simona gherghel-msc thesis

77
Department of Chemistry Thesis submitted for the degree of MSc in Analytical Science: Methods and Instrumental Techniques August 2014 Ultrahigh resolving power tandem mass spectrometry of petroleum components By: Simona Gherghel Supervisor: Dr Mark P. Barrow

Upload: simona-gherghel

Post on 12-Apr-2017

39 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Simona Gherghel-MSc Thesis

   

 

   

 

Department of Chemistry

Thesis submitted for the degree of MSc in Analytical Science: Methods and Instrumental

Techniques

August 2014

Ultrahigh resolving power tandem mass spectrometry of petroleum components

By: Simona Gherghel Supervisor: Dr Mark P. Barrow                

Page 2: Simona Gherghel-MSc Thesis

       

   

Table  of  Contents  

1   Introduction  ................................................................................................................  1  1.1   Crude  oil  ..................................................................................................................................................................  1  1.2   Naphthenic  acid  chemistry  ..............................................................................................................................  2  1.3   Formation  of  naphthenic  acid  dimers  ........................................................................................................  5  1.4   Analytical  techniques  for  looking  at  crude  oils  ......................................................................................  6  1.5   Fourier  transform  ion  cyclotron  resonance  mass  spectrometry  ....................................................  7  1.6   High  mass  accuracy  .........................................................................................................................................  10  1.7   Kendrick  mass  defects:  the  key  to  unlocking  chemical  formulas  ................................................  10  1.8   Double-­‐bond  equivalent  versus  carbon  number  plot  .......................................................................  12  1.9   Main  aims  .............................................................................................................................................................  13  

2   Experimental  .............................................................................................................  14  2.1   Sample  preparation  .........................................................................................................................................  14  2.2   Fourier  Transform-­‐Infrared  Spectroscopy  (FT-­‐IR)  ...........................................................................  15  2.3   Mass  Spectrometry  Analysis  ........................................................................................................................  15  2.4   Calibration  ...........................................................................................................................................................  17  2.5   Data  analysis  .......................................................................................................................................................  17  

3   Results  and  discussion  ...............................................................................................  19  3.1   Proof  of  naphthenic  acid  dimers  existence  in  solution-­‐phase  ......................................................  19  3.2   2  year  old  Kodak  naphthenic  acid  sample  .............................................................................................  20  3.2.1   ISD  experiment  0  V  ...........................................................................................................................................  20  3.2.2   ISD  experiment  (60  V)  ....................................................................................................................................  25  

3.3   Fresh  sample  ......................................................................................................................................................  29  3.3.1   ISD  (0  V)  of  serial  dilution  ............................................................................................................................  29  3.3.2   Importance  of  ion  accumulation  time  (IAT)  .........................................................................................  35  

3.4   CID  on  the  2  year  old  Kodak  NA  sample  .................................................................................................  37  3.5   IRMPD  experiment  of  the  fresh  Kodak  NA  sample  ............................................................................  40  3.6   Fresh  Kodak  NA  sample  doped  with  salts  .............................................................................................  44  3.7   EID  experiment  on  a  NIST  crude  oil  sample  .........................................................................................  47  

4   Conclusion  ................................................................................................................  52  

5   References  ................................................................................................................  54  

6   Acknowledgments  ....................................................................................................  58  

7   Appendix  ..................................................................................................................  59  7.1   Known  ions  mass  list  ......................................................................................................................................  59  7.2   Mass  error  distribution  histograms  .........................................................................................................  65  7.2.1   2  year  old  doped  Kodak  NA  sample-­‐ISD  0  V  .........................................................................................  65  7.2.2   2  year  old  doped  Kodak  NA  sample-­‐ISD  60  V  .......................................................................................  66  7.2.3   Fresh  sample:  serial  dilution  (ISD  0  V  .....................................................................................................  67  7.2.4   CID  on  2  year  old  Kodak  NA  .........................................................................................................................  71  7.2.5   IRMPD  on  fresh  Kodak  NA  sample  ............................................................................................................  73  

 

 

 

Page 3: Simona Gherghel-MSc Thesis

       

Abbreviations  

 

APCI Atmospheric Pressure Chemical Ionization

CID Collision Induced Dissociation

DBE Double Bond Equivalent

EI Electron Ionization

EID Electron Induced Dissociation

ESI- Electrospray ionization

FAB Fast Atom Bombardment

FT-ICR MS Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

FT-IR Fourier Transform- Infrared Spectroscopy

GC-MS Gas Chromatography Mass Spectrometry

IAT Ion Accumulation Time

ICR Ion Cyclotron Resonance

IRMPD Infrared Multiphoton Dissociation

ISD In Source Dissociation

KMD Kendrick Mass Defect

MS/MS Tandem mass spectrometry

NA Naphthenic Acid

SARA Saturate, aromatic, resin and asphaltene

SORI Sustained Off-Resonance Irradiation

 

 

Page 4: Simona Gherghel-MSc Thesis

       

Summary  

 

 

The selective ionization of acidic compounds from a commercial naphthenic acid mixture and

of nitrogen-containing compounds from a crude oil sample was carried out using Fourier

transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in negative-ion and

positive-ion electrospray ionization (ESI), respectively. Naphthenic acids are of great concern

to the petroleum industry as they are responsible for various unwanted phenomena such as

pipeline corrosion, formation of sodium naphthenate deposits and they also are toxic to

aquatic organisms. Naphthenic acids have been previously demonstrated to form O4 class

naphthenic acid dimers. During this research, the formation of sodium bound naphthenic acids

(NaO4 class) has been observed. The ultrahigh resolving power and mass accuracy of FT-ICR

MS offers accurate mass assignments and information on compositional differences of

naphthenic acid species. Several tandem MS methods such as collision-induced dissociation

(CID) and infrared multiphoton dissociation (IRMPD) were further employed for structural

characterization of the naphthenic acid dimers. CID and IRMPD of the same precursor ions

produced very similar fragmentation patterns it has been shown that dimers reflect the most

abundant monomer species present. Electron-induced dissociation (EID) was used for

structural characterization of crude oil and it provided valuable fragmentation information

showing successive losses of alkyl chains leading back to the stable cores made of fused

rings.

 

Page 5: Simona Gherghel-MSc Thesis

Introduction  

1    

1 Introduction  

1.1 Crude  oil    

Crude oil is a fundamental energy source that has been playing a key role in the progress of

modern human society. Even under very optimistic estimates about the development of

alternative energy sources, it will remain one of the most heavily used energy sources for

many decades to come.1 Global dependence on crude oil originates from its high versatility; it

can be used as fuel for vehicles and airplanes, as a home heating source and almost all

chemical products, such as plastics, pesticides, detergents, dyes and even medicines begin

with oil-derived feedstock.2

Nevertheless crude oil is a limited resource and while its production is decreasing, its

consumption only keeps increasing. Therefore, lately there has been an increased focus on the

use of heavier, lower quality sources.3 Heavy oils are one of the most complex mixtures in

nature and they can contain thousands to millions of various components.4 Typically crude

oils have a high proportion of light hydrocarbons (CcHh) and other minor ingredients. The

hydrocarbons can be divided into four types: paraffin based (15 to 60%), naphthenes based

(30 to 60%), aromatic based (3 to 30%) and asphaltic based (remainder). Carbon accounts for

about 85% (83-87%) of the crude oil mass, hydrogen for about 12% (10-14%) and the H/C

ratio is about 1.8.5

The minor ingredients of crude oil include nitrogen (0.1-2%), oxygen (0.05-1.5%), sulfur

(0.005-6%) and traces of metal (0.1%) such as are sodium (Na), calcium (Ca), magnesium

(Mg), aluminium (Al), iron (Fe), vanadium (V), and nickel (Ni). Even though petroleum

contains more than 90% hydrocarbons, it is the heteroatom-containing compounds (NnOoSs)

the ones that cause most problems regarding pollution, poisoning of catalysts, corrosion and

formation of emulsions.6 Low quality crude oils contain higher amounts of sulfur, acidic

components and other hydrocarbons. Sulfur-containing compounds naturally occurring in

crude oils act as poisons to the catalysts used in the conversion of feedstock to useable

intermediate and end products.7 Sweet and sour are terms used to refer to a crude oil’s

approximate sulfur content. As a rule, when the sulfur content is in excess of 0.5% the crude

oil is considered sour, and when it is 0.5% or less it is considered sweet.8 Nitrogen-containing

Page 6: Simona Gherghel-MSc Thesis

Introduction  

2    

compounds also represent a concern as they too can play a role in the catalyst deactivation.9

Oxygen-containing components can include phenols, ketones and carboxylic acids. The

presence of acidic substances in crude oil was first observed in a Romanian oil in 1874 by

Hell and Medinger10. Later on, in 1890 Aschan11 named them naphthenic acids. Nowadays, it

is well known that naphthenic acids cause corrosion in pipes and equipment used in the

processing plants and that they are toxic to aquatic environments.12

1.2 Naphthenic  acid  chemistry  

Naphthenic acids (NAs) comprise of a large group of saturated monocyclic, acyclic and

aromatic carboxylic acids. They are naturally occurring compounds in most petroleum

sources, including crude oil and bitumen from the oil sands.13 The classical formula for NAs

is CnH2n+ZO2, where n indicates the carbon number and Z is referred to as the “hydrogen

deficiency” and is zero or a negative even integer number. More negative Z values represent

an increase in the number of hydrogen atoms lost as the structure gets more compact and as

rings are formed14. The Z value is equal to 0 for saturated linear hydrocarbon chains and it

becomes -2 for monocyclic NAs, -4 for bicyclic, -6 for tricyclic and so forth.15 Sample

structures of naphthenic acids are shown in Figure 1.

 Figure 1. Representative structures of naphthenic acids where Z is the hydrogen deficiency, R

represents an alkyl chain and n indicates the number of CH2 groups

Page 7: Simona Gherghel-MSc Thesis

Introduction  

3    

The chemical, physical and toxicological characteristics of different NA mixtures depend on

their differences in molecular structure, composition, volatility and polarity. NAs dissolve in

organic solvents and their pH influence their water solubility. Generally, their pKa values are

between 5 and 6.15 Because NAs are water soluble to some degree, their release to

wastewaters must be monitored.16

Naphthenic acid make up to 4 wt% of the crude oil composition17 and their presence in crude

oils is of great concern to the petroleum industry. NAs are responsible for corrosion in

refineries, pollution in refinery wastewaters and in oil sands extraction waters, formation of

calcium and sodium naphthenate deposits during production and processing, and formation of

emulsions.18 Naphthenate deposition can obstruct pipelines (Figure 2), causing production

irregularities and in some cases production shutdowns that can be very expensive for the oil

companies. Formation of emulsions and naphthenate deposits results in millions of dollars

expenses for the petroleum industry.

Figure 2. Naphthenate deposit causing obstruction of a hydrocyclone19

Page 8: Simona Gherghel-MSc Thesis

Introduction  

4    

Naphthenic acids are also responsible for the corrosion of pipeline carbon steel alloys that are

otherwise resistant to corrosion from compounds containing sulfides.20 An example of

pipeline affected by NA corrosion is shown in Figure 3. Corrosion by naphthenic acid is not

fully understood but it is known that it involves the chelation of the metal ion by the

carboxylate group with the release of hydrogen gas.21 Qu and his colleagues showed that

corrosivity of NAs depends greatly on the molecular mass and structure; NAs with higher

averaged molecular weight and higher averaged number of ring structures were less

corrosive.22 Temperatures between 220 and 400° C facilitate corrosion whereas at

temperatures above 400 °C the NAs  decompose forming a film that protects the alloy.23

Figure 3. Naphthenic acid corrosion in crude oil unit piping 24

With the increase for oil mining, transportation and application, more and more soils are

susceptible to crude oil contamination. At the same time, more soils contaminated with crude

oil enter the aquatic environment through surface runoff.25 Naphthenic acids are

environmentally significant because they are known to be toxic to a variety of aquatic

organisms, algae and mammals by acting as endocrine disruptors.26 The extraction processes

of bitumen, an extra heavy oil subgroup, from oil sands produce tailing waters that contain

naphthenic acids. As a consequence, oil sands companies need to monitor and report the

concentration of NAs in the waters on and near their leases.27

Page 9: Simona Gherghel-MSc Thesis

Introduction  

5    

Nonetheless, NAs also represent a resource. They and their metal carboxylates are used as

dryers in dyes, as rubber plasticizer and as fungicides for wood preservatives.28 By separating

naphthenic acids and other acidic species present in crude oils, the quality of the crude oil will

improve, and on the other hand the NAs can be used as feedstock.

1.3 Formation  of  naphthenic  acid  dimers  

 Naphthenic acids are both hydrogen-bond acceptors because of the –C=O carbonyl group and

hydrogen bond donors because of the –OH hydroxyl group; therefore they can participate in

dimer formation by hydrogen bonding. Smith and his colleagues29 used Fourier   transform  

ion   cyclotron   resonance  mass   spectrometry   (FT-­‐ICR  MS) to show that naphthenic acids

self-associate in the gas-phase at high enough concentration (1 to 10 mg/mL), forming

naphthenic acids dimers (general formula CnH2n+zO4). Moreover, they were able to

demonstrate that the higher the concentration of naphthenic acids, the higher their tendency to

form aggregates.

Although dimer formation is an accepted phenomenon in the world of petroleomics, there

have not been many studies focused on this topic. Da Campo et al.30 have taken a further look

at CnH2n+zO4 aggregates. Fourier transform infrared spectroscopy of these dimers revealed

that they are also present in the solution-phase. Using an FT-ICR MS instrument, they

demonstrated that these compounds are bound by noncovalent bonds and they reported a

possible general structure as the one shown in Figure 4, where a proton is shared between two

oxygen atoms. The formation of these species is dependent on the accumulation time of the

ions in the hexapole of the ion source. It was noticed that by increasing the accumulation

time, and thus increasing the number of collisions taking place, there was a decrease in the

signal intensity of these species, which was related to the weak noncovalent bonds that hold

together the dimers.

Page 10: Simona Gherghel-MSc Thesis

Introduction  

6    

Figure 4. Possible structure for the singly charged noncovalent naphthenic acids dimers30

Mapolelo et al31 studied calcium naphthenate deposits and sodium naphthenate emulsion

sample using FT-ICR MS, only after preparation in the laboratory to first remove the metals

from the naphthenic acids and thus creating free acids.

Naphthenic acids dimers will affect the behaviour of the naphthenic acids in the solution-

phase and so the problems associated with them. In this paper, a better understanding of

naphthenic acid dimers was pursued through the use of ultrahigh resolving power mass

spectrometry.

1.4 Analytical  techniques  for  looking  at  crude  oils  

 Petroleomics is referred to as the detailed study for elucidating the chemical composition of

the components naturally occurring in petroleum and crude oil samples. High resolving power

mass spectrometry, especially FT-ICR MS is nowadays the central petroleomics-grade

technique.

How effective the oil recovery methods are depends on the composition of the oil of interest.

Analysis of the composition of crude oil can be highly complex and separation of the major

crude oil components can facilitate their characterization. Saturate, aromatic, resin and

asphaltene (SARA) analysis is a separation technique that has been widely used in

petroleomics. It involves the separation of crude oil components based on their solubility and

polarity into four main classes: saturate, aromatic, resin and asphaltene fractions. The first

step is the precipitation of asphaltenes in n-alkane solvents, followed by liquid

Page 11: Simona Gherghel-MSc Thesis

Introduction  

7    

chromatography using silica or alumina columns to separate the three remaining fractions by

their polarity.32

Elucidating the chemical structure of heavy components in crude oil can allow a better

understanding and prediction of the petroleum behaviour during processing. Because the

organic composition of heavy crude oil is so complex, its characterization has been in the past

limited to bulk properties (such as viscosity, density, electric conductivity, light scattering,

UV-visible and infrared spectroscopy, 13C nuclear magnetic resonance NMR, X-ray

diffraction)33 and various chemical separation methods based on solubility (like SARA

analysis), boiling point, gas and liquid chromatography.34 NMR and X-ray diffraction have

been employed in determining the molecular structure of crude oil compounds, but both

techniques are limited in the sense that they can only provide an average molecular structure

of components. 35

At present, Fourier transform ion cyclotron resonance mass spectrometry is an indispensable

method of choice for the analysis of complex samples such as petroleum. FT-ICR MS

dominates the petroleomics field because of its high mass accuracy and ultrahigh resolving

power, making it possible to calculate the elemental composition of the compounds with great

accuracy.

1.5 Fourier  transform  ion  cyclotron  resonance  mass  spectrometry  

All types of mass spectrometer allow compounds to be identified by the production of gas-

phase ions from a neutral sample and their subsequent sorting and detection based on their

mass-to-charge ratio (m/z). The sample can be solid, liquid or gas, depending upon the type of

ion source used. The ions are transferred into the mass analyser (ICR cell) and the differences

in masses of the fragments enable the mass analyser to separate the ions according to their

mass to charge (m/z) ratio.36

FT-ICR MS instruments determine the m/z of an ion by measuring the cyclotron frequency of

the ion trapped in a fixed magnetic field. The magnetic field is usually generated using a

superconducting magnet. The equation that relates frequency to the m/z of the ions is the

following:

Page 12: Simona Gherghel-MSc Thesis

Introduction  

8    

𝑓 = !"!!"

(eq. 1),

where f is the cyclotron frequency (Hz), m is the mass of the ion (kg), q is the charge on the

charged particle (coulombs, C) and B is the magnetic field (tesla, T).37

Due to the inherently ultrahigh resolving power (for example 400 000 (full width at half

maximum) at m/z 400) and accurate mass measurement, Fourier transform ion cyclotron

resonance mass spectrometry has enabled analysts to study heavy crude oil at a molecular

level.38 FT-ICR MS has been playing a key role for petroleomics ever since its first

application to petroleum distillates39 as it has allowed a better understanding of the structure

of the components that make up this highly complex mixture and thus an insight into their

behaviour.

Most of the characterization of naphthenic acids has been performed using different mass

spectrometric (MS) techniques, including gas chromatography mass spectrometry (GC-MS)40,

two-dimensional GC-MS41 and liquid chromatography (LC) MS.27 Also, different ionization

approaches such as electron ionization (EI)42, fast atom bombardment (FAB)43, atmospheric

pressure chemical ionization (APCI)44, and lately electrospray ionization (ESI)17 have been

successfully used for the study of naphthenic acids.

ESI is a soft ionization technique that has gained great popularity in the past few years and it

has been shown that is it able to selectively ionize acidic and basic components in petroleum

samples.45 The analyte dissolved in a suited solvent is sprayed from a small capillary tube into

a strong electric field in the presence of a drying gas (typically nitrogen) and thus, generating

a fine “mist” of highly charged droplets as illustrated in Figure 5.46 Under negative-ion ESI

acids are deprotonated generating negative ions and under positive mode ESI (basic) neutral

are protonated forming positive ions.34 Although crude oil contains less than 10% heteroatom-

containing compounds, they represent the main concern for the petroleum industry. Because

of their high polarity, ESI is specific and especially efficient in generating their gas-phase

ions. Moreover, negative-ion ESI is a “soft” ionization techniques that generates [M − H]-

without extensive ion fragmentation or matrix interference.

Page 13: Simona Gherghel-MSc Thesis

Introduction  

9    

Figure 5. Schematic representation of ion formation by electrospray ionization (ESI)

Tandem mass spectrometry (MS/MS) techniques allow insight on structure of naphthenic

acids by offering further information about specific ions. The ions of interest from the ion

source are selected and then subjected to fragmentation through different dissociation

techniques such as collision induced dissociation, infrared multiphoton dissociation and

electron induced dissociation.

Collision-induced dissociation (CID), also known as collisionally activated dissociation

(CAD), is by far the most common MS/MS technique and it involves the acceleration of the

ions by electrical potential to high kinetic energy followed by the collision of the ions with

neutral gas molecules, resulting in further dissociation of the ions.

Central to infrared multiphoton dissociation (IRMPD), is the absorption of multiple infrared

photons, leading to a continuous build-up of internal energy by the ions. When the internal

energy overcomes the barrier against dissociation, fragmentation of the ions occurs.47 The

irradiation of ions is typically carried out using a pulsed CO2 laser.

Electron induced dissociation (EID) involves the fragmentation of singly-charged ions

succeeding their interaction with high-energy electrons (>10 eV).48 EID has been used in the

past for the analysis of peptide ions, metabolites and sodium clusters cations49 but as to date,

there are no publications testing the viability of EID for petroleum samples. EID would allow

Page 14: Simona Gherghel-MSc Thesis

Introduction  

10    

going beyond the analysis of petroleum using elemental composition alone by obtaining

greater structural insight.

1.6 High  mass  accuracy  

 In mass spectrometry, mass accuracy is defined as the ratio of the m/z measurement error to

the true m/z, generally expressed in parts per million (ppm) and mass resolving power

represents the ability to distinguish between two peaks varying slightly in m/z.50

Each isotope of each chemical element has a different mass defect and they are known to a

great accuracy. By using the power of the inherent high mass accuracy and ultrahigh

resolving power of Fourier transform mass spectrometry, it is possible to compare petroleum

samples on a molecular level with high accuracy. The importance of ultrahigh resolving

power can be illustrated in the case of CH4 and O as they both have a nominal mass of 16, but

their exact mass is 16.0313 Da and 15.9949 Da respectively, resulting in a mass difference of

36.4 mDa. Similarly SH4 and C3 have a nominal mass of 36, but their exact masses (36.0034

Da and 36.0000 Da, respectively) differ by 3.4m Da.4

But even with a high mass accuracy and knowledge of the ion’s charge state, the chemical

complexity of naphthenic acids increases greatly with molecular weight and the assignment of

the elemental composition can be unambiguously done only to about 500 Da.51 Nevertheless,

by using Kendrick mass defect plot the mass range can be extended up to three times.52

 

1.7 Kendrick  mass  defects:  the  key  to  unlocking  chemical  formulas  

Kendrick mass defect (KMD) plots have been successfully applied for the study of petroleum

samples using ultrahigh resolving power mass spectrometry as they have allowed data

interpretation and visualization of complex data sets. KMD plots are particularly useful for

indicating the characteristics and behaviour of the species of interest.53

Kendrick mass defect calculation transforms the IUPAC mass scale (12C=12.000 00 Da) to

the Kendrick mass scale (CH2=14.00000 Da instead of 14.01565 Da) using the following

equation:

Page 15: Simona Gherghel-MSc Thesis

Introduction  

11    

Kendrick Mass=IUPAC Mass× !"!".!"#$#

(eq. 2).

Then the Kendrick mass defect is defined by:

Kendrick Mass Defect (KMD) = Nominal Kendrick Mass-Kendrick Mass (eq. 3),

where Kendrick mass is calculated as shown above and nominal Kendrick Mass is the

Kendrick mass rounded to the nearest integer.

For samples containing a high number of hydrocarbons, such as petroleum, KMD plots

simplify the display by showing peak patterns lined up in the horizontal direction. The

effectiveness of KMD plots relies on the fact that members of a homologous series from

crude oils, i.e. compounds that have the same constitution of heteroatoms and number of rings

plus double bonds but different alkyl chain length, will have an identical Kendrick mass

defect. In a KMD plot, a homologous series will appear on a horizontal row, making it easy to

distinguish from species of other class and type. Another great advantage is that “outlier” data

can be immediately determined if they fall outside the main patterns54.

Furthermore, unambiguous assignment of a series of related compounds at low m/z serves to

determine all other higher mass members of that species. As a result, KMD scaling extends

elemental composition assignment to masses up to three times higher than would be possible

using mass-measurement accuracy only.

For illustrative purposes, a KMD plot of naphthenic acids is shown in Figure 6. The primary

trend horizontally is a constant difference in Kendrick nominal mass of 14.01565 (indicating

an increase with a CH2 group) and vertically there is a constant Kendrick mass defect

difference of 0.013455 (indicating a difference of two hydrogen atoms and thus an increase in

the degree of unsaturation).

Page 16: Simona Gherghel-MSc Thesis

Introduction  

12    

Figure 6. Kendrick Mass Defect plot of monomeric naphthenic acids

1.8 Double-­‐bond  equivalent  versus  carbon  number  plot  

 

The first step to evaluate the structure of a compound is to determine its elemental

composition. The exact mass measured with MS can be used to calculate the elemental

formulae (CcHhNnOoSs). Once the elemental composition is known, double-bond equivalent

(DBE), also known as degree of unsaturation, plays a key role in predicting the chemical

structure of the compounds present in crude oil samples. DBE represents the number of

double bonds and rings in a given molecule. DBE and Z values are different ways of thinking

about the same thing, i.e. the hydrogen deficiency (rings and double bonds and degree of

unsaturation).

The DBE values calculated from the elemental composition can be plotted against carbon

number, resulting in a “DBE plot”. Species of the same DBE, i.e. from the same homologous

series, will be plotted on a horizontal line. The DBE plots may be rendered more informative

Page 17: Simona Gherghel-MSc Thesis

Introduction  

13    

by colour-coding each m/z ion depending on its measured relative abundance. Herein, the

gradient goes from red for the least abundant ions to yellow for the most abundant ions.

Additionally, the size of each plot dot can differ with the abundance of that ion. Such a plot of

naphthenic acids is shown in Figure 7.

Figure 7. Example of DBE plot for O2 class species, where the most abundant species have a

DBE value of 3.5  

1.9 Main  aims  

The aim of the following study is to use ultrahigh resolving power FT-ICR MS and tandem

MS techniques for characterization of petroleum components.

The initial focus is on aggregation of naphthenic acids in the solution phase: understanding

their composition and whether these aggregates form selectively or depending on the

available monomers. Then electron-induced ionization will be applied for the first time to

petroleum in order to obtain preliminary data for proof-of-concept of a new approach for

structural insights into petroleum. The interaction of singly-charged ions with high-energy

electrons (>10 eV) is expected to result in mass spectra with more extended ion fragmentation

than slow-heating dissociation techniques such as CID or IRMPD.48

Page 18: Simona Gherghel-MSc Thesis

Experimental  

14    

2 Experimental  

2.1 Sample  preparation  

 A commercial Kodak naphthenic acid mixture (The Eastman Kodak Company, Rochester,

NY) was used for all the analysis carried out for the characterization of naphthenic acids

using negative-ion ESI.

The water used in the experiments was purified using a Direct-Q 3 Ultrapure Water System

from Millipore (Billerica, MA, USA). An already prepared two years old sample containing 4

mg of Kodak NA mixture dissolved in 5 mL of acetonitrile (WVR, Leuven, Belgium) and 5

mL of Milli-Q water was now doped with 50µL Agilent #1969 ESI-L Low Concentration HP

calibrating mix (Agilent, Palo Alto, CA). The concentration of the sample is 0.4 mg/mL and

is expressed in mass/volume instead of molarity as naphthenic acid is a mixture. This sample

was then subjected to in-source dissociation (ISD) at 0 and 60 V and to CID fragmentation at

2, 6, 8 and 12 V. ISD is a variation of CID, where an increase in the difference in potential

between the two ion funnels gives ions higher kinetic energy at an early stage of the

instrument. ISD is a non-selective technique useful for dissociation of noncovalent species.

To compare the results obtained from the 2 year old Kodak NA sample, a fresh solution of

Kodak NA sample was prepared. This fresh solution containing 19.9 mg of Kodak NA

mixture was dissolved in 5 mL of acetonitrile and 5 mL of Milli-Q water (~2 mg/mL). Using

this stock solution a serial dilution with the following concentrations: 0.5, 0.1, 0.05, 0.001,

0.005 and 0.001 mg/mL was created and subjected to ISD (0 V) experiments. In the previous

CID experiments, the quadrupole was used to isolate the m/z 503.4 ion (with a 1 Da wide

isolation window). The ions in the isolation window pass though the collision cell, where CID

experiments were performed and then the ions were passed to the ICR cell. To improve the

quality of the isolation and the resolving power of the resulting spectra, the quadrupole was

used to isolate the species of interest then a correlated sweep (in the cell) plus correlated shots

(1% clean up shots power, pulse 0.15846 sec) in the cell was used. The fragmentation was

carried out using IRMPD rather than SORI-CID as the later will raise the pressure in the cell

and decrease performance.  

Page 19: Simona Gherghel-MSc Thesis

Experimental  

15    

Doping of a fresh Kodak NA sample with sodium chloride and analysing the effects salt has

on NAs was the next step. A fresh 0.05 mg/mL stock solution Kodak NA mixture was

prepared in 10 mL of acetonitrile and 10 mL of Milli-Q water. A 600µM stock solution of

sodium chloride was prepared in 20 mL of Milli-Q water (0.7 mg NaCl). Three samples

containing the same naphthenic acid mass concentration (0.05 mg/mL) and varying salt

concentration values were prepared. The concentration of salt in the three samples was as

follows: 0.6 µM, 54.55 µM and 300 µM, respectively. The blank stock solution of Kodak NA

sample, as well as the three samples of Kodak NA doped with salt was subjected to MS

analysis. A 0.05 mg/mL solution of Kodak NA was also doped with significant higher

amounts of NaCl to mirror the seawater salinity, i.e. approximately 600 mM, but it was not

run thought the FT-ICR MS.

A light-sour crude oil sample, which is a standard reference material from the National

Institute of Standards and Technology (NIST, Gaithersburg, Maryland, U.S.A.) was used to

obtain a positive-ion ESI spectrum. Then isolation was performed using a window with the

width of 60 Da so that the isolation window spans ions of two higher/lower carbon numbers

each side of the central ion. EID experiments were carried out and a single EID spectrum was

obtained. Because of the difficulty faced by tuning with low signal, the spectrum collected

was the average of 500 scans and it took about an hour to acquire.

2.2 Fourier  Transform-­‐Infrared  Spectroscopy  (FT-­‐IR)    FT-IR analysis was carried out on a JASCO FT/IR-470 plus. The Kodak NA mixture was

analysed directly, with no prior dilution in solvents. The baseline correction was produced in

a nitrogen flow atmosphere, followed by the acquisition of the sample FT-IR spectrum as an

average of 200 scans.

2.3 Mass  Spectrometry  Analysis  

All mass spectrometry experiments were carried out on a Bruker solariX Fourier transform

ion cyclotron resonance mass spectrometer fitted with an Apollo II ion source and a 12 tesla

superconducting, refrigerated and ultrashield magnet (Bruker Daltonik GmbH, Bremen). An

instrument schematic of the instrument used is shown Figure 8.

Page 20: Simona Gherghel-MSc Thesis

Experimental  

16    

Figure 8. Schematic of 12 T Bruker Solarix FT-ICR MS (courtesy of Bruker Daltonik,

GmbH, Bremen)

For the Kodak NA samples, the instrument was run in negative-ion conditions as negative

ESI-MS favours the ionization and detection of acidic compounds such as naphthenic acids.

These acidic sites give up a proton and thus creating negatively charged molecules. For the

crude oil sample, the instrument was run in positive-ion conditions due to the high abundance

of basic nitrogen species, which can be readily protonated and thus, providing a strong signal

for MS/MS experiments.

The conditions of ESI were the following: syringe flow of 120-300µL/hour, drying gas

(nitrogen) temperature of 220° C and a flow rate of 4L/min. The nebulizer gas (also nitrogen)

was kept at a pressure of 1.2 bar. The ion accumulation time (IAT) was tuned while

monitoring the transient lifetime. For all the CID experiments the IAT was set to 0.5 sec, for

IRMPD experiments it was 2 sec and for the ISD experiments of the old and fresh samples it

was 0.001s. A set of ISD experiments where the IAT varied between 0.1 and 0.4 was carried

out in order to obtain an understanding how the spectrum is affected by accumulating ions for

longer period of times.

The mass range was set between m/z 147.41 and 3000. Mass spectra consisted of 4M Word

data points the signal-to-noise ratio was enhanced by summing 100 time domain transients.

Transient length was approximately 1.67 s with a resolving power (m/Δm50%) of about 400

Page 21: Simona Gherghel-MSc Thesis

Experimental  

17    

000 at m/z 400 (Δm50% is the mass spectral full peak width at half height). After acquisition,

data were zero-filled56 once and sine-bell apodization57 was applied.

2.4 Calibration  

 

Mass lists were obtained using the processing software Data Analysis 4.2 (Bruker Daltonik

GmbH, Bremen) where the S/N threshold was set to be higher than 4. Calibration was carried

out externally for the old Kodak NA sample doped with Agilent #G1969 Low Concentration

HP calibrating mix. In this way, accurate m/z values were obtained over a wide mass range

that bracketed the monomer and dimer region of interest and thus improving the mass

accuracy and confidence in assignments.

For subsequent spectra, the calibrating material was not used in order to eliminate possible

peak contributions. The calibration was carried out internally using the O2, O4 and NaO4

homologous peaks (the list of known mass ion used for calibration is provided in the

Appendix).

2.5 Data  analysis  

 Spectral interpretation was carried out using the Data Analysis 4.2 software. For the

calculation of the elemental formulas, the usual CcHhNnOoSs formula for petroleum was

considered, where c and h are unlimited, n and o are between 0 and 5 and s is between 0 and

4. Up to two 13C atoms were also included in the calculation because of the high content of

carbon, along with 1 atom of Na. Other constraints included even electron species, maximum

H/C ratio of 3 and a minimum of -0.5 and a maximum of 40 rings plus double bonds.

Several approaches for data analysis and visualization of the large amount of data sets

acquired were used in this paper, including Kendrick mass defect plots, double bond

equivalent plots, bar charts of contributions from different type of species and distribution of

the intensity of various Z series versus carbon number. Data were processed with Excel 14

(Microsoft Corporation, Redmond, Washington, U.S.A.), Origin 9.1 (OriginLab,

Northampton, MA, USA) and GraphPad Prism 6 (GraphPad Software, LA Jolla California,

USA).

Page 22: Simona Gherghel-MSc Thesis

Experimental  

18    

The mass spectra gathered varied from 200 to 300 entries in the peak list for the CID and

IRMPD experiments and between 1000-3000 data points for the ISD experiments. The m/z,

intensity and resolving power values were the parameters imported from Data Analysis

software into Microsoft Excel.

Using eq. 2 and eq. 3, a method was created for the calculation of the Kendrick mass defects.

An example of the calculation is shown next.

For an ion with the composition C15H25O2- (the negatively singly charged ion of the C15H26O2

naphthenic acid with Z=-4) the IUPAC mass is 237.186004, but using the Kendrick mass

scale, the ion has a Kendrick mass of 237.186004*14/14.01565=236.921160. The Nominal

Kendrick mass is 237 and the Kendrick mass defect is 237-236.92116=0.07884.

Each data entry was manually assigned on the basis of Kendrick mass defects and of m/z

values within an error range typically of 1 ppm or less. Then each formula was used to

calculate the Z and DBE values, followed by various visualization methods. For all mass

spectra, mass error distribution histograms of the main class species present were created and

they can be found in the Appendix. The low mass errors obtained using FT-ICR MS allow

more confident assignments than by using other type of mass analyser.

Double bond equivalent was calculated using the following equation58:

DBE=𝑐 − !!+ !

!+ 1, for the elemental formulae CcHhNnOoSsNa1.

To ensure persistence in data analysis, all DBE values were calculated for the molecular ions.

So, for example, for the molecular ion C15H29O2-, DBE=15-29/2+1=1.5 (corresponding to a

saturated naphthenic acid compound, Z=0). Equivalently, all deprotonated ions of monomeric

naphthenic acids from the ESI experiments will have an odd DBE value.

For convenience purposes, assignments were categorized in terms of their carbon number,

number of double bonds and rings, and their constituent heteroatoms (O, N, S, Na). The

heteroatom(s) determines the compound class; for example, O or O1 denotes a composition of

CcHhO1 and O2 denotes a composition of CcHhNnO2.

Page 23: Simona Gherghel-MSc Thesis

Results  and  discussion  

19    

3 Results  and  discussion  

3.1 Proof  of  naphthenic  acid  dimers  existence  in  solution-­‐phase  

 Carboxylic acids are well known to have a characteristic twin-peak infrared absorption band,

with a small peak between 1740 and 1750 cm-1 (monomer form) and a strong peak between

1700 and 1715 cm-1 (dimer form). The pure, undiluted in organic solvents, Kodak naphthenic

acid mixture was analysed using a Fourier Transform Infrared Spectroscopy. Its FT-IR

spectrum is shown in Figure 9 and it displays this pattern with an apex at 1703, associated

with the presence of NA dimers and a smaller apex at 1742 cm-1, associated with the

monomeric NA structures. This readily proves that the components from the Kodak mixture

associate to form dimers in the solution-phase at a sufficiently high concentration.

Figure 9. Expanded region of the FT-IR spectrum of the Kodak NA mixture showing the

absorption band characteristic to the C=O stretching in the carbonyl group. The maxima at

1703 cm-1 corresponds to dimeric species and the maxima at 1742 to the monomeric species.

Figure based on data provided from previous study20 using the same Kodak NA mixture as in

this work

1600165017001750180018500.0

0.1

0.2

0.3

0.4

0.5

Abs

orpt

ion

(a.u

.)

Wavenumber (cm-1)

1742(monomer)

1703(dimer)

C=O stretch(COOH)

Page 24: Simona Gherghel-MSc Thesis

Results  and  discussion  

20    

3.2 2  year  old  Kodak  naphthenic  acid  sample  

3.2.1 ISD  experiment  0  V    

 During an ISD experiment (0 V), using the 2 year old Kodak naphthenic acid sample doped

with Agilent #G1969 ESI-L Low Concentration HP calibrating mix, it was observed that

besides the monomer distribution in the m/z 170-390 region (attributed to the naphthenic acid

species, i.e. O2 class species), there are three other distinct distributions present in the m/z

365-675, 670-920 and 950-1200 m/z region along with clusters in the m/z 1080-1230, 1370-

1520 and 1700-1850 regions (Figure 10).

Figure 10. Mass spectrum of a 2 year old Kodak NA sample showing several distributions

(negative-ion ESI, ISD 0 V). The peaks marked with a star originate from the Agilent #G1969

ESI-L Low Concentration HP calibrating mix

For convenience purposes, the four distributions present were named using roman numerals

as shown in Table 1.

Page 25: Simona Gherghel-MSc Thesis

Results  and  discussion  

21    

Table 1. Assigned names for the four distributions in the mass spectrum of a 2 year old Kodak

NA sample (negative-ion ESI, ISD 0 V)

m/z  region   Distribution  name  

170-­‐390   I  

365-­‐675   II  

670-­‐920   III  

950-­‐1200   IV  

A very effective visual method to illustrate features and behaviour of the species of interest is

the use of Kendrick plots. The m/z for all the peaks in the spectrum were rescaled to the

Kendrick Mass scale and the nominal Kendrick Mass was plotted against KMD to reveal the

four distributions present (Figure 11). Even though two-dimensional KMD plots do not

typically show the relative intensity of the compounds, they are very useful in illustrating the

degree of unsaturation. It can be clearly noticed that distribution II has the highest Kendrick

mass defect variation and thus its components extend over a wider range of degrees of

unsaturation when compared to the other distribution present such as distribution I, i.e. the O2

class species. Also an overlap of species can be observed in distribution II.

Figure 11. Kendrick Mass plot of the four distributions present in the 2 year old Kodak NA

sample (negative-ion ESI, ISD 0V)

Page 26: Simona Gherghel-MSc Thesis

Results  and  discussion  

22    

Carrying out data analysis, the majority of the peaks in distribution II were assigned to O4 and

NaO4 class species. Distribution III and IV have tentative assignments of NaOS and NaO3,

respectively. Within acceptable mass errors, the compositions were not naphthenic acid

multimers, and so further work would be necessary to comprehensively characterize these

distributions.

The 2 year old Kodak NA sample exhibits mainly oxygen-containing species such as: O2,

O3S, O4, NaO4, O4S and O5S. The OxS species are believed to be contaminants from sulfur-

containing compounds, such as sodium dodecyl sulfate, a common surfactant in many

cleaning and hygiene products with the general formula CH3(CH2)11OSO3Na.

The inherent ultrahigh resolving power and mass accuracy of the FT-ICR MS used in this

study for determining the elemental composition of naphthenic acids is readily evident, even

when operating in broadband (m/z 147.41 and 3000) as shown in Figure 12, which represents

a 20 Da and a 16 mDa mass scale-expended segment. An increase in the mass spectra

resolving power can be achieved by lengthening the transient acquisition (tacq). Longer tacq are

obtained by increasing the number of data points collected and/or by increasing the lowest

m/z value.

The m/z 468-501 zoom in spectrum, reveals single charged molecules, separated by

approximately 14 Da for members of the same homologous series (m/z=473.36, m/z=487.38

and m/z=501.4) and by approximately 2 Da for compounds that have a DBE difference of 1

(m/z=473.36 and m/z=475.38). The 16 mDa zoom-in region (m/z   469.324-­‐469.340  

window) reveals a resolved doublet of molecules: a NaO4 class species on the left hand side

and an O4 class species on the right side. The  two  peaks  are  being  separated  by  about  2.4  

mDa,   i.e.  1  mDa   less   than  between  SH4 and C3. This pair of peaks repeats throughout the

dimer distribution, pointing out the importance of ultrahigh resolving power and mass

accuracy.

Page 27: Simona Gherghel-MSc Thesis

Results  and  discussion  

23    

Figure 12. Mass scale-expanded segments (20 Da and 16 mDa wide) of negative ESI FT-ICR

mass spectra of the 2 year old Kodak NA mixture. The bottom spectrum is a zoom in on a

NaO4/O4 pair.

Page 28: Simona Gherghel-MSc Thesis

Results  and  discussion  

24    

The abundance values of the species present in distribution I and II have been calculated as

the sum of the intensities of all species from the same class (Table 2). O4 class dominates

distribution II, fitting with previous work reported by Da Campo30. At a smaller contribution,

it is shown for the first time the formation of sodium bound naphthenic acid dimers.

Table 2. Summed absolute intensity and normalized relative intensity of the species present in

the monomer and dimer distributions for the old 0.4 mg/mL Kodak NA sample (ISD 0 V)

Species Intensity Relative intensity (%)

Monomer O2 1701126842 23.60

O3S 7415251 0.10

Dimer O4 4783158046 66.34

NaO4 612119306 8.49

O4S 11957646 0.17

O5S 93864521 1.30

The relative intensity of the compounds present in the monomer and dimer distributions are

illustrated as graph in Figure 13. O4 class species represent approximately 66% of the species

present in the dimer distribution and NaO4 represent approximately 8%, respectively.

Figure 13. Relative intensity of the species observed in the monomer and dimer distribution in

the 2 year old Kodak naphthenic acid mixture (negative-ion ESI, ISD 0 V)

0  

10  

20  

30  

40  

50  

60  

70  

O2   O3S   O4   NaO4   O4S   O5S  

Relative  Intensity  (%

)  

Species  present  

Old  Kodak  naphthenic  acid  sample  composition  (ISD  0  V)    

                                                     monomer  

   dimer  

Page 29: Simona Gherghel-MSc Thesis

Results  and  discussion  

25    

3.2.2 ISD  experiment  (60  V)  

By increasing the in source fragmentation energy to 60 V, most of the dimeric species

dissociate back to monomeric species, and thus a decrease in intensity of the dimer

distribution was noticed while the intensity of the monomer increases as shown in Figure 14.

Figure 14. Mass spectrum of 2 year old Kodak naphthenic acid sample showing several

distributions (negative-ion ESI, ISD 60 V)

The main event noticed when increasing the fragmentation power to 60 V was that no O4, O4S

and O5S class species were present anymore and the dimer distribution consisted of only

NaO4 class species. The summed absolute and relative intensities of the species present in the

old Kodak NA sample are gathered in Table 3.

Page 30: Simona Gherghel-MSc Thesis

Results  and  discussion  

26    

Table 3. Summed absolute intensity and the normalized relative intensity of the species

present in the monomer and dimer distributions for the old Kodak NA sample (ISD 60 V)

Species Intensity Relative intensity (%)

Monomer O2 4786823693 80.36

O2S 5123729 0.09

O3S 24629987 0.41

Dimer NaO4 1139835910 19.14

The relative intensity of the compounds present in the monomer and dimer distributions are

illustrated as bar chart graph in Figure 15.

Figure 15. Relative intensity of the species observed in the monomer and dimer distribution in

the 2 year old Kodak naphthenic acid mixture (negative-ion ESI, ISD 60 V)

For a visual comparison, the content of O2, O4 and NaO4 class species in the Kodak NA

sample at the two different ISD experiments (0 and 60 V) is illustrated as stacked bar chart in

Figure 16. If at 0 V, O4 naphthenic acid dimers predominate the spectrum, at 60 V there are no

O4 species present, while the monomeric naphthenic acids dominate the spectrum. The

explanation behind it is that at higher voltages, O4 dimers dissociate back to the monomeric

form of NAs. The NaO4 dissociate less easily than the O4 dimers as they are tightly bound due

to the sodium atom. This result, determining the role of sodium, will later lead on to be

looked at using a fresh Kodak NA sample.

0  

10  

20  

30  

40  

50  

60  

70  

80  

90  

O2   O2S   O3S   NaO4  

Relative  Intensity  (%

)  

Species  present  

Old  Kodak  NA  sample  composition  (ISD  60  V)  

                 dimer  

                                                       monomer  

Page 31: Simona Gherghel-MSc Thesis

Results  and  discussion  

27    

Figure 16. The intensity of main class species present in the monomer and dimer region for

the 2 year old Kodak NA mixture during ISD experiments at 0 and 60 V. At 60 V ISD, there

are no O4 dimers present

The DBE plots of the three main components from the ISD 0 V and ISD 60 V spectra of the 2

year old Kodak NA sample are shown in Figure 17. The DBE plots at ISD 0 V and at ISD 60

V are very similar for O2 and NaO4 class species, respectively. The carbon number varies

between 11 and 26 for O2 class compounds, between 22 and 42 for O4 class compounds and

between 24 and 41 for NaO4 class compounds. The DBE values observed in negative-ion ESI

are half integers due to the change in electron availability attributed to loss of a proton. The

saturate species (Z=0) will have a DBE of 1.5 due to the carboxylic acid group. All higher

DBE values are associated with rings (or double bonds). The DBE ranges from 1.5 to 8.5 for

O2 species, from 2.5 to 12.5 for O4 species and from 4 to 12 for NaO4 class species. The most

abundant species have a DBE value of 3.5 for O2 class, of 5.5 for O4 class and of 6 for NaO4

class.

0.E+00  

1.E+09  

2.E+09  

3.E+09  

4.E+09  

5.E+09  

6.E+09  

7.E+09  

8.E+09  

0V   60V  

Contributions  of  the  O2,O4  and  NaO4  class  species  (ISD  experiments)  

NaO4  

O4  

O2  

Page 32: Simona Gherghel-MSc Thesis

Results  and  discussion  

28    

   

 

 Figure  17.  DBE  plots  of  O2,  O4  and  NaO4  species  (from  top  to  bottom)  at  0  V  (right  side)  

and  60  V  (left  side)  

 

 

 

 

 

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 420

1

2

3

4

5

6

7

8

9

10

11

12

13

14 Old Kodak NA sample (ISD 0 V)O2 class DBE plot

DB

E

Carbon number10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14 Old Kodak NA sample (ISD 60 V) O2 class DBE plot

DB

E

Carbon number

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 420

2

4

6

8

10

12

14 Old Kodak NA sample (ISD 0 V)O4 class DBE plot

DBE

Carbon number

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 420

2

4

6

8

10

12

14Old Kodak NA sample (ISD 0 V)

NaO4 class DBE plot

DB

E

Carbon number

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 420

2

4

6

8

10

12

14Old Kodak NA sample (ISD 60 V)

NaO4 class DBE plot

DB

E

Carbon number

Page 33: Simona Gherghel-MSc Thesis

Results  and  discussion  

29    

3.3 Fresh  sample  

The existence of sodium naphthenates in the two year old Kodak NA sample was believed to

be caused by the presence of sodium from glassware. In order to investigate this hypothesis a

serial dilution of fresh Kodak NA was prepared and analysed using ISD at 0 V to mirror

previous experimental conditions.

3.3.1 ISD  (0  V)  of  serial  dilution  

 The data analysis revealed that the main compounds in the dimer region of the fresh Kodak

NA sample are mainly O4 class species with a very small contribution from NaO4 class

species. Because the interaction timescale is minutes rather than years, there is less time to

interact with sodium from glassware and so much less of the NaO4 class species are observed

when compared with the 2 year old Kodak NA sample.

The work carried by Smith et al29 using negative ESI FT-ICR MS on a 375-400° C distillation

cut from Athabasca bitumen showed that high sample concentration must be used in order to

observe multimers aggregation. At 1 mg/mL, multimers formation was evident and as

concentration increased to 5 mg/mL and 10 mg/mL the relative abundance of multimers was

higher than that of monomers. In this paper, the dimer formation is shown to occur at lower

concentration of Kodak NA sample (0.001 to 0.5 mg/mL).

It was noticed that by increasing the concentration of the naphthenic acid sample, there was a

large increase in the relative abundance of the O4 class species, whereas the O2 monomers

decrease significantly (highlighted data in Table 4). Increasing the concentration from 0.001

mg/mL to 0.5 mg/mL, the abundance of monomeric naphthenic acids drops from ~82% to

~4.5%, while the abundance of O4 dimers increases from ~10% to ~82%.

Page 34: Simona Gherghel-MSc Thesis

Results  and  discussion  

30    

Table 4. Relative abundance of the species present in the fresh Kodak NA sample as a factor

of concentration (ISD 0 V).

Comparing the abundance of NaO4 class species from the old fresh Kodak NA sample with

that from the fresh sample, a decrease in the latter was noticed. Where the relative abundance

of NaO4 class species in the 2 year old 0.4 mg/mL Kodak NA sample was ~8.5% (Table 2), in

the fresh 0.5 mg/mL Kodak NA sample it is ~2.8%.

The relative abundance of naphthenic acid monomers and dimers as a factor of concentration

(on a logarithmical scale) is shown in Figure 18. The crossover between the O2 and O4 class

species occurs between 0.005 mg/mL to 0.01 mg/mL.

Figure 18. The relative abundance of O2, O4 and NaO4 class species present in the fresh

Kodak NA sample depending on the sample concentration (ISD, 0 V)

Species/Concentration (mg/mL)

0.001 0.005 0.01 0.05 0.1 0.5

Monomer O2 81.84734 48.54421 41.65119 17.33382 9.2603 4.42647

O3 0 0.06375 0.10108 0.04236 0 0.14678

O4 1.61367 1.2567 1.17202 0.34764 0.03462 0.02243

O2S 1.55263 1.70097 1.46321 0.84632 0.24235 0.40252

O3S 4.86567 0.1608 0.1229 0.01219 0.1459 0

Dimer NaO4 0 0.44595 0.68072 0.95765 1.90841 2.8396

O4 9.74035 45.27648 52.36459 74.5034 84.42081 82.30006

O5 0 0 0.1012 0.4483 0.16802 0.76221

O4S 0.30642 1.99654 2.34308 5.46864 3.81959 8.82549

O5S 0.07392 0 0 0.03969 0 0.27444

Page 35: Simona Gherghel-MSc Thesis

Results  and  discussion  

31    

Plotting out the data from Table 4 into a bar chart (Figure 19) can provide useful overview on

how concentration affects the overall distribution trend in the naphthenic acid sample. By

increasing concentration, naphthenic acid monomers decrease in abundance, whereas

noncovalent O4 dimers and sodium bound naphthenic acid dimers increase in abundance.

Figure 19. The relative abundance of the species present in the fresh Kodak NA sample at

various concentrations (ISD, 0 V)

Further information can be provided by using DBE plot of different compound classes at

various concentrations. DBE plots of the O2 and O4 species at 0.001mg/mL, 0.01mg/mL and

0.1 mg/mL dilution samples are illustrated in Figure 20. Although DBE plots are usually

created for a single class, for this set of data it was decided to include the O2 and O4 classes in

the same DBE plot. The resulting DBE plots help visualise how an increase in concentration

by an order of magnitude changes a shift from high content of monomeric species to high

content of dimeric aggregates. In the 0.001mg/mL sample, the naphthenic acids with a DBE

number of 3.5 are predominant, while in the 0.1mg/mL sample, the naphthenic acid dimers

with a DBE of 5.5 are most abundant.

Page 36: Simona Gherghel-MSc Thesis

Results  and  discussion  

32    

Figure 20. DBE plots of O2 and O4 species from spectra of a fresh Kodak NA sample at

various concentrations

Page 37: Simona Gherghel-MSc Thesis

Results  and  discussion  

33    

The effect concentration has on the ratio of NaO4/O4 species from the fresh Kodak NA sample

was explored next (Table 5). With increasing concentration the NaO4/O4 ratio increases.

Table 5. The absolute abundance of NaO4 and O4 class species and their ratio in the fresh

Kodak NA sample at various concentrations (ISD, 0 V)

Class/  Concentration    

(mg/mL)  0.001   0.005   0.01   0.05   0.1   0.5  

NaO4   0   1.77E+07   3.31E+07   9.71E+07   6.58E+08   8.07E+08  

O4   1.79E+08   1.79E+09   2.55E+09   7.56E+09   2.91E+10   2.34E+10  

NaO4/O4   0   0.010   0.013   0.013   0.023   0.035  

By plotting the absolute abundance of the NaO4 and O4 class species from Table 5 into a bar

chart (Figure 21), the change in overall intensity is displayed.

Figure 21. The absolute abundance of the O4 and NaO4 compounds in a fresh Kodak NA

sample at different concentrations. The lowest concentration analysed, i.e. 0.001mg/mL

contains no NaO4 class species

0.0E+00  

5.0E+09  

1.0E+10  

1.5E+10  

2.0E+10  

2.5E+10  

3.0E+10  

3.5E+10  

0.001   0.005   0.01   0.05   0.1   0.5  

Absolute  intensity  

Concentration  (mg/mL)  

O4  and  NaO4  absolute  intensity  as  a  factor  of  concentration  

NaO4  

O4  

Page 38: Simona Gherghel-MSc Thesis

Results  and  discussion  

34    

For a better visualization of the NaO4/O4 ratio at different Kodak NA concentrations, a

stacked bar chart normalized to 100% was created (Figure 22). It can be observed that an

increase in concentration leads to the presence of more NaO4 class species relative to the

abundance of O4 species. Where there was no NaO4 class species at 0.001 mg/ml, at 0.5

mg/mL, they make up to ~3.3% of the summed relative abundance of NaO4 and O4 class

species. A possible explanation is that O4 species dissociate more readily, while NaO4 species

are more tightly bound.

Figure 22. The summed relative intensity of the O4 and NaO4 compounds in a fresh Kodak

NA sample at different concentrations. The y scale shows the 0-10% segment out of 0-100%.

0%  

1%  

2%  

3%  

4%  

5%  

6%  

7%  

8%  

9%  

10%  

0.001   0.005   0.01   0.05   0.1   0.5  

Relative  intensity  (%

)  

Concentration  (mg/mL)  

O4  and  NaO4  normalized  to  100%  contribution  as  a  factor  of  concentration  

O4  

NaO4  

Page 39: Simona Gherghel-MSc Thesis

Results  and  discussion  

35    

3.3.2 Importance  of  ion  accumulation  time  (IAT)  

 

Accumulating ions in an rf-only multipole for longer period of times before the mass analysis,

also referred to as multipole storage assisted dissociation (MSAD), is a well-known

phenomenon to affect the degree of fragmentation.59

The space-charge limit is defined as the largest amount of charge that can be stored within a

trap.60   It is hypothesised that once the ion density exceeds the space-charge limit, the

coulombic-repulsive forces between the charges will push the ion to larger radii. As a

consequence of the expansion, the ions are subject to higher amplitude oscillations and

therefore they reach higher kinetic energy. Collisions with the background gas molecules in

the hexapole at these higher energies results in fragmentation.61

As illustrated in Figure 23, increasing ion accumulation time from 0.1 to 0.4 s facilitates the

number of undergoing collisions, and thus causing a decrease in the relative intensity of the

naphthenic acid dimers, as well as a slight shift towards higher m/z.

Therefore, ion accumulation time is an important parameter that needs to be carefully

controlled throughout the same set of experiments, otherwise there is a significant change in

monomer/dimer distribution.

Page 40: Simona Gherghel-MSc Thesis

Results  and  discussion  

36    

 Figure  23.FT-­‐ICR  mass  spectra  (negative-­‐ion  ESI,  ISD  0  V)  of  a  1  mg/mL  NA  Kodak  mix  in  

1:1  acetonitrile  and  water  at  different  ion  accumulation  times    

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 41: Simona Gherghel-MSc Thesis

Results  and  discussion  

37    

3.4 CID  on  the  2  year  old  Kodak  NA  sample  

To obtain an initial insight into the naphthenic acid dimers and how they dissociate back to

naphthenic acids, a collision induced dissociation experiment was carried out. The molecular

ion at m/z=503.410574, corresponding to C32H55O4- (Z=-8, DBE=5.5), was chosen as the

precursor ion because of its high intensity. The isolation window was set to be 1 m/z wide.

Within the 1 m/z window, besides the O4 class compound, there was also present a NaO4 class

compound (C31H44NaO4-, z=-16, DBE=10), as well as a small number of other very low

intensity ions.

The intensity of the two species during the 2, 6, 8 and 12 V CID experiments are shown in

Table 6. At 2 V, the intensity of the NaO4 compound was significantly less than the intensity

of the O4 compound. It was noticed that by increasing the collision cell energy, there was a

decrease in the intensity of the O4 species, while the intensity of the NaO4 species was slightly

increasing. The significant decrease in intensity of the O4 species occurs from going from 2 V

to 6 V collision cell energy. By 12 V, C31H44NaO4- is more intense than C32H55O4

-.

Table 6. The intensity of the precursor ions during the 2, 6, 8 and 12 V CID experiments

Precursor ion / Collision

cell energy (V) 2 6 8 12

C32H55O4-

2.05E+09 4.01E+08 7.63E+07 2.09E+06

C31H44NaO4-

2.72E+07 3.53E+07 3.51E+07 4.00E+07

The absolute intensity of the precursor ions were normalized to relative intensity and then

plotted against the collision cell energy for a better visualization (Figure 24). Higher collision

cell voltages, i.e. higher kinetic energy collisions, result in an increased chance for the weakly

bound O4 class species to undergo fragmentation. The crossover between the two species

happens between 8 V and 12 V.

Page 42: Simona Gherghel-MSc Thesis

Results  and  discussion  

38    

Figure 24. The relative intensity of the O4 and NaO4 precursor ion as a function of the

collision cell voltage. By increasing the collision cell voltage, the intensity of the O4 class

species decreases

An example of a CID spectrum is illustrated in figure 25, where the parent ion (m/z=503.4)

and the fragmented species can be observed.

Figure 25. FT-ICR MS spectrum (CID 8 V)

Page 43: Simona Gherghel-MSc Thesis

Results  and  discussion  

39    

The resulting spectra for the four different CID experiments, gave rise to monomeric

naphthenic acid species with very similar characteristics in regards to the number of carbon

atoms, the degree on unsaturation and the relative intensity distribution of the NAs with

different z series (Figure 26).

Figure 26. Distribution of the NA homologous series fragments produced from the

dissociation of C32H55O4- (Z=-8) during different CID experiments (2, 6, 8 and 12 V)

 

The main difference between the four resulting spectra was an increase in signal intensity of

the NA monomers with the increase in collision cell energy. Increasing collision energy

increases abundance of fragments, but does not change fragments produced. The most intense

NA homologous series produced during CID experiments has a Z number of -4, as a result of

the dissociation in half of the O4 dimer precursor ion with a Z number of -8. NA monomers

with Z=-6 and Z=-2 are also very intense. The low intensity monomeric NAs with a Z value

between -10 and -18 are believed to originate from the NaO4 dimer precursor ion.

0.0E+00  

5.0E+07  

1.0E+08  

1.5E+08  

2.0E+08  

2.5E+08  

3.0E+08  

12   14   16   18   20   22  

Intensity  

Carbon  number  

Distribution  O2-­‐6  V  (CID)    

0.E+00  

1.E+07  

2.E+07  

3.E+07  

4.E+07  

5.E+07  

6.E+07  

12   14   16   18   20   22  

Intensity  

Carbon  number  

Distribution  O2-­‐  2  V  (CID)  0  

-­‐2  

-­‐4  

-­‐6  

-­‐8  

-­‐10  

-­‐12  

-­‐16  

-­‐18  

0.0E+00  

5.0E+07  

1.0E+08  

1.5E+08  

2.0E+08  

2.5E+08  

3.0E+08  

3.5E+08  

4.0E+08  

12   14   16   18   20   22  

Intensity  

Carbon  number  

Distribution  O2-­‐  12  V  (CID)  

0.0E+00  

5.0E+07  

1.0E+08  

1.5E+08  

2.0E+08  

2.5E+08  

3.0E+08  

12   14   16   18   20   22  

Intensity  

Carbon  number  

Distribution  O2-­‐  8  V  (CID)  

Page 44: Simona Gherghel-MSc Thesis

Results  and  discussion  

40    

3.5 IRMPD  experiment  of  the  fresh  Kodak  NA  sample  

 During CID experiments, the precursor ions are selected using the quadrupole and then the

ions are passed to collision cell for fragmentation with argon gas (pressure in collision cell is

~7×10-6 mbar). As seen before leakage can happen through the isolation window.

To improve the quality of the isolation, besides isolation in the quadrupole, a correlated sweep

and correlated shots in the ICR cell were used.62 Zoom-in insets on the precursor regions are

shown in Figure 27, where it can be easily observed that carrying out just the isolation in the

quadrupole allows leakage of other ions into the isolation window, and when the correlated

sweep and correlated shots are added the isolation window is cleaner.

Figure 27. Enlarged mass spectrum of the precursor region for the quadrupole isolation (upper

spectrum) and for the quadrupole isolation plus correlated sweep plus correlated shots

(bottom spectrum)

After performing higher resolving power isolation, the options for dissociation in the ICR cell

are sustained off-resonance irradiation - collision induced dissociation (SORI-CID) or

infrared multiphoton dissociation (IRMPD). IRMPD has a great advantage over SORI-CID

because it does not require the use of collision gas. In this way, the pressure in the analyser

Page 45: Simona Gherghel-MSc Thesis

Results  and  discussion  

41    

cell is maintained at an optimal level while the pumpdown time is eliminated and thus there is

no diminish in the performance of the instrument (peak shape, resolving power).

IRMPD on the fresh solution was carried out on a series of ions of same carbon number and

class, but differing DBE. This allows a study of fragmentation patterns as a function of DBE.

A difference in Z number by 2 can mean a double bond but also the formation of a new ring.

Firstly the dissociation of the m/z 503.4 precursor ion (C32H55O4-, Z=-8) was carried out to

compare with the CID data of the old solution. The resulted spectrum is shown in Figure 28.

Figure 28. FT-ICR MS spectrum (IRMPD) showing the precursor ion at m/z 503.4 and the

fragmented ions

From Figure 29, it can be observed that the monomer distribution obtained from the

dissociation of the m/z 503.4 precursor using IRMPD is very similar with the dissociation of

the same ion using CID (Figure 26). From the fragmentation of the molecular ion with Z=-8,

once again Z=-4 is the most intense fragment series, followed by Z=-2 and Z=-6. While for

the CID data, the apex for Z=-6 (at carbon number 17) is more intense than the apex for Z=-2

(at C16), for the IRMPD data, the apex for Z=-6 (at C17) is less intense than the apex for Z=-

2 (at C16). Also, to be noticed the apex for the series with z=-4 has a maxima at carbon

number 16, i.e. half of the number of carbons the precursor ion has. The fragments obtained

Page 46: Simona Gherghel-MSc Thesis

Results  and  discussion  

42    

from both CID and IRMPD data show that the dimers reflect the most abundant monomer

species present and there is no preferential selectivity during dimer formation.

Figure 29. Distribution of the naphthenic acids homologous series fragments produced from

the dissociation of the molecular ion C32H55O4- (z=-8) using IRMPD

Next on, IRMPD was carried out on two less saturated precursor ions: C32H53O4- (m/z=501.4,

Z=-10) and C32H51O4- (m/z=499.4, Z=-12) (Figure 30). By increasing the Z number (index of

hydrogen deficiency), there are more possible combinations for the fragments to form. It

appears to be a trend with respect to the relative intensities of the different homologous series

as a function of the Z value of the selected dimer. A more negative Z value leads to Z series

of monomers being more evenly spread, rather than one or two Z series predominating.  

0.E+00  1.E+08  2.E+08  3.E+08  4.E+08  5.E+08  6.E+08  7.E+08  8.E+08  

10   12   14   16   18   20   22   24  

Intensity  

Carbon  number  

O2  distribution-­‐framentation  of  m/z  503.4,  Z=-­‐8    (IRMPD)  

0  

-­‐2  

-­‐4  

-­‐6  

-­‐8  

Page 47: Simona Gherghel-MSc Thesis

Results  and  discussion  

43    

Figure 30. Distribution of the naphthenic acids homologous series fragments produced from

the dissociation of the molecular ion C32H53O4- (z=-10) on the left graph and of the molecular

ion C32H51O4- (z=-12) on the right graph (IRMPD)

The most negative Z value for the monomer region does not exceed the Z value of the dimer

which proves that there is no additional fragmentation is occurring.

0.0E+00  

2.0E+07  

4.0E+07  

6.0E+07  

8.0E+07  

1.0E+08  

1.2E+08  

1.4E+08  

1.6E+08  

1.8E+08  

2.0E+08  

10   12   14   16   18   20   22  

Intensity  

Carbon  number  

O2  distribution  -­‐framentation  of  m/z  501.4,  Z=-­‐10  (  IRMPD)  

0  

-­‐2  

-­‐4  

-­‐6  

-­‐8  

-­‐10  0.0E+00  

2.0E+07  

4.0E+07  

6.0E+07  

8.0E+07  

1.0E+08  

1.2E+08  

10   12   14   16   18   20   22  

Intensity  

Carbon  number  

O2  distribution  -­‐framentation  of  m/z  499.4,  Z=-­‐12  (  IRMPD)  

0  

-­‐2  

-­‐4  

-­‐6  

-­‐8  

-­‐10  

-­‐12  

Page 48: Simona Gherghel-MSc Thesis

Results  and  discussion  

44    

3.6 Fresh  Kodak  NA  sample  doped  with  salts  

 

It was noticed in previous experiments that salt affects the dimer formation. For further

investigating of this matter, a fresh Kodak NA mixture was doped with sodium chloride. The

oil industry has long used a technique of pumping seawater into an oil reservoir to increase

the pressure and push oil toward producing wells. Understanding the ability of naphthenic

acid to form sodium bond dimers after coming in contact with seawater will help understand

deposition formation in industry.

The average concentration of salt in seawater is about 35 g/L or 599mM, but because such

high salt concentration would overwhelm the ESI process, the concentration of salt used in

this study for doping the naphthenic acid samples was much lower, in the µM range.

Nevertheless, for illustrative reasons, a 0.05 mg/mL Kodak NA sample was doped with

enough sodium chloride to imitate the actual seawater linearity (left hand side vial in Figure

31). At seawater salt concentration level, there is a dramatic change in the appearance of

naphthenic acid the sample when compared to a regular Kodak NA sample that has not been

doped with salt (right hand side vial).

Figure 31. Photography of a Kodak NA mixture (0.05 mg/mL) at seawater concentration of

salt (600 mM) (left hand side) and of a Kodak NA mixture (0.05 mg/mL) with no salt added

(right hand side)

Page 49: Simona Gherghel-MSc Thesis

Results  and  discussion  

45    

A fresh 0.05 mg/mL Kodak NA sample that contained no added salts was used as a blank

sample. Mass spectra zoom-ins on the NaO4/O4 pair of peaks from the blank Kodak NA

sample and the three Kodak NA samples doped with sodium chloride are shown in Figure 32.

Figure 32. Expanded mass range of the m/z 431.314 C25H44NaO4- and of the m/z 431.317

C27H43O4-. Increase in the concentration of salt, increases the relative intensity of NaO4 class

The data analysis carried showed that NaO4 class species make up to 7.23% of the dimeric

distribution in the NA blank sample (Table 7). As expected, by increasing the amount of salt

added to the NA sample, there is an increase in the NaO4 contribution at the expense of

dissociation of the weakly bound O4 species.

Table 7. The relative abundance of the species present in the dimer distribution at none or

different concentration of salt

Species/Concentration salt (µM) 0 0.6 54.55 300

O4 90.63 87.98 86.89 82.73

NaO4 7.23 11.11 11.94 16.20

O4S 2.14 0.92 1.17 1.07

Page 50: Simona Gherghel-MSc Thesis

Results  and  discussion  

46    

The relative abundance of the O4, NaO4 and O4S classes in the blank and in the salt doped

Kodak NA samples was plotted as line graph to show the general trend (Figure 33). By

increasing the salt concentration, there is a decrease in the contribution of the O4 class and an

increase in the contribution of the NaO4 class. Adding enough NaCl so the salt concentration

of the Kodak NA sample is 300 µM will increase the NaO4 class contribution to the dimer

from ~7% (the natural state, when no salt is added) to about 16%. A 300 µg/mL salt

concentration is 2000 times lower than the 600 mM seawater salinity.

Figure 33. Relative abundance of O4, NaO4 and O4S species in the dimer distribution of

Kodak NA mixture containing none or various concentration of salt

           

Page 51: Simona Gherghel-MSc Thesis

Results  and  discussion  

47    

3.7 EID  experiment  on  a  NIST  crude  oil  sample  

 As an additional line of work, further development of methods for understanding structures of

petroleum molecules was pursued. Determining the elemental composition for petroleum

samples has improved greatly the field of petroleomics, but understanding the structures of

the tens of thousands of components present represents the next challenge. In this work, EID

has been applied for the first time to crude oil samples.

Firstly, a positive-ion mode ESI spectrum of a NIST crude oil sample was obtained (Figure

34). The multitude of peaks in the mass spectrum proves the complexity of petroleum

samples.

Figure 34. Mass spectrum of the NIST crude oil (positive mode ESI)

The main contributor to the NIST crude oil mass spectrum is the N1 class (~66%), followed

by OS class (~26%) (Table 8). Other species such as NO, NO2, O4S and OS2 are present as

minor components.

Page 52: Simona Gherghel-MSc Thesis

Results  and  discussion  

48    

Table 8. The relative abundance of the species present in the positive-mode ESI spectrum of

NIST crude oil

Species   Relative  abundance  (%)  

N   66.35  NO   3.11  NO2   0.35  O4S   0.34  OS   25.54  OS2   1.18  

For a better visualization, the values from Table 8 are plotted as a bar chart in Figure 35.

Figure 35. The abundance of the species present in NIST crude oil (positive-ion conditions

ESI)

Because of the high content of N present in the petroleum sample and the known problems

associated with the N-containing compounds in crude oil, such as pollution and catalyst

poisoning, data analysis was focused on N class species. The DBE values of the components

of N1 class were plotted against their carbon number as shown in the DBE plot from Figure

36. DBE values extend from 3.5 to 22.5 with, DBE between 7.5 and 9.5 being most

abundant.

0  

10  

20  

30  

40  

50  

60  

70  

N   NO   NO2   O4S   OS   OS2  

Relative  abundance  (%

)  

Species  present  

NIST  crude  oil  composition  (positive  mode  ESI)  

Page 53: Simona Gherghel-MSc Thesis

Results  and  discussion  

49    

Figure 36. DBE plot of the N1 class present in a NIST crude oil (positive-ion ESI)

The isolation window was chosen to be 60 Da wide in order to accommodate five data points

along homologues series. A DBE plot of the N1 class species from the isolation window is

shown in Figure 37. The DBE values extend from 3.5 to 19.5 while the most abundant species

have DBE values of 6.5 to 9.5. The carbon number ranged between 27 and 32.

Figure 37 DBE plot of the N1 class for the isolation window spectrum

A single EID spectrum (Figure 38) was obtained after one hour experimental time in order to

increase the signal to noise ratio. It was determined that a 30 V cathode bias produces the

0 10 20 30 40 50 60 70 800

5

10

15

20

25 NIST crude oilN1 class DBE plot

DBE

Carbon number

0 5 10 15 20 25 30 350

2

4

6

8

10

12

14

16

18

20

22 Isolation N1 Class DBE plot

DBE

Page 54: Simona Gherghel-MSc Thesis

Results  and  discussion  

50    

most extensive fragmentation for the NIST crude oil sample. The cathode bias controls the

energy of the electrons used for irradiation. Lower cathode biases were also tested, but it was

noticed that at values higher than 20 V, the degree of fragmentation improved.

Figure 38. EID spectrum of a NIST crude oil sample. The isolation window extends from m/z

375 to m/z 435

The DBE plot of the N1 class species from the EID spectrum (Figure 39) reveals that DBE

values extend from 3.5 to 20.5, showing a similar distribution as the N1 class species from the

isolation spectrum. When comparing the carbon number of N1 class species between the two

spectra, it is clear that additional fragmentation occurs during EID experiments. Where the

lowest carbon number during isolation was 27, the minimum carbon number after EID was

11. So, fragments smaller than the smallest intact components are seen.

Page 55: Simona Gherghel-MSc Thesis

Results  and  discussion  

51    

 Figure  39. DBE plot of the N1 class for the EID spectrum  

Fragmentation causes successive loss of alkyl chains from the core (fused rings) rather than

alkyl chains plus aromatic carbon, as proved by the horizontal lines to the left of the isolated

peaks in the DBE plot. However, fragmentation does not cause a reduction in aromaticity.

In this research, it was demonstrated that EID is a viable tandem mass spectrometry method

for petroleum analysis. Through EID significant fragmentation was produced with no increase

of pressure in the ICR cell. EID dissociates alkyl chain and thus it provides information about

the core of molecules. It could potentially be used to distinguish archipelago structures

(condensed aromatic cores connected by aliphatic chains) from island structures (one

aromatic core with aliphatic chains). For archipelago structures, DBE plot will show stable

structures favoured along the homologous series, while for island structures it will show loss

of alkyl chains evenly as seen with the NIST crude oil sample.

Therefore, it is possible to use EID on petroleum samples to remove alkyl chains and identify

the minimum number of carbons needed for just the stable core for a particular class species.

 

 

0 5 10 15 20 25 30 352

4

6

8

10

12

14

16

18

20

22

DBE

Carbon number

EID-30 V cathode biasN1 class DBE plot

Page 56: Simona Gherghel-MSc Thesis

Conclusion  

52    

4 Conclusion  

In this work, negative-ion ESI FT-ICR mass spectrometry reveals two forms of naphthenic

acid dimers to be present in a commercial naphthenic acid sample, instead of one as

previously believed: the O4 class species that have been formerly described by other groups

and the NaO4 class species. The power of the inherent ultrahigh resolving power and mass

accuracy associated with FTICR-MS made it possible to resolve NaO4/O4 pair of peaks,

separated by only 2.4 mDa.

 

Formation  of  naphthenic  acid  dimers  may  simply  be  the  route  that  naturally  occurs,  but  

understanding   any  preferential   dimer   aggregation  would  help  understand   if   there   are  

any  particular  culprits  or  whether  all  species  present  are  equally  guilty  for  corrosion  in  

refineries   and   toxicity   to   aquatic   environment.   How easily naphthenic acids can form

dimers will impact the behaviour of these NAs and the availability of those protons to have

consequences for corrosion.

Comparing a 2 year old Kodak naphthenic acid solution with a freshly prepared one, it was

noticed that the dimers present depend on the solution age, and if a sample is preserved in

glassware for long enough time, the sodium bound naphthenic acid will be more abundant

(~8.5% contribution compared to ~2.8% contribution for the fresh sample).

The O4 class compounds have been demonstrated to dissociate readily as they are bound by a

weak noncovalent bond that breaks when increasing the collision power to higher voltages

such as 60 V for ISD experiments and 12 V for CID experiments. On the other hand, the

abundance of NaO4 class compounds remained relatively stable and it is believed that they are

bound by much stronger bonds.

A proposed structure is shown in Figure 40, where the sodium atom is shared between the

four oxygen atoms.

Page 57: Simona Gherghel-MSc Thesis

Conclusion  

53    

Figure 40. Possible molecular structure of the singly charged NaO4 class species present in

naphthenic acid sample, with delocalized electron density between the carbon atom and the

two oxygen atoms

A fresh Kodak naphthenic acid solution was doped with NaCl in order to monitor the effect of

sodium abundance upon the contribution of the NaO4 class species and to compare with the

aged naphthenic acid sample. This is highly relevant to the extraction of oil from reservoirs

process, where seawater is pumped down to help extract oil. Sodium bound dimers can form

precipitates when seawater comes in contact with naphthenic acids, leading to naphthenates

deposition inside pipelines. Using Kodak NA samples doped with sodium chloride, it was

shown that the more sodium is available, the higher the contribution of the NaO4 class is.

Doping the naphthenic acid sample with a salt concentration 2000 times lower than the actual

seawater salt concentration, increased the NaO4 contribution to the dimer from ~7% to ~16%.

Electron induced ionization was applied successfully for the first time to petroleum providing

proof of concept data. In petroleomics, fs. The EID experiment carried on a crude oil sample

demonstrated the great potential of EID MS/MS in structure characterization.

Further work can include possible tandem mass spectrometry methods for fragmentation of

species with tentative assignments such as the ones in distribution III and IV from the fresh

Kodak NA sample. Additional experiments can be carried out on doping naphthenic acid

samples with higher amounts of salt to mirror the actual salinity level of seawater and on

study of real world sodium naphthenate deposits. Further EID experiments can be carried out

using different cathode potentials on various class compounds from different petroleum

samples in order to obtain greater insight into molecular structures, including information

about favoured structures (archipelago versus island structures). EID MS/MS via FT-ICR MS

could be coupled with chromatography for structure information of isomeric compounds from

petroleum samples.

Page 58: Simona Gherghel-MSc Thesis

References  

54    

5 References    

1.   Cho,  Y.;  Ahmed,  A.;  Kim,  S.,  Application  of  Atmospheric  Pressure  Photo  Ionization  Hydrogen/Deuterium  Exchange  High-­‐Resolution  Mass   Spectrometry   for   the  Molecular  Level  Speciation  of  Nitrogen  Compounds  in  Heavy  Crude  Oils.  Anal.  Chem.  2013,  85  (20),  9758-­‐9763.  2.   Griffiths,  M.  T.;  Da  Campo,  R.;  O'Connor,  P.  B.;  Barrow,  M.  P.,  Throwing   light  on  petroleum:   simulated   exposure   of   crude   oil   to   sunlight   and   characterization   using  atmospheric  pressure  photoionization   fourier   transform  ion  cyclotron  resonance  mass  spectrometry.  Anal.  Chem.  2014,  86  (1),  527-­‐34.  3.   Colati,   K.   A.   P.;   Dalmaschio,   G.   P.;   De   Castro,   E.   V.   R.;   Gomes,   A.   O.;   Vaz,   B.   G.;  Romão,   W.,   Monitoring   the   liquid/liquid   extraction   of   naphthenic   acids   in   brazilian  crude  oil  using  electrospray  ionization  FT-­‐ICR  mass  spectrometry  (ESI  FT-­‐ICR  MS).  Fuel  2013,  108,  647-­‐655.  4.   Marshall,   A.   G.;   Rodgers,   R.   P.,   Petroleomics:   The   Next   Grand   Challenge   for  Chemical  Analysis.  Acc.  Chem.  Res.  2004,  37  (1),  53-­‐59.  5.   Boduszynski,   M.   M.,   Composition   of   heavy   petroleums.   1.   Molecular   weight,  hydrogen   deficiency,   and   heteroatom   concentration   as   a   function   of   atmospheric  equivalent  boiling  point  up  to  1400.degree.F  (760.degree.C).  Energy  Fuels  1987,  1  (1),  2-­‐11.  6.   Mapolelo,  M.  M.  Extraction,  Chromatographic  Separation  and  Characterization  of  Polar   Acidic   Species   in   Crude   Oils   and  Naphthenate   Deposits   by   Ultrahigh   Resolution  Fourier   Transform   Ion   Cyclotron   Resonance   Mass   Spectrometry.   Florida   State  University,  2010.  7.   Liu,   P.;   Shi,   Q.;   Chung,   K.   H.;   Zhang,   Y.;   Pan,   N.;   Zhao,   S.;   Xu,   C.,   Molecular  Characterization  of  Sulfur  Compounds  in  Venezuela  Crude  Oil  and  Its  SARA  Fractions  by  Electrospray  Ionization  Fourier  Transform  Ion  Cyclotron  Resonance  Mass  Spectrometry.  Energy  Fuels  2010,  24  (9),  5089-­‐5096.  8.   McKetta,   J.   J.,   Encyclopedia   of   Chemical   Processing   and   Design.   Marcel   Dekker:  United  States  of  America,  1990;  Vol.  35.  9.   Rodgers,   R.   P.,   Hughey,   C.   A.;   Hendrickson,   C.   L.;     Marshall,   A.   G.,   Advanced  Characterization  of  Petroleum  Crude  and  Products  by  High  Field  Fourier  Transform  Ion  Cyclotron  Resonance  Mass  Spectrometry.  Fuel  Chemistry  Division  Reprints  2002,  47  (2).  10.   Hell,   C.;   Medinger,   E.,   Ueber   das   Vorkommen   und   die   Zusammensetzung   von  Säuren  im  Rohpetroleum.  Ber.  Dtsch.  Chem.  Ges.  1874,  7  (2),  1216-­‐1223.  11.   Aschan,   O.,   Ueber   die   in   dem   Erdöl   aus   Baku   vorkommenden   Säuren   mit  niedrigerem  Kohlenstoffgehalt.  Ber.  Dtsch.  Chem.  Ges.  1891,  24  (2),  2710-­‐2724.  12.   Kannel,  P.  R.;  Gan,  T.  Y.,  Naphthenic  acids  degradation  and  toxicity  mitigation  in  tailings  wastewater  systems  and  aquatic  environments:  a  review.  J  Environ  Sci  Health  A  Tox  Hazard  Subst  Environ  Eng  2012,  47  (1),  1-­‐21.  13.   Scott,  A.  C.;  Mackinnon,  M.  D.;  Fedorak,  P.  M.,  Naphthenic  Acids  in  Athabasca  Oil  Sands   Tailings   Waters   Are   Less   Biodegradable   than   Commercial   Naphthenic   Acids.  Environ.  Sci.  Technol.  2005,  39  (21),  8388-­‐8394.  14.   Dzidic,   I.;   Somerville,   A.   C.;   Raia,   J.   C.;   Hart,   H.   V.,   Determination   of   naphthenic  acids  in  California  crudes  and  refinery  wastewaters  by  fluoride  ion  chemical  ionization  mass  spectrometry.  Anal.  Chem.  1988,  60  (13),  1318-­‐1323.  

Page 59: Simona Gherghel-MSc Thesis

References  

55    

15.   Headley,   J.   V.;   Peru,   K.   M.;   McMartin,   D.   W.;   Winkler,   M.,   Determination   of  dissolved   naphthenic   acids   in   natural  waters   by   using   negative-­‐ion   electrospray  mass  spectrometry.  J  AOAC  Int  2002,  85  (1),  182-­‐7.  16.   Qian,  K.;  Robbins,  W.  K.;  Hughey,  C.  A.;  Cooper,  H.  J.;  Rodgers,  R.  P.;  Marshall,  A.  G.,  Resolution   and   Identification   of   Elemental   Compositions   for   More   than   3000   Crude  Acids   in   Heavy   Petroleum   by   Negative-­‐Ion   Microelectrospray   High-­‐Field   Fourier  Transform   Ion   Cyclotron   Resonance   Mass   Spectrometry.   Energy   Fuels   2001,   15   (6),  1505-­‐1511.  17.   Barrow,  M.  P.;  McDonnell,  L.  A.;  Feng,  X.;  Walker,  J.;  Derrick,  P.  J.,  Determination  of  the  nature  of  naphthenic  acids  present  in  crude  oils  using  nanospray  Fourier  transform  ion   cyclotron   resonance   mass   spectrometry:   the   continued   battle   against   corrosion.  Anal.  Chem.  2003,  75  (4),  860-­‐6.  18.   Simon,   S.;   Reisen,   C.;   Bersås,   A.;   Sjöblom,   J.,   Reaction   between   tetrameric   acids  and  Ca  2+  in  oil/water  system.  Ind.  Eng.  Chem.  Res.  2012,  51  (16),  5669-­‐5676.  19.   Scaled   Solutions   LTD,   Organic   Deposits-­‐   Napthenates  http://www.scaledsolutions.com/Performance%20Tests/Organic%20Deposits  (accessed  18  Aug).  20.   El   Mahdy,   G.   A.;   Atta,   A.   M.;   Dyab,   A.   K.   F.;   Al-­‐Lohedan,   H.   A.,   Protection   of  Petroleum   Pipeline   Carbon   Steel   Alloys   with   New   Modified   Core-­‐Shell   Magnetite  Nanogel  against  Corrosion  in  Acidic  Medium.  J.  Chem.  2013,  2013,  9.  21.   Slavcheva,  E.;  Shone,  B.;  Turnbull,  A.,  Review  of  naphthenic  acid  corrosion  in  oil  refining.  Br.  Corrros.  J  1999,  34  (2),  125-­‐131.  22.   Qu,   D.   R.;   Zheng,   Y.   G.;   Jiang,   X.;   Ke,  W.,   Correlation   between   the   corrosivity   of  naphthenic  acids  and  their  chemical  structures.  Anti-­‐Corros  Method  M  2007,  54  (4),  211-­‐218.  23.   Clemente,  J.  S.;  Fedorak,  P.  M.,  A  review  of  the  occurrence,  analyses,  toxicity,  and  biodegradation  of  naphthenic  acids.  Chemosphere  2005,  60  (5),  585-­‐600.  24.   GE-­‐Measurement   and   control,   Naphthenic   Acid   Corrosion.   http://www.ge-­‐mcs.com/en/ndt-­‐corrosion-­‐inspection/naphthenic-­‐acid-­‐corrosion.html   (accessed   17  Aug).  25.   Wang,   Y.;   Zhou,   Q.;   Peng,   S.;   Ma   Lena,   Q.;   Niu,   X.,   Toxic   effects   of   crude-­‐oil-­‐contaminated   soil   in   aquatic   environment   on   Carassius   auratus   and   their   hepatic  antioxidant  defense  system.  J  Environ  Sci  2009,  21  (5),  612-­‐617.  26.   Mohamed,  M.  H.;  Wilson,  L.  D.;  Peru,  K.  M.;  Headley,   J.  V.,  Colloidal  properties  of  single   component   naphthenic   acids   and   complex   naphthenic   acid   mixtures.   J.   Colloid  Interface  Sci.  2013,  395  (1),  104-­‐110.  27.   Yen,  T.  W.;  Marsh,  W.  P.;  MacKinnon,  M.  D.;  Fedorak,  P.  M.,  Measuring  naphthenic  acids   concentrations   in   aqueous   environmental   samples   by   liquid   chromatography.  Journal  Chromatogr.  A  2004,  1033  (1),  83-­‐90.  28.   Hemmingsen,  P.  V.;  Kim,  S.;  Pettersen,  H.  E.;  Rodgers,  R.  P.;  Sjöblom,  J.;  Marshall,  A.  G.,   Structural   characterization   and   interfacial   behavior   of   acidic   compounds   extracted  from  a  North  Sea  oil.  Energy  Fuels  2006,  20  (5),  1980-­‐1987.  29.   Smith,  D.  F.;  Schaub,  T.  M.;  Rahimi,  P.;  Teclemariam,  A.;  Rodgers,  R.  P.;  Marshall,  A.  G.,  Self-­‐association  of  organic  acids  in  petroleum  and  Canadian  bitumen  characterized  by  low-­‐  and  high-­‐resolution  mass  spectrometry.  Energy  Fuels  2007,  21  (3),  1309-­‐1316.  30.   Da   Campo,   R.;   Barrow,   M.   P.;   Shepherd,   A.   G.;   Salisbury,   M.;   Derrick,   P.   J.,  Characterization   of   Naphthenic   Acid   Singly   Charged   Noncovalent   Dimers   and   Their  Dependence   on   the   Accumulation   Time   within   a   Hexapole   in   Fourier   Transform   Ion  Cyclotron  Resonance  Mass  Spectrometry.  Energy  Fuels  2009,  23  (11),  5544-­‐5549.  

Page 60: Simona Gherghel-MSc Thesis

References  

56    

31.   Mapolelo,   M.   M.;   Stanford,   L.   A.;   Rodgers,   R.   P.;   Yen,   A.   T.;   Debord,   J.   D.;  Asomaning,  S.;  Marshall,  A.  G.,  Chemical  Speciation  of  Calcium  and  Sodium  Naphthenate  Deposits  by  Electrospray  Ionization  FT-­‐ICR  Mass  Spectrometry.  Energy  Fuels  2009  23  (1),  349-­‐355.  32.   Fan,  T.  W.,   Jianxin;  Buckley,   Jill   S.,  Evaluating  Crude  Oils  by  SARA  Analysis.  Soc.  Petrol.  Eng.  2002,  Conference  Paper   (SPE/DOE  Improved  Oil  Recovery  Symposium,  13-­‐17  April  2012,  Tulsa,  Oklahoma  ).  33.   Merdrignac,   I.;   Espinat,   D.,   Physicochemical   characterization   of   petroleum  fractions:  The  state  of  the  art.  Oil  Gas  Sci  Technol  2007,  62  (1),  7-­‐32.  34.   Marshall,  A.  G.;  Rodgers,  R.   P.,   Petroleomics:   chemistry  of   the  underworld.  Proc  Natl  Acad  Sci  U  S  A  2008,  105  (47),  18090-­‐5.  35.   Michael,   G.;   Al-­‐Siri,   M.;   Khan,   Z.   H.;   Ali,   F.   A.,   Differences   in   Average   Chemical  Structures   of   Asphaltene   Fractions   Separated   from   Feed   and   Product   Oils   of   a   Mild  Thermal  Processing  Reaction.  Energy  Fuels  2005,  19  (4),  1598-­‐1605.  36.   Barrow,   M.   P.;   Headley,   J.   V.;   Peru,   K.   M.;   Derrick,   P.   J.,   Fourier   transform   ion  cyclotron  resonance  mass  spectrometry  of  principal  components  in  oilsands  naphthenic  acids.  Journal  Chromatogr.  A  2004,  1058  (1–2),  51-­‐59.  37.   Marshall,  A.  G.;  Chen,  T.,  40  years  of  Fourier   transform   ion  cyclotron  resonance  mass  spectrometry.  Int.  J.  Mass.  Spectrom.  2014,  In  press.  38.   Hsu,  C.  S.;  Lobodin,  V.  V.;  Rodgers,  R.  P.;  McKenna,  A.  M.;  Marshall,  A.  G.,  Energy  Fuels  2011,  25  (5),  2174.  39.   Hsu,   C.   S.;   Liang,   Z.;   Campana,   J.   E.,   Hydrocarbon   characterization   by   ultrahigh  resolution   fourier   transform   ion   cyclotron   resonance  mass   spectrometry.  Anal.   Chem.  1994,  66  (6),  850-­‐855.  40.   Merlin,  M.;  Guigard,  S.  E.;  Fedorak,  P.  M.,  Detecting  naphthenic  acids  in  waters  by  gas  chromatography-­‐mass  spectrometry.  J  Chromatogr  A  2007,  1140  (1-­‐2),  225-­‐9.  41.   Hao,   C.;   Headley,   J.   V.;   Peru,   K.   M.;   Frank,   R.;   Yang,   P.;   Solomon,   K.   R.,  Characterization   and   pattern   recognition   of   oil-­‐sand   naphthenic   acids   using  comprehensive  two-­‐dimensional  gas  chromatography/time-­‐of-­‐flight  mass  spectrometry.  J  Chromatogr  A  2005,  1067  (1-­‐2),  277-­‐284.  42.   St.   John,   W.   P.;   Rughani,   J.;   Green,   S.   A.;   McGinnis,   G.   D.,   Analysis   and  characterization   of   naphthenic   acids   by   gas   chromatography-­‐   electron   impact   mass  spectrometry  of  tert.-­‐butyldimethylsilyl  derivatives.  J  Chromatogr  A  1998,  807  (2),  241-­‐251.  43.   Fan,   T.   P.,   Characterization   of   naphthenic   acids   in   petroleum   by   fast   atom  bombardment  mass  spectrometry.  Energy  Fuels  1991,  5  (3),  371-­‐375.  44.   Mohammed,  M.  A.;  Sorbie,  K.  S.,  Naphthenic  acid  extraction  and  characterization  from  naphthenate  field  deposits  and  crude  oils  using  ESMS  and  APCI-­‐MS.  Colloids  Surf.,  A  2009,  349  (1-­‐3),  1-­‐18.  45.   Qian,  K.;  Edwards,  K.  E.;  Dechert,  G.   J.;   Jaffe,   S.  B.;  Green,  L.  A.;  Olmstead,  W.  N.,  Measurement   of   Total   Acid   Number   (TAN)   and   TAN   Boiling   Point   Distribution   in  Petroleum  Products   by   Electrospray   Ionization  Mass   Spectrometry.  Anal.  Chem.  2008,  80  (3),  849-­‐855.  46.   Ho,  C.  S.;  Lam,  C.  W.;  Chan,  M.  H.;  Cheung,  R.  C.;  Law,  L.  K.;  Lit,  L.  C.;  Ng,  K.  F.;  Suen,  M.   W.;   Tai,   H.   L.,   Electrospray   ionisation   mass   spectrometry:   principles   and   clinical  applications.  Clin  Biochem  Rev  2003,  24  (1),  3-­‐12.  47.   Sleno,  L.;  Volmer,  D.  A.,  Ion  activation  methods  for  tandem  mass  spectrometry.  J  Mass  Spectrom  2004,  39  (10),  1091-­‐1112.  

Page 61: Simona Gherghel-MSc Thesis

References  

57    

48.   Zhurov,  K.  O.;  Fornelli,  L.;  Wodrich,  M.  D.;  Laskay,  U.  A.;  Tsybin,  Y.  O.,  Principles  of  electron   capture   and   transfer   dissociation  mass   spectrometry   applied   to   peptide   and  protein  structure  analysis.  Chem.  Soc.  Rev.  2013,  42  (12),  5014-­‐5030.  49.   Kaczorowska,   M.   A.;   Cooper,   H.   J.,   Electron   induced   dissociation   (EID)   tandem  mass   spectrometry   of   octaethylporphyrin   and   its   iron(iii)   complex.   Chem.   Commun.  2011,  47  (1),  418-­‐420.  50.   Scigelova,  M.;  Hornshaw,  M.;  Giannakopulos,  A.;  Makarov,  A.,   Fourier   transform  mass  spectrometry.  Mol  Cell  Proteomics  2011,  10  (7),  M111  009431.  51.   Kim,  S.;  Rodgers,  R.  P.;  Marshall,  A.  G.,  Truly  "exact"  mass:  Elemental  composition  can  be  determined  uniquely  from  molecular  mass  measurement  at  ∼0.1  mDa  accuracy  for  molecules  up  to  ∼500  Da.  Int.  J.  Mass  Spectrom.  2006,  251  (2-­‐3  SPEC.  ISS.),  260-­‐265.  52.   Rodgers,  R.  P.;   Schaub,  T.  M.;  Marshall,  A.  G.,  PETROLEOMICS:  MS  returns   to   its  roots.  Anal.  Chem.  2005,  77  (1),  20  A-­‐27  A.  53.   Hur,  M.;  Yeo,  I.;  Kim,  E.;  No,  M.  H.;  Koh,  J.;  Cho,  Y.  J.;  Lee,  J.  W.;  Kim,  S.,  Energy  Fuels  2010,  24  (10),  5524.  54.   Hughey,  C.  A.;  Hendrickson,  C.  L.;  Rodgers,  R.  P.;  Marshall,  A.  G.;  Qian,  K.,  Kendrick  mass   defect   spectrum:   A   compact   visual   analysis   for   ultrahigh-­‐resolution   broadband  mass  spectra.  Acc.  Chem.  Res.  2001,  73  (19),  4676-­‐4681.  55.   Kendrick,   E.,   A   mass   scale   based   on   CH2   =   14.0000   for   high   resolution   mass  spectrometry  of  organic  compounds.  Anal.  Chem.  1963,  35  (13),  2146-­‐2154.  56.   Comisarow,   M.   B.,   Error   estimates   for   finite   zero-­‐filling   in   fourier   transform  spectrometry.  Anal.  Chem.  1979,  51  (13),  2198-­‐2203.  57.   Aarstol,   M.;   Comisarow,   M.   B.,   Apodization   of   FT-­‐ICR   spectra.   Int.   J.   Mass  Spectrom.  Ion  Processes  1987,  76  (3),  287-­‐297.  58.   Islam,  A.;  Cho,  Y.;  Yim,  U.  H.;   Shim,  W.   J.;  Kim,  Y.  H.;  Kim,   S.,  The   comparison  of  naturally  weathered   oil   and   artificially   photo-­‐degraded  oil   at   the  molecular   level   by   a  combination  of  SARA  fractionation  and  FT-­‐ICR  MS.  J  Hazard  Mater  2013,  263  Pt  2,  404-­‐11.  59.   Sannes-­‐Lowery,   K.   A.;   Hofstadler,   S.   A.,   Characterization   of   multipole   storage  assisted   dissociation:   implications   for   electrospray   ionization   mass   spectrometry  characterization  of  biomolecules.  J.  Am.  Soc.  Mass.  Spectrom.  2000,  11  (1),  1-­‐9.  60.   Bushey,   J.   M.;   Danell,   R.   M.;   Glish,   G.   L.,   Iterative   Accumulation   Multiplexing  Fourier  Transform   Ion  Cyclotron  Resonance  Mass  Spectrometry.  Anal.  Chem.  2009,  81  (14),  5623-­‐5628.  61.   Pan,   C.;   Hettich,   R.   L.,   Multipole-­‐storage-­‐assisted   dissociation   for   the  characterization  of   large  proteins  and  simple  protein  mixtures  by  ESI-­‐FTICR-­‐MS.  Anal.  Chem.  2005,  77  (10),  3072-­‐3082.  62.   de  Koning,  L.  J.;  Nibbering,  N.  M.  M.;  van  Orden,  S.  L.;  Laukien,  F.  H.,  Mass  selection  of   ions   in  a  Fourier   transform  ion  cyclotron  resonance  trap  using  correlated  harmonic  excitation  fields  (CHEF).  Int.  J.  Mass  Spectrom.  Ion  Processes  1997,  165–166  (0),  209-­‐219.    

 

 

 

 

 

Page 62: Simona Gherghel-MSc Thesis

Acknowledgments  

58    

6 Acknowledgments  

This thesis would not have been possible without the help and advice of several people.

I am very grateful and indebted to my supervisor Dr Mark P. Barrow for excellent guidance,

patience and for giving his valuable time, advice and opinion to this thesis from the very

beginning of the research up to the end of the writing. His painstaking effort in proof reading

the drafts is greatly appreciated. I have been very lucky to have a supervisor who took so

much interest in this project and who was always willing to help me.

I would also like to thank the PhD students from the Ion Cyclotron Resonance Laboratory

Chris Wootton, Maria van Agthoven, Andrew Soulby, Juan Wei and Federico Floris as well

as to my AS:MIT colleagues Lying Huang and Haytham Hussein who have been a source of

friendship, laughs as well as good advice.

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Page 63: Simona Gherghel-MSc Thesis

Appendix  

59    

7 Appendix  

7.1 Known  ions  mass  list    #  TuneMixNeg                                  m/z                              charge              Z  HPmix2     301.998139     1-­‐  HPmix3     601.978977     1-­‐  HPmix4     1033.988109     1-­‐    HPmix5     1333.968947     1-­‐  HPmix6     1633.9498786   1-­‐  HPmix7     1933.930624     1-­‐  HPmix8     2233.911463     1-­‐  C10H20O2                       171.139053         1-­‐            0    C12H24O2                                      199.170353         1-­‐            0  C14H28O2         227.201653           1-­‐            0  C15H30O2                   241.217303           1-­‐            0  C16H32O2         255.232953           1-­‐            0  C18H36O2         283.264253       1-­‐            0  C20H40O2       311.295553       1-­‐            0  C22H44O2                       339.326853           1-­‐            0    C24H48O2                     367.358153         1-­‐            0  C12H22O2                       197.154703           1-­‐          -­‐2  C15H28O2     239.201653             1-­‐          -­‐2  C16H30O2         253.217303           1-­‐          -­‐2  C17H32O2         267.232953           1-­‐          -­‐2  C20H38O2                       309.279903           1-­‐          -­‐2  C22H42O2     337.311203     1-­‐          -­‐2  C24H46O2       365.342503         1-­‐          -­‐2  C12H20O2                   195.139053       1-­‐          -­‐4  C15H26O2       237.186003         1-­‐          -­‐4  C16H28O2     251.201653           1-­‐          -­‐4  C17H30O2       265.217303           1-­‐          -­‐4  C18H32O2     279.232953           1-­‐          -­‐4  C19H34O2     293.248603           1-­‐          -­‐4  C20H36O2                 307.264253           1-­‐          -­‐4  C22H40O2     335.295553           1-­‐          -­‐4  C24H44O2       363.326853         1-­‐          -­‐4      C26H48O2     391.358153           1-­‐          -­‐4  C28H50O2       417.373803         1-­‐          -­‐4  C12H18O2                     193.123403         1-­‐          -­‐6  C15H24O2     235.170353         1-­‐          -­‐6  C17H28O2     263.201653         1-­‐          -­‐6  C20H34O2                 305.248603         1-­‐          -­‐6  C22H38O2       333.279903           1-­‐          -­‐6  C24H42O2     361.311203         1-­‐          -­‐6  C26H46O2       389.342503       1-­‐          -­‐6  C12H16O2                 191.107753       1-­‐          -­‐8  C15H22O2     233.154703       1-­‐          -­‐8  C17H26O2     261.186003         1-­‐          -­‐8  

Page 64: Simona Gherghel-MSc Thesis

Appendix  

60    

C20H32O2                     303.232953         1-­‐          -­‐8  C22H36O2       331.264253         1-­‐          -­‐8  C24H40O2     359.295553       1-­‐          -­‐8  C26H44O2     387.326853       1-­‐          -­‐8  C12H14O2               189.092103           1-­‐          -­‐10  C15H20O2       231.139053           1-­‐          -­‐10  C20H30O2                 301.217303           1-­‐          -­‐10  C22H34O2     329.248603           1-­‐          -­‐10  C15H18O2     229.123403           1-­‐          -­‐12  C20H28O2               299.201653           1-­‐          -­‐12  C22H32O2     327.232953           1-­‐          -­‐12  C21H41O4Na                            379.282978             1-­‐   0    C22H43O4Na                            393.298628         1-­‐   0  C23H45O4Na                            407.314278             1-­‐   0  C24H47O4Na                            421.329928             1-­‐   0    C26H51O4Na                            449.361228             1-­‐   0  C28H55O4Na                            477.392528           1-­‐   0  C30H59O4Na                            505.423828           1-­‐   0  C31H61O4Na                            519.439478           1-­‐   0  C32H63O4Na                            533.455128             1-­‐   0  C33H65O4Na                            547.470778           1-­‐   0    C34H67O4Na                            561.486428           1-­‐   0  C36H71O4Na                        589.517728              1-­‐   0  C38H75O4Na                        617.549028            1-­‐   0  C40H79O4Na                        645.580328            1-­‐   0  C22H41O4Na                        391.282978            1-­‐   -­‐2    C23H43O4Na                        405.298628            1-­‐   -­‐2  C24H45O4Na                        419.314278            1-­‐   -­‐2  C26H49O4Na                        447.345578            1-­‐   -­‐2    C28H53O4Na                        475.376878            1-­‐   -­‐2  C29H55O4Na                        489.392528            1-­‐   -­‐2    C30H57O4Na                        503.408178            1-­‐   -­‐2  C31H59O4Na                        517.423828          1-­‐   -­‐2    C32H61O4Na                        531.439478          1-­‐   -­‐2    C33H63O4Na                        545.455128            1-­‐   -­‐2  C34H65O4Na                        559.470778            1-­‐   -­‐2  C35H67O4Na                        573.486428              1-­‐   -­‐2    C36H69O4Na                        587.502078              1-­‐   -­‐2  C37H71O4Na                        601.517728              1-­‐   -­‐2  C38H73O4Na                        615.533378            1-­‐   -­‐2  C39H75O4Na                        629.549028            1-­‐   -­‐2  C22H39O4Na                        389.267328            1-­‐   -­‐4  C23H41O4Na                        403.282978            1-­‐   -­‐4  C24H43O4Na                        417.298628            1-­‐   -­‐4  C26H47O4Na                        445.329928          1-­‐   -­‐4  C28H51O4Na                        473.361228            1-­‐   -­‐4  C30H55O4Na                        501.392528            1-­‐   -­‐4  C32H59O4Na                        529.423828          1-­‐   -­‐4  C33H61O4Na                        543.439478            1-­‐   -­‐4  

Page 65: Simona Gherghel-MSc Thesis

Appendix  

61    

C34H63O4Na                        557.455128            1-­‐   -­‐4  C36H67O4Na                        585.486428            1-­‐   -­‐4  C38H71O4Na                        613.517728          1-­‐   -­‐4  C39H73O4Na                        627.533378            1-­‐   -­‐4  C32H57O4Na                        527.408178            1-­‐   -­‐6  C34H61O4Na                        555.439478            1-­‐   -­‐6  C36H65O4Na                        583.470778            1-­‐   -­‐6  C38H69O4Na                        611.502078            1-­‐   -­‐6  C40H73O4Na                        639.533378              1-­‐   -­‐6  C24H39O4Na                        413.267328            1-­‐   -­‐8  C26H43O4Na                      441.298628            1-­‐   -­‐8  C28H47O4Na                      469.329928            1-­‐   -­‐8  C30H51O4Na                      497.361228            1-­‐   -­‐8  C32H55O4Na                      525.392528        1-­‐   -­‐8  C28H45O4Na                      467.314278            1-­‐   -­‐10  C30H49O4Na                      495.345578            1-­‐   -­‐10  C32H53O4Na                      523.376878            1-­‐   -­‐10  C30H47O4Na                      493.329928              1-­‐   -­‐12  C32H51O4Na                      521.361228                1-­‐   -­‐12  C34H55O4Na                      549.392528                1-­‐   -­‐12  C30H45O4Na           491.314278           1-­‐   -­‐14  C32H49O4Na                       519.345578           1-­‐   -­‐14  C34H53O4Na                       547.376878           1-­‐   -­‐14  C35H55O4Na                       561.392528           1-­‐   -­‐14  C36H57O4Na                       575.408178           1-­‐   -­‐14  C30H43O4Na             489.298628           1-­‐   -­‐16  C32H47O4Na                       517.329928           1-­‐   -­‐16  C34H51O4Na                       545.361228           1-­‐   -­‐16  C30H41O4Na             487.282978           1-­‐   -­‐18  C32H45O4Na                       515.314278           1-­‐   -­‐18  C34H49O4Na                       543.345578           1-­‐   -­‐18  C30H39O4Na             485.267328           1-­‐   -­‐20  C32H43O4Na              513.298628           1-­‐   -­‐20  C34H47O4Na                       541.329928           1-­‐   -­‐20  C30H37O4Na             483.251678           1-­‐   -­‐22  C32H41O4Na                       511.282978           1-­‐   -­‐22  C34H45O4Na                       539.314278           1-­‐   -­‐22  C24H48O4                       399.347984           1-­‐   0    C26H52O4                       427.379284           1-­‐   0  C28H56O4                       455.410584           1-­‐   0  C30H60O4           483.441884           1-­‐   0  C32H64O4                       511.473184           1-­‐   0    C34H68O4                       539.504484           1-­‐   0  C36H72O4                       567.535784           1-­‐   0  C38H74O4                   595.567084           1-­‐   0  C23H44O4                   383.316684           1-­‐   -­‐2  C24H46O4                       397.332334           1-­‐   -­‐2  C26H50O4                   425.363634           1-­‐   -­‐2  C28H54O4                       453.394934           1-­‐   -­‐2  

Page 66: Simona Gherghel-MSc Thesis

Appendix  

62    

C28H54O4                       481.426234           1-­‐   -­‐2  C32H62O4                       509.457534           1-­‐   -­‐2    C34H66O4                       537.488834           1-­‐   -­‐2  C36H70O4                       565.520134           1-­‐   -­‐2    C38H74O4                       593.551434           1-­‐   -­‐2  C39H76O4                       607.567084           1-­‐   -­‐2  C23H42O4         381.301034           1-­‐   -­‐4  C24H44O4         395.316684           1-­‐   -­‐4  C26H48O4                       423.347984           1-­‐   -­‐4  C28H52O4         451.379284           1-­‐   -­‐4  C30H56O4         479.410584           1-­‐   -­‐4  C31H58O4         493.426234           1-­‐   -­‐4  C32H60O4         507.441884           1-­‐   -­‐4  C33H62O4         521.457534           1-­‐   -­‐4  C34H64O4         535.473184           1-­‐   -­‐4  C35H66O4                       549.488834           1-­‐   -­‐4  C36H68O4                       563.504484           1-­‐   -­‐4  C37H70O4         577.520134           1-­‐   -­‐4  C38H72O4         591.535784           1-­‐   -­‐4  C39H74O4         605.551434           1-­‐   -­‐4  C40H76O4         619.567084           1-­‐   -­‐4  C41H78O4         633.582734           1-­‐   -­‐4  C23H40O4                     379.285384           1-­‐   -­‐6  C24H42O4                       393.301034           1-­‐   -­‐6  C26H46O4         421.332334           1-­‐   -­‐6  C28H50O4         449.363634           1-­‐   -­‐6  C30H54O4         477.394934           1-­‐   -­‐6  C32H58O4                       505.426234           1-­‐   -­‐6  C33H60O4                       519.441884           1-­‐   -­‐6  C34H62O4                       533.457534           1-­‐   -­‐6  C35H64O4         547.473184           1-­‐   -­‐6  C36H66O4         561.488834           1-­‐   -­‐6  C37H68O4         575.504484           1-­‐   -­‐6  C38H70O4         589.520134           1-­‐   -­‐6  C39H72O4         603.535784           1-­‐   -­‐6  C40H74O4         617.551434           1-­‐   -­‐6  C41H76O4         631.567084           1-­‐   -­‐6  C24H40O4         391.285384           1-­‐   -­‐8  C26H44O4                       419.316684           1-­‐   -­‐8  C28H48O4         447.347984           1-­‐   -­‐8  C30H52O4         475.379284           1-­‐   -­‐8  C32H56O4         503.410584           1-­‐   -­‐8  C34H60O4         531.441884           1-­‐   -­‐8  C35H62O4         545.457534           1-­‐   -­‐8  C36H64O4                       559.473184           1-­‐   -­‐8  C38H68O4         587.504484           1-­‐   -­‐8  C40H72O4         615.535784           1-­‐   -­‐8  C26H42O4                       417.301034           1-­‐   -­‐10  C28H46O4                       445.332334           1-­‐   -­‐10  

Page 67: Simona Gherghel-MSc Thesis

Appendix  

63    

C30H50O4         473.363634           1-­‐   -­‐10  C32H54O4                       501.394934           1-­‐   -­‐10  C34H58O4         529.426234           1-­‐   -­‐10  C35H60O4         543.441884           1-­‐   -­‐10  C36H62O4                       557.457534           1-­‐   -­‐10  C38H66O4                       585.488834           1-­‐   -­‐10  C39H68O4         599.504484           1-­‐   -­‐10  C40H70O4                       613.520134           1-­‐   -­‐10  C41H72O4                       627.535784           1-­‐   -­‐10  C29H46O4         457.332334           1-­‐   -­‐12  C30H48O4         471.347984           1-­‐   -­‐12  C32H52O4                       499.379284           1-­‐   -­‐12  C34H56O4                       527.410584           1-­‐   -­‐12  C36H60O4                     555.441884           1-­‐   -­‐12  C37H62O4                     569.457534           1-­‐   -­‐12  C38H64O4                       583.473184           1-­‐   -­‐12  C39H66O4                       597.488834           1-­‐   -­‐12  C41H70O4                       625.520134           1-­‐   -­‐12  C30H46O4         469.332334           1-­‐   -­‐14  C32H50O4                       497.363634           1-­‐   -­‐14  C34H54O4                       525.394934           1-­‐   -­‐14  C36H58O4                       553.426234           1-­‐   -­‐14  C37H60O4                       567.441884           1-­‐   -­‐14  C38H62O4                       581.457534           1-­‐   -­‐14  C40H66O4                       609.488834           1-­‐   -­‐14  C42H70O4                       637.520134           1-­‐   -­‐14  C30H44O4         467.316684           1-­‐   -­‐16  C32H48O4                       495.347984           1-­‐   -­‐16  C34H52O4                       523.379284           1-­‐   -­‐16  C36H56O4                       551.410584           1-­‐   -­‐16  C38H60O4                       579.441884           1-­‐   -­‐16  C40H64O4                       607.473184           1-­‐   -­‐16  C42H68O4                       635.504484           1-­‐   -­‐16  C30H42O4         465.301034           1-­‐   -­‐18  C32H46O4                       493.332334           1-­‐   -­‐18  C34H50O4                       521.363634           1-­‐   -­‐18  C35H52O4                       535.379284           1-­‐   -­‐18  C36H54O4                       549.394934           1-­‐   -­‐18  C38H58O4                       577.426234           1-­‐   -­‐18  C40H62O4                       605.457534           1-­‐   -­‐18  C42H66O4                       633.488834           1-­‐   -­‐18  C30H40O4         463.285384           1-­‐   -­‐20  C32H44O4                       491.316684           1-­‐   -­‐20  C34H48O4                       519.347984           1-­‐   -­‐20  C35H50O4                       533.363634           1-­‐   -­‐20  C36H52O4                       547.379284           1-­‐   -­‐20  C37H54O4                       561.394934           1-­‐   -­‐20  C38H56O4                       575.410584           1-­‐   -­‐20  C39H58O4                       589.426234           1-­‐   -­‐20  

Page 68: Simona Gherghel-MSc Thesis

Appendix  

64    

C40H60O4                       603.441884           1-­‐   -­‐20  C42H64O4                       631.473184           1-­‐   -­‐20  C44H80O4                       659.504484           1-­‐   -­‐20  C30H38O4         461.269734           1-­‐   -­‐22  C32H42O4                       489.301034           1-­‐   -­‐22  C34H46O4                       517.332334           1-­‐   -­‐22  C35H48O4                       531.347984     1-­‐   -­‐22  C36H50O4                       545.363634     1-­‐   -­‐22  C37H52O4                       559.379284           1-­‐   -­‐22  C39H56O4                       587.410584     1-­‐   -­‐22  C41H60O4                       615.441884           1-­‐   -­‐22  C43H64O4                       643.473184           1-­‐   -­‐22  C45H68O4                       671.504484           1-­‐   -­‐22                                                                      

Page 69: Simona Gherghel-MSc Thesis

Appendix  

65    

7.2 Mass  error  distribution  histograms  

7.2.1 2  year  old  doped  Kodak  NA  sample-­‐ISD  0  V  

 

 

 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

12

14

16

18

20

22

24

Cou

nt

Error (ppm)

Old doped Kodak NA sample (ISD 0 V) O2 error histogram

Mean error: -0.064 ppmSTD error: 0.102 ppmRMS error: 0.120 ppm

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

50

60Old doped Kodak NA sample (ISD 0 V)

O4 error histogram

Cou

nt

Error (ppm)

Mean error: -0.149 ppmSTD error: 0.192 ppmRMS error: 0.242 ppm

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

50

Cou

nt

Error (ppm)

Old doped Kodak NA sample (ISD 0 V) NaO4 error histogram

Mean error: -0.034 ppmSTD error: 0.269 ppmRMS error: 0.270 ppm

Page 70: Simona Gherghel-MSc Thesis

Appendix  

66    

7.2.2 2  year  old  doped  Kodak  NA  sample-­‐ISD  60  V  

 

   

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

30

35Old doped Kodak NA sample (ISD 60 V)

O2 error histogram

C

ount

Error (ppm)

 

Mean error: 0.017 ppmSTD error: 0.062 ppmRMS error: 0.064 ppm

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

50

60

70Old doped Kodak NA sample (ISD 60 V)

NaO4 error histogram

Cou

nt

Error (ppm)

Mean error: -0.03 ppmSTD error: 0.095 ppmRMS error: 0.099 ppm

Page 71: Simona Gherghel-MSc Thesis

Appendix  

67    

7.2.3 Fresh  sample:  serial  dilution  (ISD  0  V    

 

 

 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

C

ount

Error (ppm)

Fresh Kodak NA sample 0.5 mg/mL (ISD 0 V)O2 class error histogram

Mean error: -0.032STD error: 0.091RMS error: 0.095

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

50

60

Mean error: -0.029STD error: 0.258RMS error: 0.259

Fresh Kodak NA sample 0.5 mg/mL (ISD 0 V)O4 class error histogram

Cou

nt

Error (ppm)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

30

Mean error: -0.011STD error: 0.072RMS error: 0.073

Fresh Kodak NA sample 0.1 mg/mL (ISD 0 V)O2 class error histogram

Cou

nt

Error (ppm)

Page 72: Simona Gherghel-MSc Thesis

Appendix  

68    

 

 

           

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

50

Mean error: 0.014STD error: 0.287RMS error: 0.287

Fresh Kodak NA sample 0.1 mg/mL (ISD 0 V)O4 class error histogram

Cou

nt

Error (ppm)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

Mean error: 0.002STD error: 0.036RMS error: 0.036

Fresh Kodak NA sample 0.05 mg/mL (ISD 0 V)O2 class error histogram

Cou

nt

Error (ppm)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

50

60

70

80

90

Mean error: 0.008STD error: 0.134RMS error: 0.134

Fresh Kodak NA sample 0.05 mg/mL (ISD 0 V)O4 class error histogram

Cou

nt

Error (ppm)

Page 73: Simona Gherghel-MSc Thesis

Appendix  

69    

 

 

   

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

30

Mean error: 0.004STD error: 0.040RMS error: 0.040

Cou

nt

Error (ppm)

Fresh Kodak NA sample 0.01 mg/mL (ISD 0 V)O2 class error histogram

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

Mean error: -0.006STD error: 0.093RMS error: 0.102

Fresh Kodak NA sample 0.01 mg/mL (ISD 0 V)O4 class error histogram

Cou

nt

Error (ppm)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

Mean error: 0.005STD error: 0.059RMS error: 0.060

Fresh Kodak NA sample 0.005 mg/mL (ISD 0 V)O2 class error histogram

Cou

nt

Error (ppm)

Page 74: Simona Gherghel-MSc Thesis

Appendix  

70    

 

 

           

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

50

60

70

80

Mean error: -0.001STD error: 0.128RMS error: 0.127

Fresh Kodak NA sample 0.005 mg/mL (ISD 0 V)O4 class error histogram

Cou

nt

Error (ppm)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

30

35

40

45

Mean error: 0.009STD error: 0.045RMS error: 0.045

Fresh Kodak NA sample 0.001 mg/mL (ISD 0 V)O2 class error histogram

Cou

nt

Error (ppm)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20Fresh Kodak NA sample 0.001 mg/mL (ISD 0 V)O4 class error histogram

Cou

nt

Error (ppm)

Mean error: -0.012STD error: 0.113RMS error: 0.112

Page 75: Simona Gherghel-MSc Thesis

Appendix  

71    

7.2.4 CID  on  2  year  old  Kodak  NA      

 

 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

12

14

16

18

Cou

nt

Error (ppm)

Old Kodak NA mixture (CID 2 V)O2 class error histogram

Mean error: -0.007STD error: 0.063RMS error: 0.064

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

30

35

40

Mean error: -0.014STD error: 0.075RMS error: 0.076

Old Kodak NA mixture (CID 6 V)O2 class error histogram

Cou

nt

Error

Page 76: Simona Gherghel-MSc Thesis

Appendix  

72    

 

   

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

30

Mean error: -0.042STD error: 0.058RMS error: 0.071

Old Kodak NA mixture (CID 8 V)O2 class error histogram

Cou

nt

Error

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

30

Mean error: -0.015STD error: 0.048RMS error: 0.050

Old Kodak NA mixture (CID 12 V)O2 class error histogram

Cou

nt

Error (ppm)

Page 77: Simona Gherghel-MSc Thesis

Appendix  

73    

7.2.5 IRMPD  on  fresh  Kodak  NA  sample  

 

 

 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

30

35

Mean error: -0.002STD error: 0.035RMS error: 0.035

Fresh Kodak NA sample (IRMPD, m/z=499.4 precursor)O2 class error histogram

C

ount

Error (ppm)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

12

14

16

18

20

Mean error: -0.005STD error: 0.021RMS error: 0.021

Fresh Kodak NA sample (IRMPD, m/z=501.4 precursor)O2 class error histogram

Cou

nt

Error (ppm)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

30

35

Mean error: -0.002STD error: 0.035RMS error: 0.035

Fresh Kodak NA sample (IRMPD, m/z=503.4 precursor)O2 class error histogram

Cou

nt

Error (ppm)