

∫ ∞−∞

δ(x ′ − na)B(x − x ′)dx ′ =∑n

B(x − na) = C(x)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 6 / 22

Page 23: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)then the crystal is described by the function

C(x) =∑n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =∑n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞−∞L(x ′)B(x − x ′)dx ′ =

∫ ∞−∞

∑n

δ(x ′ − na)B(x − x ′)dx ′

=∑n

∫ ∞−∞

δ(x ′ − na)B(x − x ′)dx ′ =∑n

B(x − na) = C(x)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 6 / 22

Page 24: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)then the crystal is described by the function

C(x) =∑n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =∑n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞−∞L(x ′)B(x − x ′)dx ′ =

∫ ∞−∞

∑n

δ(x ′ − na)B(x − x ′)dx ′

=∑n

∫ ∞−∞

δ(x ′ − na)B(x − x ′)dx ′ =∑n

B(x − na) = C(x)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 6 / 22

Page 25: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)then the crystal is described by the function

C(x) =∑n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =∑n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞−∞L(x ′)B(x − x ′)dx ′

=

∫ ∞−∞

∑n

δ(x ′ − na)B(x − x ′)dx ′

=∑n

∫ ∞−∞

δ(x ′ − na)B(x − x ′)dx ′ =∑n

B(x − na) = C(x)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 6 / 22

Page 26: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)then the crystal is described by the function

C(x) =∑n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =∑n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞−∞L(x ′)B(x − x ′)dx ′ =

∫ ∞−∞

∑n

δ(x ′ − na)B(x − x ′)dx ′

=∑n

∫ ∞−∞

δ(x ′ − na)B(x − x ′)dx ′ =∑n

B(x − na) = C(x)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 6 / 22

Page 27: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)then the crystal is described by the function

C(x) =∑n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =∑n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞−∞L(x ′)B(x − x ′)dx ′ =

∫ ∞−∞

∑n

δ(x ′ − na)B(x − x ′)dx ′

=∑n

∫ ∞−∞

δ(x ′ − na)B(x − x ′)dx ′

=∑n

B(x − na) = C(x)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 6 / 22

Page 28: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)then the crystal is described by the function

C(x) =∑n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =∑n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞−∞L(x ′)B(x − x ′)dx ′ =

∫ ∞−∞

∑n

δ(x ′ − na)B(x − x ′)dx ′

=∑n

∫ ∞−∞

δ(x ′ − na)B(x − x ′)dx ′ =∑n

B(x − na)

= C(x)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 6 / 22

Page 29: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)then the crystal is described by the function

C(x) =∑n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =∑n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞−∞L(x ′)B(x − x ′)dx ′ =

∫ ∞−∞

∑n

δ(x ′ − na)B(x − x ′)dx ′

=∑n

∫ ∞−∞

δ(x ′ − na)B(x − x ′)dx ′ =∑n

B(x − na) = C(x)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 6 / 22

Page 30: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Scattering Amplitude

F crystal( ~Q) =N∑l

fl( ~Q)e i~Q·~rl

=N∑

~Rn+~rj

fj( ~Q)e i~Q·(~Rn+~rj )

=∑j

fj( ~Q)e i~Q·~rj∑n

e i~Q·~Rn = F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms ofL(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time itgives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7 / 22

Page 31: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Scattering Amplitude

F crystal( ~Q) =N∑l

fl( ~Q)e i~Q·~rl =

N∑~Rn+~rj

fj( ~Q)e i~Q·(~Rn+~rj )

=∑j

fj( ~Q)e i~Q·~rj∑n

e i~Q·~Rn = F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms ofL(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time itgives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7 / 22

Page 32: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Scattering Amplitude

F crystal( ~Q) =N∑l

fl( ~Q)e i~Q·~rl =

N∑~Rn+~rj

fj( ~Q)e i~Q·(~Rn+~rj )

=∑j

fj( ~Q)e i~Q·~rj∑n

e i~Q·~Rn

= F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms ofL(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time itgives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7 / 22

Page 33: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Scattering Amplitude

F crystal( ~Q) =N∑l

fl( ~Q)e i~Q·~rl =

N∑~Rn+~rj

fj( ~Q)e i~Q·(~Rn+~rj )

=∑j

fj( ~Q)e i~Q·~rj∑n

e i~Q·~Rn = F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms ofL(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time itgives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7 / 22

Page 34: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Scattering Amplitude

F crystal( ~Q) =N∑l

fl( ~Q)e i~Q·~rl =

N∑~Rn+~rj

fj( ~Q)e i~Q·(~Rn+~rj )

=∑j

fj( ~Q)e i~Q·~rj∑n

e i~Q·~Rn = F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms ofL(x) and B(x).

F lattice is a very large sum (∼ 1012) so the only time itgives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7 / 22

Page 35: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Scattering Amplitude

F crystal( ~Q) =N∑l

fl( ~Q)e i~Q·~rl =

N∑~Rn+~rj

fj( ~Q)e i~Q·(~Rn+~rj )

=∑j

fj( ~Q)e i~Q·~rj∑n

e i~Q·~Rn = F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms ofL(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time itgives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7 / 22

Page 36: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Scattering Amplitude

F crystal( ~Q) =N∑l

fl( ~Q)e i~Q·~rl =

N∑~Rn+~rj

fj( ~Q)e i~Q·(~Rn+~rj )

=∑j

fj( ~Q)e i~Q·~rj∑n

e i~Q·~Rn = F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms ofL(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time itgives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7 / 22

Page 37: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Scattering Amplitude

F crystal( ~Q) =N∑l

fl( ~Q)e i~Q·~rl =

N∑~Rn+~rj

fj( ~Q)e i~Q·(~Rn+~rj )

=∑j

fj( ~Q)e i~Q·~rj∑n

e i~Q·~Rn = F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms ofL(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time itgives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3

~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7 / 22

Page 38: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Scattering Amplitude

F crystal( ~Q) =N∑l

fl( ~Q)e i~Q·~rl =

N∑~Rn+~rj

fj( ~Q)e i~Q·(~Rn+~rj )

=∑j

fj( ~Q)e i~Q·~rj∑n

e i~Q·~Rn = F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms ofL(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time itgives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7 / 22

Page 39: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Scattering Amplitude

F crystal( ~Q) =N∑l

fl( ~Q)e i~Q·~rl =

N∑~Rn+~rj

fj( ~Q)e i~Q·(~Rn+~rj )

=∑j

fj( ~Q)e i~Q·~rj∑n

e i~Q·~Rn = F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms ofL(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time itgives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7 / 22

Page 40: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Scattering Amplitude

F crystal( ~Q) =N∑l

fl( ~Q)e i~Q·~rl =

N∑~Rn+~rj

fj( ~Q)e i~Q·(~Rn+~rj )

=∑j

fj( ~Q)e i~Q·~rj∑n

e i~Q·~Rn = F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms ofL(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time itgives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7 / 22

Page 41: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 42: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z),

~a2 =a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 43: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x),

~a3 =a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 44: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 45: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 46: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3

= ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 47: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x)

=a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 48: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 49: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3

=2π

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 50: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 51: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)

~a∗2 =4π

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 52: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 53: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =a

2(y + z), ~a2 =

a

2(z + x), ~a3 =

a

2(x + y)

which is a body-centeredcubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·a2

4(y + z − x) =

a3

4

~a∗1 =2π

vc~a2 × ~a3 =

vc

a2

4(y + z − x)

=4π

a

(y

2+

z

2− x

2

)~a∗2 =

a

(z

2+

x

2− y

2

)~a∗3 =

a

(x

2+

y

2− z

2

)C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22

Page 54: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, weconsider the lattice sum

SN( ~Q) =∑n

e i~Q·~Rn

=N−1∑n=0

e iQna

|SN(Q)| =sin(NQa/2)

sin(Qa/2)

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

First evaluate this sum in 1D.~Rn = na, thus for N unit cells

Which has been evaluated previ-ously as and leads to the Laue con-dition for diffraction. Looking atthe regime where the Laue condid-ion is not exactly fulfilled

Q = (h + ξ)a∗

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 9 / 22

Page 55: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, weconsider the lattice sum

SN( ~Q) =∑n

e i~Q·~Rn

=N−1∑n=0

e iQna

|SN(Q)| =sin(NQa/2)

sin(Qa/2)

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

First evaluate this sum in 1D.~Rn = na, thus for N unit cells

Which has been evaluated previ-ously as and leads to the Laue con-dition for diffraction. Looking atthe regime where the Laue condid-ion is not exactly fulfilled

Q = (h + ξ)a∗

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 9 / 22

Page 56: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, weconsider the lattice sum

SN( ~Q) =∑n

e i~Q·~Rn

=N−1∑n=0

e iQna

|SN(Q)| =sin(NQa/2)

sin(Qa/2)

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

First evaluate this sum in 1D.~Rn = na, thus for N unit cells

Which has been evaluated previ-ously as and leads to the Laue con-dition for diffraction. Looking atthe regime where the Laue condid-ion is not exactly fulfilled

Q = (h + ξ)a∗

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 9 / 22

Page 57: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, weconsider the lattice sum

SN( ~Q) =∑n

e i~Q·~Rn

=N−1∑n=0

e iQna

|SN(Q)| =sin(NQa/2)

sin(Qa/2)

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

First evaluate this sum in 1D.~Rn = na, thus for N unit cells

Which has been evaluated previ-ously as and leads to the Laue con-dition for diffraction. Looking atthe regime where the Laue condid-ion is not exactly fulfilled

Q = (h + ξ)a∗

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 9 / 22

Page 58: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, weconsider the lattice sum

SN( ~Q) =∑n

e i~Q·~Rn

=N−1∑n=0

e iQna

|SN(Q)| =sin(NQa/2)

sin(Qa/2)

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

First evaluate this sum in 1D.~Rn = na, thus for N unit cells

Which has been evaluated previ-ously as

and leads to the Laue con-dition for diffraction. Looking atthe regime where the Laue condid-ion is not exactly fulfilled

Q = (h + ξ)a∗

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 9 / 22

Page 59: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, weconsider the lattice sum

SN( ~Q) =∑n

e i~Q·~Rn

=N−1∑n=0

e iQna

|SN(Q)| =sin(NQa/2)

sin(Qa/2)

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

First evaluate this sum in 1D.~Rn = na, thus for N unit cells

Which has been evaluated previ-ously as

and leads to the Laue con-dition for diffraction. Looking atthe regime where the Laue condid-ion is not exactly fulfilled

Q = (h + ξ)a∗

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 9 / 22

Page 60: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, weconsider the lattice sum

SN( ~Q) =∑n

e i~Q·~Rn

=N−1∑n=0

e iQna

|SN(Q)| =sin(NQa/2)

sin(Qa/2)

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

First evaluate this sum in 1D.~Rn = na, thus for N unit cells

Which has been evaluated previ-ously as and leads to the Laue con-dition for diffraction. Looking atthe regime where the Laue condid-ion is not exactly fulfilled

Q = (h + ξ)a∗

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 9 / 22

Page 61: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, weconsider the lattice sum

SN( ~Q) =∑n

e i~Q·~Rn

=N−1∑n=0

e iQna

|SN(Q)| =sin(NQa/2)

sin(Qa/2)

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

First evaluate this sum in 1D.~Rn = na, thus for N unit cells

Which has been evaluated previ-ously as and leads to the Laue con-dition for diffraction. Looking atthe regime where the Laue condid-ion is not exactly fulfilled

Q = (h + ξ)a∗

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 9 / 22

Page 62: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

but

leading topeak height

withhalf-width

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

=sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =sin(Nπξ)

sin(πξ)≈ Nπξ

πξ→ N as ξ → 0

|SN(ξ)| → 0, Nπξ = π, ξ1/2 ≈1

2N

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 10 / 22

Page 63: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

but

leading topeak height

withhalf-width

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)=

sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =sin(Nπξ)

sin(πξ)≈ Nπξ

πξ→ N as ξ → 0

|SN(ξ)| → 0, Nπξ = π, ξ1/2 ≈1

2N

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 10 / 22

Page 64: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

but

leading topeak height

withhalf-width

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)=

sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =sin(Nπξ)

sin(πξ)≈ Nπξ

πξ→ N as ξ → 0

|SN(ξ)| → 0, Nπξ = π, ξ1/2 ≈1

2N

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 10 / 22

Page 65: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

but

leading topeak height

withhalf-width

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)=

sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =sin(Nπξ)

sin(πξ)≈ Nπξ

πξ→ N as ξ → 0

|SN(ξ)| → 0, Nπξ = π, ξ1/2 ≈1

2N

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 10 / 22

Page 66: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

but

leading topeak height

withhalf-width

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)=

sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =sin(Nπξ)

sin(πξ)

≈ Nπξ

πξ→ N as ξ → 0

|SN(ξ)| → 0, Nπξ = π, ξ1/2 ≈1

2N

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 10 / 22

Page 67: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

but

leading topeak height

withhalf-width

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)=

sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =sin(Nπξ)

sin(πξ)≈ Nπξ

πξ

→ N as ξ → 0

|SN(ξ)| → 0, Nπξ = π, ξ1/2 ≈1

2N

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 10 / 22

Page 68: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

but

leading topeak height

withhalf-width

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)=

sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =sin(Nπξ)

sin(πξ)≈ Nπξ

πξ→ N as ξ → 0

|SN(ξ)| → 0, Nπξ = π, ξ1/2 ≈1

2N

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 10 / 22

Page 69: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

but

leading topeak height

withhalf-width

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)=

sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =sin(Nπξ)

sin(πξ)≈ Nπξ

πξ→ N as ξ → 0

|SN(ξ)| → 0, Nπξ = π, ξ1/2 ≈1

2N

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 10 / 22

Page 70: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

but

leading topeak height

withhalf-width

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)=

sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =sin(Nπξ)

sin(πξ)≈ Nπξ

πξ→ N as ξ → 0

|SN(ξ)| → 0

, Nπξ = π, ξ1/2 ≈1

2N

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 10 / 22

Page 71: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

but

leading topeak height

withhalf-width

|SN(Q)| =sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)=

sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =sin(Nπξ)

sin(πξ)≈ Nπξ

πξ→ N as ξ → 0

|SN(ξ)| → 0, Nπξ = π, ξ1/2 ≈1

2N

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 10 / 22

Page 72: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

the peak area can be obtained by integration

∫ +1/2N

−1/2N|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξdξ

= N

∫ +1/2N

−1/2Ndξ = N

[ξ∣∣∣+1/2N

−1/2N= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ)

ξ =Q − ha∗

a∗=

Q − Gh

a∗

|SN(Q)| → a∗∑Gh

δ(Q − Gh)

=N−1∑n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to thereciprocal space lattice

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 11 / 22

Page 73: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

the peak area can be obtained by integration∫ +1/2N

−1/2N|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)dξ

≈∫ +1/2N

−1/2N

Nπξ

πξdξ

= N

∫ +1/2N

−1/2Ndξ = N

[ξ∣∣∣+1/2N

−1/2N= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ)

ξ =Q − ha∗

a∗=

Q − Gh

a∗

|SN(Q)| → a∗∑Gh

δ(Q − Gh)

=N−1∑n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to thereciprocal space lattice

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 11 / 22

Page 74: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

the peak area can be obtained by integration∫ +1/2N

−1/2N|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξdξ

= N

∫ +1/2N

−1/2Ndξ = N

[ξ∣∣∣+1/2N

−1/2N= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ)

ξ =Q − ha∗

a∗=

Q − Gh

a∗

|SN(Q)| → a∗∑Gh

δ(Q − Gh)

=N−1∑n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to thereciprocal space lattice

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 11 / 22

Page 75: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

the peak area can be obtained by integration∫ +1/2N

−1/2N|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξdξ

= N

∫ +1/2N

−1/2Ndξ = N

[ξ∣∣∣+1/2N

−1/2N

= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ)

ξ =Q − ha∗

a∗=

Q − Gh

a∗

|SN(Q)| → a∗∑Gh

δ(Q − Gh)

=N−1∑n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to thereciprocal space lattice

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 11 / 22

Page 76: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

the peak area can be obtained by integration∫ +1/2N

−1/2N|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξdξ

= N

∫ +1/2N

−1/2Ndξ = N

[ξ∣∣∣+1/2N

−1/2N= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ)

ξ =Q − ha∗

a∗=

Q − Gh

a∗

|SN(Q)| → a∗∑Gh

δ(Q − Gh)

=N−1∑n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to thereciprocal space lattice

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 11 / 22

Page 77: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

the peak area can be obtained by integration∫ +1/2N

−1/2N|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξdξ

= N

∫ +1/2N

−1/2Ndξ = N

[ξ∣∣∣+1/2N

−1/2N= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ)

ξ =Q − ha∗

a∗=

Q − Gh

a∗

|SN(Q)| → a∗∑Gh

δ(Q − Gh)

=N−1∑n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to thereciprocal space lattice

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 11 / 22

Page 78: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

the peak area can be obtained by integration∫ +1/2N

−1/2N|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξdξ

= N

∫ +1/2N

−1/2Ndξ = N

[ξ∣∣∣+1/2N

−1/2N= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ)

ξ =Q − ha∗

a∗=

Q − Gh

a∗

|SN(Q)| → a∗∑Gh

δ(Q − Gh)

=N−1∑n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to thereciprocal space lattice

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 11 / 22

Page 79: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

the peak area can be obtained by integration∫ +1/2N

−1/2N|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξdξ

= N

∫ +1/2N

−1/2Ndξ = N

[ξ∣∣∣+1/2N

−1/2N= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ) ξ =Q − ha∗

a∗=

Q − Gh

a∗

|SN(Q)| → a∗∑Gh

δ(Q − Gh)

=N−1∑n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to thereciprocal space lattice

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 11 / 22

Page 80: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

the peak area can be obtained by integration∫ +1/2N

−1/2N|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξdξ

= N

∫ +1/2N

−1/2Ndξ = N

[ξ∣∣∣+1/2N

−1/2N= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ) ξ =Q − ha∗

a∗=

Q − Gh

a∗

|SN(Q)| → a∗∑Gh

δ(Q − Gh)

=N−1∑n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to thereciprocal space lattice

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 11 / 22

Page 81: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

the peak area can be obtained by integration∫ +1/2N

−1/2N|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξdξ

= N

∫ +1/2N

−1/2Ndξ = N

[ξ∣∣∣+1/2N

−1/2N= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ) ξ =Q − ha∗

a∗=

Q − Gh

a∗

|SN(Q)| → a∗∑Gh

δ(Q − Gh) =N−1∑n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to thereciprocal space lattice

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 11 / 22

Page 82: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum in 1D

the peak area can be obtained by integration∫ +1/2N

−1/2N|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξdξ

= N

∫ +1/2N

−1/2Ndξ = N

[ξ∣∣∣+1/2N

−1/2N= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ) ξ =Q − ha∗

a∗=

Q − Gh

a∗

|SN(Q)| → a∗∑Gh

δ(Q − Gh) =N−1∑n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to thereciprocal space lattice

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 11 / 22

Page 83: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum Modulus

the 1D modulus squared

in 2D, with N1×N2 = N unitcells

and similarly in 3D

|SN(Q)|2 → Na∗∑Gh

δ(Q − Gh)

∣∣∣SN( ~Q)∣∣∣2 → (N1a

∗1)(N2a

∗2)∑~G

δ( ~Q − ~Gh)

= NA∗∑~G

δ( ~Q − ~Gh)

∣∣∣SN( ~Q)∣∣∣2 → NV ∗c

∑~G

δ( ~Q − ~Gh)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 12 / 22

Page 84: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum Modulus

the 1D modulus squared

in 2D, with N1×N2 = N unitcells

and similarly in 3D

|SN(Q)|2 → Na∗∑Gh

δ(Q − Gh)

∣∣∣SN( ~Q)∣∣∣2 → (N1a

∗1)(N2a

∗2)∑~G

δ( ~Q − ~Gh)

= NA∗∑~G

δ( ~Q − ~Gh)

∣∣∣SN( ~Q)∣∣∣2 → NV ∗c

∑~G

δ( ~Q − ~Gh)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 12 / 22

Page 85: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum Modulus

the 1D modulus squared

in 2D, with N1×N2 = N unitcells

and similarly in 3D

|SN(Q)|2 → Na∗∑Gh

δ(Q − Gh)

∣∣∣SN( ~Q)∣∣∣2 → (N1a

∗1)(N2a

∗2)∑~G

δ( ~Q − ~Gh)

= NA∗∑~G

δ( ~Q − ~Gh)

∣∣∣SN( ~Q)∣∣∣2 → NV ∗c

∑~G

δ( ~Q − ~Gh)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 12 / 22

Page 86: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum Modulus

the 1D modulus squared

in 2D, with N1×N2 = N unitcells

and similarly in 3D

|SN(Q)|2 → Na∗∑Gh

δ(Q − Gh)

∣∣∣SN( ~Q)∣∣∣2 → (N1a

∗1)(N2a

∗2)∑~G

δ( ~Q − ~Gh)

= NA∗∑~G

δ( ~Q − ~Gh)

∣∣∣SN( ~Q)∣∣∣2 → NV ∗c

∑~G

δ( ~Q − ~Gh)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 12 / 22

Page 87: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum Modulus

the 1D modulus squared

in 2D, with N1×N2 = N unitcells

and similarly in 3D

|SN(Q)|2 → Na∗∑Gh

δ(Q − Gh)

∣∣∣SN( ~Q)∣∣∣2 → (N1a

∗1)(N2a

∗2)∑~G

δ( ~Q − ~Gh)

= NA∗∑~G

δ( ~Q − ~Gh)

∣∣∣SN( ~Q)∣∣∣2 → NV ∗c

∑~G

δ( ~Q − ~Gh)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 12 / 22

Page 88: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum Modulus

the 1D modulus squared

in 2D, with N1×N2 = N unitcells

and similarly in 3D

|SN(Q)|2 → Na∗∑Gh

δ(Q − Gh)

∣∣∣SN( ~Q)∣∣∣2 → (N1a

∗1)(N2a

∗2)∑~G

δ( ~Q − ~Gh)

= NA∗∑~G

δ( ~Q − ~Gh)

∣∣∣SN( ~Q)∣∣∣2 → NV ∗c

∑~G

δ( ~Q − ~Gh)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 12 / 22

Page 89: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Lattice sum Modulus

the 1D modulus squared

in 2D, with N1×N2 = N unitcells

and similarly in 3D

|SN(Q)|2 → Na∗∑Gh

δ(Q − Gh)

∣∣∣SN( ~Q)∣∣∣2 → (N1a

∗1)(N2a

∗2)∑~G

δ( ~Q − ~Gh)

= NA∗∑~G

δ( ~Q − ~Gh)

∣∣∣SN( ~Q)∣∣∣2 → NV ∗c

∑~G

δ( ~Q − ~Gh)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 12 / 22

Page 90: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, L(x), (in 1-D forsimplicity)

∫ ∞−∞L(x)e iQxdx =

∫ ∞−∞

∑n

δ(x − na)e iQxdx =∑n

∫ ∞−∞

δ(x − na)e iQxdx

=∑n

e iQna = a∗∑h

δ(Q − ha∗) = a∗∑h

δ(Q − Gh)

in general ∫ ∞−∞L(~r)e i

~Q·~rdV = V ∗c∑h,k,l

δ( ~Q − ~Ghkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 13 / 22

Page 91: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, L(x), (in 1-D forsimplicity)∫ ∞−∞L(x)e iQxdx =

∫ ∞−∞

∑n

δ(x − na)e iQxdx

=∑n

∫ ∞−∞

δ(x − na)e iQxdx

=∑n

e iQna = a∗∑h

δ(Q − ha∗) = a∗∑h

δ(Q − Gh)

in general ∫ ∞−∞L(~r)e i

~Q·~rdV = V ∗c∑h,k,l

δ( ~Q − ~Ghkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 13 / 22

Page 92: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, L(x), (in 1-D forsimplicity)∫ ∞−∞L(x)e iQxdx =

∫ ∞−∞

∑n

δ(x − na)e iQxdx =∑n

∫ ∞−∞

δ(x − na)e iQxdx

=∑n

e iQna = a∗∑h

δ(Q − ha∗) = a∗∑h

δ(Q − Gh)

in general ∫ ∞−∞L(~r)e i

~Q·~rdV = V ∗c∑h,k,l

δ( ~Q − ~Ghkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 13 / 22

Page 93: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, L(x), (in 1-D forsimplicity)∫ ∞−∞L(x)e iQxdx =

∫ ∞−∞

∑n

δ(x − na)e iQxdx =∑n

∫ ∞−∞

δ(x − na)e iQxdx

=∑n

e iQna

= a∗∑h

δ(Q − ha∗) = a∗∑h

δ(Q − Gh)

in general ∫ ∞−∞L(~r)e i

~Q·~rdV = V ∗c∑h,k,l

δ( ~Q − ~Ghkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 13 / 22

Page 94: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, L(x), (in 1-D forsimplicity)∫ ∞−∞L(x)e iQxdx =

∫ ∞−∞

∑n

δ(x − na)e iQxdx =∑n

∫ ∞−∞

δ(x − na)e iQxdx

=∑n

e iQna = a∗∑h

δ(Q − ha∗)

= a∗∑h

δ(Q − Gh)

in general ∫ ∞−∞L(~r)e i

~Q·~rdV = V ∗c∑h,k,l

δ( ~Q − ~Ghkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 13 / 22

Page 95: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, L(x), (in 1-D forsimplicity)∫ ∞−∞L(x)e iQxdx =

∫ ∞−∞

∑n

δ(x − na)e iQxdx =∑n

∫ ∞−∞

δ(x − na)e iQxdx

=∑n

e iQna = a∗∑h

δ(Q − ha∗) = a∗∑h

δ(Q − Gh)

in general ∫ ∞−∞L(~r)e i

~Q·~rdV = V ∗c∑h,k,l

δ( ~Q − ~Ghkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 13 / 22

Page 96: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, L(x), (in 1-D forsimplicity)∫ ∞−∞L(x)e iQxdx =

∫ ∞−∞

∑n

δ(x − na)e iQxdx =∑n

∫ ∞−∞

δ(x − na)e iQxdx

=∑n

e iQna = a∗∑h

δ(Q − ha∗) = a∗∑h

δ(Q − Gh)

in general ∫ ∞−∞L(~r)e i

~Q·~rdV = V ∗c∑h,k,l

δ( ~Q − ~Ghkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 13 / 22

Page 97: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Bragg condition

θθd

k k’

2d sin θ = λ

The Bragg condition for diffractionis derived by assuming specular re-flection from parallel planes sepa-rated by a distance d .

The ray reflecting from the deeperplane travels an extra distance2d sin θ

If there is to be constructive in-terference, this additional distancemust corresponde to an integernnumber of wavelengths and we getthe Bragg condition

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 14 / 22

Page 98: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Bragg condition

θθd

k k’

2d sin θ = λ

The Bragg condition for diffractionis derived by assuming specular re-flection from parallel planes sepa-rated by a distance d .

The ray reflecting from the deeperplane travels an extra distance2d sin θ

If there is to be constructive in-terference, this additional distancemust corresponde to an integernnumber of wavelengths and we getthe Bragg condition

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 14 / 22

Page 99: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Bragg condition

θθd

k k’

2d sin θ = λ

The Bragg condition for diffractionis derived by assuming specular re-flection from parallel planes sepa-rated by a distance d .

The ray reflecting from the deeperplane travels an extra distance2d sin θ

If there is to be constructive in-terference, this additional distancemust corresponde to an integernnumber of wavelengths and we getthe Bragg condition

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 14 / 22

Page 100: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Bragg condition

θθd

k k’

2d sin θ = λ

The Bragg condition for diffractionis derived by assuming specular re-flection from parallel planes sepa-rated by a distance d .

The ray reflecting from the deeperplane travels an extra distance2d sin θ

If there is to be constructive in-terference, this additional distancemust corresponde to an integernnumber of wavelengths and we getthe Bragg condition

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 14 / 22

Page 101: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Bragg condition

θθd

k k’

2d sin θ = λ

The Bragg condition for diffractionis derived by assuming specular re-flection from parallel planes sepa-rated by a distance d .

The ray reflecting from the deeperplane travels an extra distance2d sin θ

If there is to be constructive in-terference, this additional distancemust corresponde to an integernnumber of wavelengths and we getthe Bragg condition

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 14 / 22

Page 102: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Laue condition

The Laue condition states that thescattering vector must be equal toa reciprocal lattice vector

~Q = ~Ghk

Q = 2k sin θ

=2π

d

2d sin θ =2π

k

= λ

(0,1) (1,1)

(0,0) (1,0)

θ

θ

k’

k

Q

d

Thus the Bragg and Laue condi-tions are equivalent

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 15 / 22

Page 103: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Laue condition

The Laue condition states that thescattering vector must be equal toa reciprocal lattice vector

~Q = ~Ghk

Q = 2k sin θ

=2π

d

2d sin θ =2π

k

= λ

(0,1) (1,1)

(0,0) (1,0)

θ

θ

k’

k

Q

d

Thus the Bragg and Laue condi-tions are equivalent

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 15 / 22

Page 104: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Laue condition

The Laue condition states that thescattering vector must be equal toa reciprocal lattice vector

~Q = ~Ghk

Q = 2k sin θ

=2π

d

2d sin θ =2π

k

= λ

(0,1) (1,1)

(0,0) (1,0)

θ

θ

k’

k

Q

d

Thus the Bragg and Laue condi-tions are equivalent

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 15 / 22

Page 105: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Laue condition

The Laue condition states that thescattering vector must be equal toa reciprocal lattice vector

~Q = ~Ghk

Q = 2k sin θ

=2π

d

2d sin θ =2π

k

= λ

(0,1) (1,1)

(0,0) (1,0)

θ

θ

k’

k

Q

d

Thus the Bragg and Laue condi-tions are equivalent

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 15 / 22

Page 106: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Laue condition

The Laue condition states that thescattering vector must be equal toa reciprocal lattice vector

~Q = ~Ghk

Q = 2k sin θ =2π

d

2d sin θ =2π

k

= λ

(0,1) (1,1)

(0,0) (1,0)

θ

θ

k’

k

Q

d

Thus the Bragg and Laue condi-tions are equivalent

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 15 / 22

Page 107: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Laue condition

The Laue condition states that thescattering vector must be equal toa reciprocal lattice vector

~Q = ~Ghk

Q = 2k sin θ =2π

d

2d sin θ =2π

k

= λ

(0,1) (1,1)

(0,0) (1,0)

θ

θ

k’

k

Q

d

Thus the Bragg and Laue condi-tions are equivalent

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 15 / 22

Page 108: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Laue condition

The Laue condition states that thescattering vector must be equal toa reciprocal lattice vector

~Q = ~Ghk

Q = 2k sin θ =2π

d

2d sin θ =2π

k= λ

(0,1) (1,1)

(0,0) (1,0)

θ

θ

k’

k

Q

d

Thus the Bragg and Laue condi-tions are equivalent

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 15 / 22

Page 109: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Laue condition

The Laue condition states that thescattering vector must be equal toa reciprocal lattice vector

~Q = ~Ghk

Q = 2k sin θ =2π

d

2d sin θ =2π

k= λ

(0,1) (1,1)

(0,0) (1,0)

θ

θ

k’

k

Q

d

Thus the Bragg and Laue condi-tions are equivalent

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 15 / 22

Page 110: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

Must show that for each point inreciprocal space, there exists a setof planes in the real space latticesuch that:

~Ghkl is perpendicular to the planeswith Miller indices (hkl) and

| ~Ghkl | =2π

dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 16 / 22

Page 111: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

Must show that for each point inreciprocal space, there exists a setof planes in the real space latticesuch that:

~Ghkl is perpendicular to the planeswith Miller indices (hkl) and

| ~Ghkl | =2π

dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 16 / 22

Page 112: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

Must show that for each point inreciprocal space, there exists a setof planes in the real space latticesuch that:

~Ghkl is perpendicular to the planeswith Miller indices (hkl)

and

| ~Ghkl | =2π

dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 16 / 22

Page 113: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

Must show that for each point inreciprocal space, there exists a setof planes in the real space latticesuch that:

~Ghkl is perpendicular to the planeswith Miller indices (hkl) and

| ~Ghkl | =2π

dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 16 / 22

Page 114: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

Must show that for each point inreciprocal space, there exists a setof planes in the real space latticesuch that:

~Ghkl is perpendicular to the planeswith Miller indices (hkl) and

| ~Ghkl | =2π

dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 16 / 22

Page 115: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl)intersects the three basis vectors ofthe lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can beexpressed as a linear combination oftwo non-parallel vectors, ~v1 and ~v2

~v1 =~a3l

+~a1h

, ~v1 =~a1h

+~a2k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·(

(ε2 − ε1)~a1h− ε2

~a2k

+ ε1~a3l

)= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 17 / 22

Page 116: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl)intersects the three basis vectors ofthe lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can beexpressed as a linear combination oftwo non-parallel vectors, ~v1 and ~v2

~v1 =~a3l

+~a1h

, ~v1 =~a1h

+~a2k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·(

(ε2 − ε1)~a1h− ε2

~a2k

+ ε1~a3l

)= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 17 / 22

Page 117: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl)intersects the three basis vectors ofthe lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can beexpressed as a linear combination oftwo non-parallel vectors, ~v1 and ~v2

~v1 =~a3l

+~a1h

, ~v1 =~a1h

+~a2k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·(

(ε2 − ε1)~a1h− ε2

~a2k

+ ε1~a3l

)= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 17 / 22

Page 118: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl)intersects the three basis vectors ofthe lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can beexpressed as a linear combination oftwo non-parallel vectors, ~v1 and ~v2

~v1 =~a3l

+~a1h

, ~v1 =~a1h

+~a2k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·(

(ε2 − ε1)~a1h− ε2

~a2k

+ ε1~a3l

)= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 17 / 22

Page 119: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl)intersects the three basis vectors ofthe lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can beexpressed as a linear combination oftwo non-parallel vectors, ~v1 and ~v2

~v1 =~a3l

+~a1h, ~v1 =

~a1h

+~a2k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·(

(ε2 − ε1)~a1h− ε2

~a2k

+ ε1~a3l

)= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 17 / 22

Page 120: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl)intersects the three basis vectors ofthe lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can beexpressed as a linear combination oftwo non-parallel vectors, ~v1 and ~v2

~v1 =~a3l

+~a1h, ~v1 =

~a1h

+~a2k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·(

(ε2 − ε1)~a1h− ε2

~a2k

+ ε1~a3l

)= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 17 / 22

Page 121: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl)intersects the three basis vectors ofthe lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can beexpressed as a linear combination oftwo non-parallel vectors, ~v1 and ~v2

~v1 =~a3l

+~a1h, ~v1 =

~a1h

+~a2k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·(

(ε2 − ε1)~a1h− ε2

~a2k

+ ε1~a3l

)

= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 17 / 22

Page 122: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl)intersects the three basis vectors ofthe lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can beexpressed as a linear combination oftwo non-parallel vectors, ~v1 and ~v2

~v1 =~a3l

+~a1h, ~v1 =

~a1h

+~a2k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·(

(ε2 − ε1)~a1h− ε2

~a2k

+ ε1~a3l

)= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 17 / 22

Page 123: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl)intersects the three basis vectors ofthe lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can beexpressed as a linear combination oftwo non-parallel vectors, ~v1 and ~v2

~v1 =~a3l

+~a1h, ~v1 =

~a1h

+~a2k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·(

(ε2 − ε1)~a1h− ε2

~a2k

+ ε1~a3l

)= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 17 / 22

Page 124: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) issimply given by the distance fromthe origin to the plane along a nor-mal vector

This can be computed as the pro-jection of any vector which con-nects the origin to the plane ontothe unit vector in the ~Ghkl direc-tion. In this case, we choose, ~a1/h

Ghkl =~Ghkl

| ~Ghkl |

Ghkl ·~a1h

=(h~a∗1 + k~a∗2 + l~a∗3)

| ~Ghkl |·~a1h

=2π

| ~Ghkl |= dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 18 / 22

Page 125: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) issimply given by the distance fromthe origin to the plane along a nor-mal vector

This can be computed as the pro-jection of any vector which con-nects the origin to the plane ontothe unit vector in the ~Ghkl direc-tion. In this case, we choose, ~a1/h

Ghkl =~Ghkl

| ~Ghkl |

Ghkl ·~a1h

=(h~a∗1 + k~a∗2 + l~a∗3)

| ~Ghkl |·~a1h

=2π

| ~Ghkl |= dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 18 / 22

Page 126: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) issimply given by the distance fromthe origin to the plane along a nor-mal vector

This can be computed as the pro-jection of any vector which con-nects the origin to the plane ontothe unit vector in the ~Ghkl direc-tion. In this case, we choose, ~a1/h

Ghkl =~Ghkl

| ~Ghkl |

Ghkl ·~a1h

=(h~a∗1 + k~a∗2 + l~a∗3)

| ~Ghkl |·~a1h

=2π

| ~Ghkl |= dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 18 / 22

Page 127: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) issimply given by the distance fromthe origin to the plane along a nor-mal vector

This can be computed as the pro-jection of any vector which con-nects the origin to the plane ontothe unit vector in the ~Ghkl direc-tion. In this case, we choose, ~a1/h

Ghkl =~Ghkl

| ~Ghkl |

Ghkl ·~a1h

=(h~a∗1 + k~a∗2 + l~a∗3)

| ~Ghkl |·~a1h

=2π

| ~Ghkl |= dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 18 / 22

Page 128: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) issimply given by the distance fromthe origin to the plane along a nor-mal vector

This can be computed as the pro-jection of any vector which con-nects the origin to the plane ontothe unit vector in the ~Ghkl direc-tion. In this case, we choose, ~a1/h

Ghkl =~Ghkl

| ~Ghkl |

Ghkl ·~a1h

=(h~a∗1 + k~a∗2 + l~a∗3)

| ~Ghkl |·~a1h

=2π

| ~Ghkl |= dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 18 / 22

Page 129: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) issimply given by the distance fromthe origin to the plane along a nor-mal vector

This can be computed as the pro-jection of any vector which con-nects the origin to the plane ontothe unit vector in the ~Ghkl direc-tion. In this case, we choose, ~a1/h

Ghkl =~Ghkl

| ~Ghkl |

Ghkl ·~a1h

=(h~a∗1 + k~a∗2 + l~a∗3)

| ~Ghkl |·~a1h

=2π

| ~Ghkl |

= dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 18 / 22

Page 130: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) issimply given by the distance fromthe origin to the plane along a nor-mal vector

This can be computed as the pro-jection of any vector which con-nects the origin to the plane ontothe unit vector in the ~Ghkl direc-tion. In this case, we choose, ~a1/h

Ghkl =~Ghkl

| ~Ghkl |

Ghkl ·~a1h

=(h~a∗1 + k~a∗2 + l~a∗3)

| ~Ghkl |·~a1h

=2π

| ~Ghkl |= dhkl

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 18 / 22

Page 131: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

BCC structure factor

In the body centered cubic structure, there are 2 atoms in theconventional, cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2 + ~a3)

the unit cell structure factor is thus

F bcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k+l))

= f ( ~G )×

{2 h + k + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 19 / 22

Page 132: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

BCC structure factor

In the body centered cubic structure, there are 2 atoms in theconventional, cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2 + ~a3)

the unit cell structure factor is thus

F bcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k+l))

= f ( ~G )×

{2 h + k + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 19 / 22

Page 133: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

BCC structure factor

In the body centered cubic structure, there are 2 atoms in theconventional, cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2 + ~a3)

the unit cell structure factor is thus

F bcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k+l))

= f ( ~G )×

{2 h + k + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 19 / 22

Page 134: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

BCC structure factor

In the body centered cubic structure, there are 2 atoms in theconventional, cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2 + ~a3)

the unit cell structure factor is thus

F bcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k+l))

= f ( ~G )×

{2 h + k + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 19 / 22

Page 135: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

BCC structure factor

In the body centered cubic structure, there are 2 atoms in theconventional, cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2 + ~a3)

the unit cell structure factor is thus

F bcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k+l))

= f ( ~G )×

{2 h + k + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 19 / 22

Page 136: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

BCC structure factor

In the body centered cubic structure, there are 2 atoms in theconventional, cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2 + ~a3)

the unit cell structure factor is thus

F bcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k+l))

= f ( ~G )×

{2 h + k + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 19 / 22

Page 137: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2), ~r3 =

1

2(~a2 + ~a3), ~r4 =

1

2(~a1 + ~a3)

the unit cell structure factor is thus

F fcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k) + e iπ(k+l) + e iπ(h+l))

= f ( ~G )×

{4 h + k , k + l , h + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 20 / 22

Page 138: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2), ~r3 =

1

2(~a2 + ~a3), ~r4 =

1

2(~a1 + ~a3)

the unit cell structure factor is thus

F fcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k) + e iπ(k+l) + e iπ(h+l))

= f ( ~G )×

{4 h + k , k + l , h + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 20 / 22

Page 139: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2), ~r3 =

1

2(~a2 + ~a3), ~r4 =

1

2(~a1 + ~a3)

the unit cell structure factor is thus

F fcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k) + e iπ(k+l) + e iπ(h+l))

= f ( ~G )×

{4 h + k , k + l , h + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 20 / 22

Page 140: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2), ~r3 =

1

2(~a2 + ~a3), ~r4 =

1

2(~a1 + ~a3)

the unit cell structure factor is thus

F fcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k) + e iπ(k+l) + e iπ(h+l))

= f ( ~G )×

{4 h + k , k + l , h + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 20 / 22

Page 141: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2), ~r3 =

1

2(~a2 + ~a3), ~r4 =

1

2(~a1 + ~a3)

the unit cell structure factor is thus

F fcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k) + e iπ(k+l) + e iπ(h+l))

= f ( ~G )×

{4 h + k , k + l , h + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 20 / 22

Page 142: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,cubic unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2), ~r3 =

1

2(~a2 + ~a3), ~r4 =

1

2(~a1 + ~a3)

the unit cell structure factor is thus

F fcchkl = f ( ~G )

∑j

e i~G ·~rj

= f ( ~G )(

1 + e iπ(h+k) + e iπ(k+l) + e iπ(h+l))

= f ( ~G )×

{4 h + k , k + l , h + l = 2n

0 otherwise

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 20 / 22

Page 143: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Diamond structure

This is a face centered cubic structure with two atoms in the basis whichleads to 8 atoms in the conventional unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2), ~r3 =

1

2(~a2 + ~a3) ~r4 =

1

2(~a1 + ~a3)

~r5 =1

4(~a1 + ~a2 + ~a3), ~r6 =

1

4(3~a1 + 3~a2 + ~a3)

~r7 =1

4(~a1 + 3~a2 + 3~a3), ~r8 =

1

4(3~a1 + ~a2 + 3~a3)

F diamondhkl = f ( ~G )

(1 + e iπ(h+k) + e iπ(k+l)

+ e iπ(h+l) + e iπ(h+k+l)/2 + e iπ(3h+3k+l)/2

+ e iπ(h+3k+3l)/2 + e iπ(3h+k+3l)/2)

This is non-zero when h,k,l all even and h +k + l = 4n or h,k ,l all odd

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 21 / 22

Page 144: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Diamond structure

This is a face centered cubic structure with two atoms in the basis whichleads to 8 atoms in the conventional unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2), ~r3 =

1

2(~a2 + ~a3) ~r4 =

1

2(~a1 + ~a3)

~r5 =1

4(~a1 + ~a2 + ~a3), ~r6 =

1

4(3~a1 + 3~a2 + ~a3)

~r7 =1

4(~a1 + 3~a2 + 3~a3), ~r8 =

1

4(3~a1 + ~a2 + 3~a3)

F diamondhkl = f ( ~G )

(1 + e iπ(h+k) + e iπ(k+l)

+ e iπ(h+l) + e iπ(h+k+l)/2 + e iπ(3h+3k+l)/2

+ e iπ(h+3k+3l)/2 + e iπ(3h+k+3l)/2)

This is non-zero when h,k,l all even and h +k + l = 4n or h,k ,l all odd

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 21 / 22

Page 145: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Diamond structure

This is a face centered cubic structure with two atoms in the basis whichleads to 8 atoms in the conventional unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2), ~r3 =

1

2(~a2 + ~a3) ~r4 =

1

2(~a1 + ~a3)

~r5 =1

4(~a1 + ~a2 + ~a3), ~r6 =

1

4(3~a1 + 3~a2 + ~a3)

~r7 =1

4(~a1 + 3~a2 + 3~a3), ~r8 =

1

4(3~a1 + ~a2 + 3~a3)

F diamondhkl = f ( ~G )

(1 + e iπ(h+k) + e iπ(k+l)

+ e iπ(h+l) + e iπ(h+k+l)/2 + e iπ(3h+3k+l)/2

+ e iπ(h+3k+3l)/2 + e iπ(3h+k+3l)/2)

This is non-zero when h,k,l all even and h +k + l = 4n or h,k ,l all odd

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 21 / 22

Page 146: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Diamond structure

This is a face centered cubic structure with two atoms in the basis whichleads to 8 atoms in the conventional unit cell. These are located at

~r1 = 0, ~r2 =1

2(~a1 + ~a2), ~r3 =

1

2(~a2 + ~a3) ~r4 =

1

2(~a1 + ~a3)

~r5 =1

4(~a1 + ~a2 + ~a3), ~r6 =

1

4(3~a1 + 3~a2 + ~a3)

~r7 =1

4(~a1 + 3~a2 + 3~a3), ~r8 =

1

4(3~a1 + ~a2 + 3~a3)

F diamondhkl = f ( ~G )

(1 + e iπ(h+k) + e iπ(k+l)

+ e iπ(h+l) + e iπ(h+k+l)/2 + e iπ(3h+3k+l)/2

+ e iπ(h+3k+3l)/2 + e iπ(3h+k+3l)/2)

This is non-zero when h,k,l all even and h +k + l = 4n or h,k ,l all odd

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 21 / 22

Page 147: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Heteroatomic structures

← bcc

sc →

← diamondfcc →

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 22 / 22

Page 148: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Heteroatomic structures

← bccsc →

← diamondfcc →

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 22 / 22

Page 149: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Heteroatomic structures

← bccsc →

← diamond

fcc →

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 22 / 22

Page 150: segre/phys570/15S/lecture_14.pdfScattering Amplitude Fcrystal(Q~) = XN l f l(Q~)ei Q~~r l = XN R~ n+~r j f j(Q~)ei Q ~(Rn+~r j) = X j f j(Q~)ei Q ~~r j X n eiQRn = Funit cellFlattice

Heteroatomic structures

← bccsc →

← diamondfcc →

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 22 / 22