slides smart-2015

45
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Kernel Based Estimation of Inequality Indices and Risk Measures Arthur Charpentier [email protected] http://freakonometrics.hypotheses.org/ based on joint work with E. Flachaire initiated by some joint work with A. Oulidi, J.D. Fermanian, O. Scaillet, G. Geenens and D. Paindaveine (Université de Rennes 1, 2015) 1

Upload: arthur-charpentier

Post on 15-Jul-2015

8.566 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Kernel Based Estimationof Inequality Indices and Risk Measures

Arthur Charpentier

[email protected]

http://freakonometrics.hypotheses.org/

based on joint work with E. Flachaireinitiated by some joint work with

A. Oulidi, J.D. Fermanian, O. Scaillet, G. Geenens and D. Paindaveine

(Université de Rennes 1, 2015)

1

Page 2: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Stochastic Dominance and Related Indices

• First Order Stochastic Dominance (cf standard stochastic order, �st)

X �1 Y ⇐⇒ FX(t) ≥ FY (t),∀t⇐⇒ VaRX(u) ≤ VaRY (u),∀u

• Convex Stochastic Dominance (cf martingale property)

X �cx Y ⇐⇒ E[Y |X] = X ⇐⇒ ESX(u) ≤ ESY (u),∀u and E(X) = E(Y )

• Second Order Stochastic Dominance (cf submartingale property,stop-loss order, �icx)

X �2 Y ⇐⇒ E[Y |X] ≥ X ⇐⇒ ESX(u) ≤ ESY (u),∀u

• Lorenz Stochastic Dominance (cf dilatation order)

X �L Y ⇐⇒X

E[X] �cxX

E[Y ] ⇐⇒ LX(u) ≤ LY (u),∀u

2

Page 3: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Stochastic Dominance and Related Indices

• Parametric Model(s)E.g. N (µX , σ2

X) �1 N (µY , σ2Y )⇐⇒ µX ≤ µY and σ2

X = σ2Y

E.g. N (µX , σ2X) �cx N (µY , σ2

Y )⇐⇒ µX = µY and σ2X ≤ σ2

Y

E.g. N (µX , σ2X) �2 N (µY , σ2

Y )⇐⇒ µX ≤ µY and σ2X ≤ σ2

Y

Or other parametric distribution. E.g. a lognormal distribution for losses

3

Page 4: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Stochastic Dominance and Related Indices

• Non-parametric Model(s)

4

Page 5: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Nonparametric estimation of the density

5

Page 6: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Agenda

sample {y1, · · · , yn} −→ fn(·)↗↘

Fn(·) or F−1n (·)

R(fn)

• Estimating densities of copulas◦ Beta kernels◦ Transformed kernels• Combining transformed and Beta kernels• Moving around the Beta distribution◦ Mixtures of Beta distributions◦ Bernstein Polynomials• Some probit type transformations

6

Page 7: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Non parametric estimation of copula densitysee C., Fermanian & Scaillet (2005), bias of kernel estimators at endpoints

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Kernel based estimation of the uniform density on [0,1]

Dens

ity

0.0 0.2 0.4 0.6 0.8 1.00.

00.

20.

40.

60.

81.

01.

2

Kernel based estimation of the uniform density on [0,1]

Dens

ity

7

Page 8: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Non parametric estimation of copula density

e.g. E(c(0, 0, h)) = 14 · c(u, v)− 1

2 [c1(0, 0) + c2(0, 0)]∫ 1

0ωK(ω)dω · h+ o(h)

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0

1

2

3

4

5

Estimation of Frank copula

0.2 0.4 0.6 0.8

0.2

0.40.60.8

0

1

2

3

4

5

Estimation of Frank copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

with a symmetric kernel (here a Gaussian kernel).

8

Page 9: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Non parametric estimation of copula density

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Standard Gaussian kernel estimator, n=100

Estimation of the density on the diagonal

Dens

ity o

f the

est

imat

or

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Standard Gaussian kernel estimator, n=1000

Estimation of the density on the diagonal

Dens

ity o

f the

est

imat

or

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Standard Gaussian kernel estimator, n=10000

Estimation of the density on the diagonal

Dens

ity o

f the

est

imat

or

Nice asymptotic properties, see Fermanian et al. (2005)... but still: on finitesample, bad behavior on borders.

9

Page 10: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Beta kernel idea (for copulas)see Chen (1999, 2000), Bouezmarni & Rolin (2003),

Kxi(u) ∝ exp(− (u− xi)2

h2

)vs. Kxi(u) ∝

(u

x1,ib

1 [1− u1]x1,i

b

)·(u

x2,ib

2 [1− u2]x2,i

b

)

10

Page 11: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Beta kernel idea (for copulas)Beta (independent) bivariate kernel , x=0.0, y=0.0 Beta (independent) bivariate kernel , x=0.2, y=0.0 Beta (independent) bivariate kernel , x=0.5, y=0.0

Beta (independent) bivariate kernel , x=0.0, y=0.2 Beta (independent) bivariate kernel , x=0.2, y=0.2 Beta (independent) bivariate kernel , x=0.5, y=0.2

Beta (independent) bivariate kernel , x=0.0, y=0.5 Beta (independent) bivariate kernel , x=0.2, y=0.5 Beta (independent) bivariate kernel , x=0.5, y=0.5

11

Page 12: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Beta kernel idea (for copulas)

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0

1

2

3

4

5

Estimation of Frank copula

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Estimation of the copula density (Beta kernel, b=0.1)

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Estimation of the copula density (Beta kernel, b=0.05)

12

Page 13: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Beta kernel idea (for copulas)

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Beta kernel estimator, b=0.05, n=100

Estimation of the density on the diagonal

Dens

ity o

f the

est

imat

or

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Beta kernel estimator, b=0.02, n=1000

Estimation of the density on the diagonal

Dens

ity o

f the

est

imat

or

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Beta kernel estimator, b=0.005, n=10000

Estimation of the density on the diagonal

Dens

ity o

f the

est

imat

or

13

Page 14: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Transformed kernel idea (for copulas)[0, 1]× [0, 1]→ R× R→ [0, 1]× [0, 1]

14

Page 15: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Transformed kernel idea (for copulas)

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0

1

2

3

4

5

Estimation of Frank copula

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0

1

2

3

4

5

Estimation of Frank copula

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0

1

2

3

4

5

Estimation of Frank copula

15

Page 16: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Transformed kernel idea (for copulas)

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Transformed kernel estimator (Gaussian), n=100

Estimation of the density on the diagonal

Dens

ity o

f the

est

imat

or

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Transformed kernel estimator (Gaussian), n=1000

Estimation of the density on the diagonal

Dens

ity o

f the

est

imat

or

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Transformed kernel estimator (Gaussian), n=10000

Estimation of the density on the diagonal

Dens

ity o

f the

est

imat

or

see Geenens, C. & Paindaveine (2014) for more details on probit transformationfor copulas.

16

Page 17: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Combining the two approachesSee Devroye & Györfi (1985), and Devroye & Lugosi (2001)

... use the transformed kernel the other way, R→ [0, 1]→ R

17

Page 18: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Devroye & Györfi (1985) - Devroye & Lugosi (2001)Interesting point, the optimal T should be F ,

thus, T can be Fθ

18

Page 19: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Heavy Tailed distributionLet X denote a (heavy-tailed) random variable with tail index α ∈ (0,∞), i.e.

P(X > x) = x−αL1(x)

where L1 is some regularly varying function.

Let T denote a R→ [0, 1] function, such that 1− T is regularly varying atinfinity, with tail index β ∈ (0,∞).

Define Q(x) = T−1(1− x−1) the associated tail quantile function, thenQ(x) = x1/βL?2(1/x), where L?2 is some regularly varying function (the de Bruynconjugate of the regular variation function associated with T ). Assume here thatQ(x) = bx1/β

Let U = T (X). Then, as u→ 1

P(U > u) ∼ (1− u)α/β .

19

Page 20: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Heavy Tailed distributionsee C. & Oulidi (2007), α = 0.75−1 , T0.75−1 , T0.65−1︸ ︷︷ ︸

lighter

, T0.85−1︸ ︷︷ ︸heavier

and Tα

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

20

Page 21: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Heavy Tailed distributionsee C. & Oulidi (2007), impact on quantile estimation ?

20 30 40 50 60 70 80

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Den

sity

21

Page 22: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Heavy Tailed distributionsee C. & Oulidi (2007), impact on quantile estimation ? bias ? m.s.e. ?

22

Page 23: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Which transformation ?

GB2 : t(y; a, b, p, q) = |a|yap−1

bapB(p, q)[1 + (y/b)a]p+q , for y > 0,

GB2q→∞

��a=1

��p=1

##

q=1

((GG

a→0

��a=1

��

p=1

��

Beta2

q→∞ww

SM

q→∞xx

q=1''

Dagum

p=1

��Lognormal Gamma Weibull Champernowne

23

Page 24: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Estimating a density on R+

• Stay on R+ : xi’s• Get on [0, 1] : ui = T

θ(xi) (distribution as uniform as possible)

◦ Use Beta Kernels on ui’s◦ Mixtures of Beta distributions on ui’s◦ Bernstein Polynomials on ui’s• Get on R : use standard kernels (e.g. Gaussian)◦ On x?i = log(xi)◦ On x?i = BoxCox

λ(xi)

◦ On x?i = Φ−1[Tθ(xi)]

24

Page 25: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Beta kernel

g(u) =n∑i=1

1n· b(u; Ui

h,

1− Uih

)u ∈ [0, 1].

with some possible boundary correction, as suggested in Chen (1999),u

h→ ρ(u, h) = 2h2 + 2.5− (4h4 + 6h2 + 2.25− u2 − u/h)1/2

Problem : choice of the bandwidth h? ? Standard loss function

L(h) =∫

[gn(u)− g(u)]2du =∫

[gn(u)]2du− 2∫gn(u) · g(u)du︸ ︷︷ ︸

CV (h)

+∫

[g(u)]2du

where

CV (h) =(∫

gn(u)du)2− 2n

n∑i=1

g(−i)(Ui)

25

Page 26: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Mixture of Beta distributions

g(u) =k∑j=1

πj · b(u; αj , βj

)u ∈ [0, 1].

Problem : choice the number of components k (and estimation...). Use ofstochastic EM algorithm (or sort of) see Celeux & Diebolt (1985).

Bernstein approximation

g(u) =m∑k=1

[mωk] · b (u; k,m− k) u ∈ [0, 1].

where ωk = G

(k

m

)− G

(k − 1m

).

26

Page 27: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

On the log-transformWith a standard Gaussian kernel

fX(x) = 1n

n∑i=1

φ(x;xi, h)

A Gaussian kernel on a log transform,

fX(x) = 1xfX?(log x) = 1

n

n∑i=1

λ(x; log xi, h)

where λ(·;µ, σ) is the density of the log-normal distribution. Here, in 0,

bias[fX(x)] ∼ h2

2 [fX(x) + 3x · f ′X(x) + x2 · f ′′X(x)]

andVar[fX(x)] ∼ fX(x)

xnh

27

Page 28: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

On the Box-Cox-transformMore generally, instead of transformed sample Yi = log[Xi], consider

Yi = Xλi − 1λ

when λ 6= 0.

Find the optimal transformation using standard regression techniques (leastsquares)

X?i = Xλ?

i − 1λ?

when λ? 6= 0

and X?i = log[Xi] if λ? = 0. The density estimation is here

fX(x) = xλ?−1fX?

(xλ

? − 1λ?

)

28

Page 29: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Illustration with Log-normal samplesStandard kernel (− Silvermans’s rule h?)

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

29

Page 30: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Illustration with Log-normal samplesLog transform, x?i = log xi + Gaussian kernel

Den

sity

−2 −1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

−2 −1 0 1 20.

00.

10.

20.

30.

40.

50.

6

Den

sity

−2 −1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

30

Page 31: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Illustration with Log-normal samplesProbit-type transform, x?i = Φ−1[T

θ(xi)] + Gaussian kernel

Den

sity

−2 −1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

−2 −1 0 1 20.

00.

10.

20.

30.

40.

50.

6

Den

sity

−2 −1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

31

Page 32: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Illustration with Log-normal samplesBox-Cox transform, x?i = BoxCox

λ(xi) + Gaussian kernel

Den

sity

−2 −1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

−2 −1 0 1 20.

00.

10.

20.

30.

40.

50.

6

Den

sity

−2 −1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

32

Page 33: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Illustration with Log-normal samplesui = T

θ(xi) + Mixture of Beta distributionsl

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Den

sity

0.0 0.2 0.4 0.6 0.8 1.00.

00.

51.

01.

52.

0

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

33

Page 34: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Illustration with Log-normal samplesui = T

θ(xi) + Beta kernel estimation

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Den

sity

0.0 0.2 0.4 0.6 0.8 1.00.

00.

51.

01.

52.

0

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Den

sity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

34

Page 35: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Quantities of interestStandard statistical quantities

• miae,(∫ ∞

0

∣∣∣fn(x)− f(x)∣∣∣ dx

)

• mise,(∫ ∞

0

[fn(x)− f(x)

]2dx)

• miaew,(∫ ∞

0

∣∣∣fn(x)− f(x)∣∣∣ |x|dx)

• misew,(∫ ∞

0

[fn(x)− f(x)

]2x2 dx

)

35

Page 36: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Quantities of interest

Inequality indices and risk measures, based on F (x) =∫ x

0f(t)dt,

• Gini, 1µ

∫ ∞0

F (t)[1− F (t)]dt

• Theil,∫ ∞

0

t

µlog(t

µ

)f(t)dt

• Entropy −∫ ∞

0f(t) log[f(t)]dt

• VaR-quantile, x such that F (x) = P(X ≤ x) = α, i.e. F−1(α)

• TVaR-expected shorfall, E[X|X > F−1(α)]

where µ =∫ ∞

0[1− F (x)]dx.

36

Page 37: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Computations AspectsHere, for each method, we return two functions,

• function fn(·)

• a random generator for distribution fn(·)

◦ H-transform and Gaussian kernel

draw i ∈ {1, · · · , n} and X = H−1(Z) where Z ∼ N (H(xi), b2)

◦ H-transform and Beta kernel

draw i ∈ {1, · · · , n} and X = H−1(U) where U ∼ B(H(xi)/h, [1−H(xi)]/h)

◦ H-transform and Beta mixture

draw k ∈ {1, · · · ,K} and X = H−1(U) where U ∼ B(αk,βk)

37

Page 38: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

◦ ‘standard’ Gaussian kernel (benchmark)

draw i ∈ {1, · · · , n}, and X ∼ N (xi, b2) (almost)

up to some normalization, · 7→ fn(·)∫∞0 fn(x)dx

38

Page 39: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

MISE

∫ ∞0

[f (s)n (x)− f(x)

]2dx

Singh−Maddala

MISE

●●● ●●

●●●●●● ●

● ●●● ●● ●●● ●● ●

●●●● ●● ●

● ●●● ●● ●●● ●● ●

●●●● ●● ● ●

●●● ●●

●● ●● ● ●● ●●● ●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

0.00

0

0.00

5

0.01

0

0.01

5

Mixed Singh−Maddala

MISE

●●

● ●●● ●●● ●●● ●

● ●● ●●● ●● ●●● ●

● ●● ●● ●●● ●● ●●●● ●

●●● ●●

●●●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

0.00

0.05

0.10

0.15

39

Page 40: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

MIAE

∫ ∞0|f (s)n (x)− f(x)|dx

Singh−Maddala

MIAE

● ●●● ●

●● ●● ●●

● ●●

●●●● ●●

● ●● ●●

●●●● ●

●● ●●● ●

● ●●●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

0.00

0.05

0.10

0.15

0.20

Mixed Singh−Maddala

MIAE

●● ●

● ●●●●● ●

● ●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

0.05

0.10

0.15

0.20

0.25

0.30

40

Page 41: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Gini Index

(s)n

∫ ∞0

F (s)n (t)[1− F (s)

n (t)]dt

Singh−Maddala

Gini Index

● ●

●●

● ●

●●

●●●

● ●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

0.45

0.50

0.55

0.60

Mixed Singh−Maddala

Gini Index

●●

● ●●

●●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

0.55

0.60

0.65

0.70

41

Page 42: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Value-at-Risk, 95%

Q(s)n (α) = inf{x, α ≤ F (s)

n (x)}

Singh−Maddala

Quantile 95%

●● ●●●● ●

● ● ●● ●

●●

● ●●●●● ●

● ●●●●●● ●●

●● ●●●●●●

●●● ●

●●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

10 20 30 40 50

Mixed Singh−Maddala

Quantile 95%

●●

● ●

● ●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

2.0

2.5

3.0

3.5

4.0

4.5

42

Page 43: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Value-at-Risk, 99%

Q(s)n (α) = inf{x, α ≤ F (s)

n (x)}

Singh−Maddala

Quantile 99%

● ●●●

●● ● ●●●

●●

●●● ●● ●●●●

●● ●●●●

●● ●●●●

●● ●

●●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

6 8 10 12 14 16 18

Mixed Singh−Maddala

Quantile 99%

● ●

● ●●●●●● ●●●●

●●● ●●●

● ●●●●●

● ● ●●

●● ●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

2 4 6 8 10

43

Page 44: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Tail Value-at-Risk, 95%

E[X|X > Q(s)n (α)]

Singh−Maddala

Expected Shortfall 95%

●●

●●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

4.0

4.5

5.0

5.5

6.0

6.5

Mixed Singh−Maddala

Expected Shortfall 95%

● ●●●

● ●●●

● ●●●

● ●●●

standard kernellog kernel

log mixboxcox kernel

boxcox mixprobit kernelbeta kernel

beta mix

4 6 8 10 12

44

Page 45: Slides smart-2015

Arthur CHARPENTIER - Rennes, SMART Workshop, 2014

Possible conclusion ?

• estimating densities on transformated data is definitively a good idea

• but we need to find a good transformationX parametric + betaX parametric + probitX log-transformX Box-Cox

0.719

0.719

0.7190.719

0.719

0.719

0.719

0.7191.428

2.137

47.75

48.00

48.25

48.50

48.75

−4.8 −4.4 −4.0 −3.6longitude

latit

ude

0.0110.7191.4282.1372.845

0.719 0.719

0.7190.719

0.719

0.719

0.7190.719

0.719

1.428

1.428

1.428

1.428

1.428

1.4281.428

1.428

1.428

1.428

1.428

1.428

1.428

1.428

1.428

1.428

2.137

2.137

47.75

48.00

48.25

48.50

48.75

−4.8 −4.4 −4.0 −3.6longitude

latit

ude

0.0110.7191.4282.1372.845

(joint work with E. Gallic)

45