stability measurement of 3 csos with tracking ddss and two

17
Stability Measurement of 3 CSOs with Tracking DDSs and Two-Sample COV 10 GHz CSOs 2×10 –16 …10 –15 ADEV at 1…10 5 s Not tested at 100 MHz C. E. Calosso 1 , F. Vernotte 2,3 , V. Giordano 2,3 , C. Fluhr 4 , B. Dubois 4 , E. Rubiola 1,2,3 1 INRIM, Torino, Italy, 2 Besançon Observatory, France 3 FEMTO-ST Institute, France, 4 FEMTO Engineering, France TDDS 2×10 –14 /τ ADEV at 100 MHz Statistical limit? Motivations and Outline Let’s put all things together and play Statistics Scalable Challenging instrument and oscillators http://rubiola.org 1 French and Italian National Research Councils

Upload: others

Post on 07-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stability Measurement of 3 CSOs with Tracking DDSs and Two

Stability Measurement of 3 CSOs with Tracking DDSs and Two-Sample COV

10 GHz CSOs • 2×10–16…10–15 ADEV

at 1…105 s• Not tested at 100 MHz

C. E. Calosso1, F. Vernotte2,3, V. Giordano2,3, C. Fluhr4, B. Dubois4, E. Rubiola1,2,3

1 INRIM, Torino, Italy, 2 Besançon Observatory, France 3 FEMTO-ST Institute, France, 4 FEMTO Engineering, France

TDDS •2×10–14/τ ADEV

at 100 MHz•Statistical limit?

Motivations and Outline

Let’s put all things together and play

Statistics •Scalable•Challenging instrument

and oscillators

http://rubiola.org1

French and Italian National Research Councils

Page 2: Stability Measurement of 3 CSOs with Tracking DDSs and Two

Liquid-He Sapphire Oscillator

• 3 units in Besancon (one is transportable, stability & noise validated after roundtrip)• Others: 1 at ESA, Malargue, 3 at a US GOV lab • µHz-resolution synthesis

2

T2>T1

T1 nESR

nESR

Cr3+ Fe3+ dopedAl2O3 mono crystalϕ ≈ 5 cm, H ≈ 3 cm

nESR

frequencyT

Magnetic Susceptibility

0.1 ppm

0.2 ppm

20

10

0

30

∆ƒ, Hz

40

WGH16,0,0 mode at 11.565 GHz

5 6 7 8

temperature, K

Whispering Gallery H mode

HE

Paramagnetic temperature compensation

10 GHz resonanceQ ≈ 2×109 at 5–7 K

Pound-Galani Oscillator

• Pound frequency lock to the cavity• The same cavity is used in the VCO

ƒm

control

out

PM

oscillator loop

powerdetector

ν0 Q

VCO

V ~ ν–ν0

Page 3: Stability Measurement of 3 CSOs with Tracking DDSs and Two

conductance

supporting rods

copper

braids

Temperature

stabilised plateGold plated

cavity

Top flange

Cold head

4K stage

low thermal

70K stage

Mechanical & Thermal EngineeringLow-vibe cryogenerator

< 2 µm displacement @ 1Hz

Cold finger temperature stability 100 mK pkThermal ballast

Low acceleration sensitivity

3

First generation: 6kW three-phaseCurrent generation: 3 kW mono-phase

Page 4: Stability Measurement of 3 CSOs with Tracking DDSs and Two

Frequency Synthesis 4

10 GHz

10±3 MHz

DC

÷20

LPx4 BP

÷4 ÷10

÷10

LP

100 MHzoutputs

5 MHzoutputs

10 GHzoutputs

Directoutput

CSO9.99 GHz

input

LP

2.5 GHz

DRO 10 GHz

DDS250 MHzword

DDS control

10 GHz

LP

5 MHz

100 MHz

10 GHz–10±3 MHz

HF/

VHF

out

heterodyne PLL

48 bit DDS9x10–17 resolution 0.9 µHz at 10 GHz

Key points • Resonator engineering

10 GHz – 10 MHz ±3 MHz• Small frequency offset

DDS is OK• Uneven frequencies

No crosstalk

Page 5: Stability Measurement of 3 CSOs with Tracking DDSs and Two

Tracking DDS —> Digital PLL 5

b–1 = –110 dBrad 2

b0 = –154 dBrad2/Hz

Mixer, Amplifier, and ADC

Clock distribution

AD9912

TDDS —> M. Calligaris, G. A. Costanzo, C. E. Calosso, Proc 2015 IFCS pp.681-683

Noise budget at 100 MHz

DDS Noise —> C. E. Calosso, Y. Gruson, E. Rubiola, Proc 2012 IFCS p.777-782

Trivial estimator forslow sampling (ƒs = 10 Hz)

x(t)^

DDSφ control

estimator

ADC'

<latexit sha1_base64="Cs8WbhE4Y/F9FNFi/jVPN0pHgU0=">AAAB6nicZVDNTsJAEJ7iH+If6tHLRjDxQEhbIspJEi8eMZEfA4Rsly1s2G2b3S0JaXgJPRn15uP4Ar6Fj2BbMEH9ksl8+WYmM984AWdKm+ankVlb39jcym7ndnb39g/yh0ct5YeS0CbxuS87DlaUM482NdOcdgJJsXA4bTuTm6TenlKpmO/d61lA+wKPPOYygnUsPRR7UyyDMSsO8gWzbKZAK+TCtGpVC1lLpXD9BSkag/xHb+iTUFBPE46V6lpmoPsRlpoRTue5XqhogMkEj2g3ph4WVPWj9OA5OouVIXJ9GYenUaquTkRYKIH1uBTnpEMlRM2EU3JEKSlI5ao/O7R71Y+YF4SaemSxwg050j5KfKMhk5RoPosJJpLFVyIyxhITHX8nl9qv1Wy7WkH/yY/9ll22KmX7zi7U7cUfIAsncArnYMEl1OEWGtAEAgKe4BXeDG48Gs/Gy6I1YyxnjuEXjPdvPfSPhg==</latexit>

✓<latexit sha1_base64="9UJlc7c5O2RqkHKwfdsi2pL/qHA=">AAAB6XicZVBLSgNBEK2Jvxh/UZduGhPBRQgzE4xmZcCNywjmA0kIPZ2epEnPh+4aIYQcQlei7ryOF/AWHsGZSYSoD4p6vKqi6pUTSqHRND+NzNr6xuZWdju3s7u3f5A/PGrpIFKMN1kgA9VxqOZS+LyJAiXvhIpTz5G87Uxuknr7gSstAv8epyHve3TkC1cwirHUKfZwzJEWB/mCWTZTkBVyYVq1qkWspVK4/oIUjUH+ozcMWORxH5mkWnctM8T+jCoUTPJ5rhdpHlI2oSPejalPPa77s/TeOTmLlSFxAxWHjyRVVydm1NMexXEpzkmHToieek7J8UpJQWlX/9mB7lV/JvwwQu6zxQo3kgQDktgmQ6E4QzmNCWVKxFcSNqaKMoyfk0vt12q2Xa2Q/+THfssuW5WyfWcX6vbiD5CFEziFc7DgEupwCw1oAgMJT/AKb8bEeDSejZdFa8ZYzhzDLxjv32jDjwg=</latexit>

<latexit sha1_base64="pY18hNyHdfhPOlwC3Aj8KVYWQkY=">AAAB53icZVBLSgNBEK3xG+Mv6tJNYyK4CGFmgtGsDLhxGcF8IBlCT6cnadPzobtHCEPOoCtRd97HC3gLj2DPJELUB0U9XlVR9cqNOJPKND+NldW19Y3N3FZ+e2d3b79wcNiWYSwIbZGQh6LrYkk5C2hLMcVpNxIU+y6nHXdyndY7D1RIFgZ3ahpRx8ejgHmMYKWldqkfSVYaFIpmxcyAlsi5adVrFrIWSvHqCzI0B4WP/jAksU8DRTiWsmeZkXISLBQjnM7y/VjSCJMJHtGepgH2qXSS7NoZOtXKEHmh0BEolKnLEwn2pY/VuKxz2iFTIqe+W3b9cloQ0pN/dijv0klYEMWKBmS+wos5UiFKTaMhE5QoPtUEE8H0lYiMscBE6dfkM/v1um3Xqug/+bHftitWtWLf2sWGPf8D5OAYTuAMLLiABtxAE1pA4B6e4BXeDGY8Gs/Gy7x1xVjMHMEvGO/f7KqOKg==</latexit>

E.Rubiola, 2019

clock

phasecontrol

phase time

in

x̂<latexit sha1_base64="lFgBw3JF8CZU79CB4oaVZ2Yip/4=">AAAB+nicZVDLSsNAFL3xWeur6sKFm8FWcFFKErHalQU3LivYVmhKmUwn7eBMEmYmYon5GV2JuvMz/AH/wk8wSSv4ODDM4dx7ufccN+RMadP8MObmFxaXlgsrxdW19Y3N0tZ2RwWRJLRNAh7IaxcryplP25ppTq9DSbFwOe26N+dZvXtLpWKBf6UnIe0LPPKZxwjWqTQo7VacMdax44rYEViPlRffJUlSGZTKZs3MgX6QY9Nq1C1kzZTy2SfkaA1K784wIJGgviYcK9WzzFD3Yyw1I5wmRSdSNMTkBo9oL6U+FlT149xAgg5SZYi8QKbP1yhXf07EWKjsumr6Zx0qI2oi3KorqllBKk/92aG9037M/DDS1CfTFV7EkQ5QlgMaMkmJ5pOUYCJZeiUiYywx0Wlaxdx+o2Hb9SP0n3zb79g166hmX9rlpj3NAQqwB/twCBacQBMuoAVtIJDAI7zAq3FvPBhPxvO0dc6YzezALxhvXzHVlmA=</latexit>

'̂<latexit sha1_base64="1SBlzFdPSB0rJQrj+HWNOo2g64s=">AAAB93icZVDbSsNAEJ14rfVWL2++LLaCD6UkES99suCLjxVsK5hQNttNu3Q3CbubQgz9Fn0S9c3/8Af8Cz/BJFXwcmCYw5kZZuZ4EWdKm+a7MTe/sLi0XFopr66tb2xWtra7KowloR0S8lDeeFhRzgLa0UxzehNJioXHac8bX+T13oRKxcLgWicRdQUeBsxnBOtM6ld2a84I69TxROpMsIxGbDqt9StVs2EWQD/IsWk1TyxkfSnV8w8o0O5X3pxBSGJBA004VurWMiPtplhqRjidlp1Y0QiTMR7S24wGWFDlpsX1U3SQKQPkhzKLQKNC/TmRYqEE1qN6lvMOlROVCK/uiXpekMpXf3Zo/8xNWRDFmgZktsKPOdIhyk1AAyYp0TzJCCaSZVciMsISE51ZVS7ebzZt++QI/Sff73fthnXUsK/sasue+QAl2IN9OAQLTqEFl9CGDhC4gwd4hhcjMe6NR+Np1jpnfM3swC8Yr5+N15TZ</latexit>

÷ D

FPGA

Page 6: Stability Measurement of 3 CSOs with Tracking DDSs and Two

700 fs jitterσ

y(τ)=1.5×10 -14

@ 1 s, ƒH = 5 Hz

x-type PM noise

Flicker: √k-1 = 5 fs

AD9912 DDS: Time-Type Noise at ≥ 5 MHz 6

C. E. Calosso, E. Rubiola, Phase Noise and Jitter in Digital Electronics, arXiv:1701.00094 [physics.ins-det]DDS Noise —> C. E. Calosso, Y. Gruson, E. Rubiola, Proc 2012 IFCS p.777-782

Trivial estimator forslow sampling (ƒs = 10 Hz)

x(t)^

DDSφ control

estimator

ADC'

<latexit sha1_base64="Cs8WbhE4Y/F9FNFi/jVPN0pHgU0=">AAAB6nicZVDNTsJAEJ7iH+If6tHLRjDxQEhbIspJEi8eMZEfA4Rsly1s2G2b3S0JaXgJPRn15uP4Ar6Fj2BbMEH9ksl8+WYmM984AWdKm+ankVlb39jcym7ndnb39g/yh0ct5YeS0CbxuS87DlaUM482NdOcdgJJsXA4bTuTm6TenlKpmO/d61lA+wKPPOYygnUsPRR7UyyDMSsO8gWzbKZAK+TCtGpVC1lLpXD9BSkag/xHb+iTUFBPE46V6lpmoPsRlpoRTue5XqhogMkEj2g3ph4WVPWj9OA5OouVIXJ9GYenUaquTkRYKIH1uBTnpEMlRM2EU3JEKSlI5ao/O7R71Y+YF4SaemSxwg050j5KfKMhk5RoPosJJpLFVyIyxhITHX8nl9qv1Wy7WkH/yY/9ll22KmX7zi7U7cUfIAsncArnYMEl1OEWGtAEAgKe4BXeDG48Gs/Gy6I1YyxnjuEXjPdvPfSPhg==</latexit>

✓<latexit sha1_base64="9UJlc7c5O2RqkHKwfdsi2pL/qHA=">AAAB6XicZVBLSgNBEK2Jvxh/UZduGhPBRQgzE4xmZcCNywjmA0kIPZ2epEnPh+4aIYQcQlei7ryOF/AWHsGZSYSoD4p6vKqi6pUTSqHRND+NzNr6xuZWdju3s7u3f5A/PGrpIFKMN1kgA9VxqOZS+LyJAiXvhIpTz5G87Uxuknr7gSstAv8epyHve3TkC1cwirHUKfZwzJEWB/mCWTZTkBVyYVq1qkWspVK4/oIUjUH+ozcMWORxH5mkWnctM8T+jCoUTPJ5rhdpHlI2oSPejalPPa77s/TeOTmLlSFxAxWHjyRVVydm1NMexXEpzkmHToieek7J8UpJQWlX/9mB7lV/JvwwQu6zxQo3kgQDktgmQ6E4QzmNCWVKxFcSNqaKMoyfk0vt12q2Xa2Q/+THfssuW5WyfWcX6vbiD5CFEziFc7DgEupwCw1oAgMJT/AKb8bEeDSejZdFa8ZYzhzDLxjv32jDjwg=</latexit>

<latexit sha1_base64="pY18hNyHdfhPOlwC3Aj8KVYWQkY=">AAAB53icZVBLSgNBEK3xG+Mv6tJNYyK4CGFmgtGsDLhxGcF8IBlCT6cnadPzobtHCEPOoCtRd97HC3gLj2DPJELUB0U9XlVR9cqNOJPKND+NldW19Y3N3FZ+e2d3b79wcNiWYSwIbZGQh6LrYkk5C2hLMcVpNxIU+y6nHXdyndY7D1RIFgZ3ahpRx8ejgHmMYKWldqkfSVYaFIpmxcyAlsi5adVrFrIWSvHqCzI0B4WP/jAksU8DRTiWsmeZkXISLBQjnM7y/VjSCJMJHtGepgH2qXSS7NoZOtXKEHmh0BEolKnLEwn2pY/VuKxz2iFTIqe+W3b9cloQ0pN/dijv0klYEMWKBmS+wos5UiFKTaMhE5QoPtUEE8H0lYiMscBE6dfkM/v1um3Xqug/+bHftitWtWLf2sWGPf8D5OAYTuAMLLiABtxAE1pA4B6e4BXeDGY8Gs/Gy7x1xVjMHMEvGO/f7KqOKg==</latexit>

E.Rubiola, 2019

clock

phasecontrol

phase time

in

x̂<latexit sha1_base64="lFgBw3JF8CZU79CB4oaVZ2Yip/4=">AAAB+nicZVDLSsNAFL3xWeur6sKFm8FWcFFKErHalQU3LivYVmhKmUwn7eBMEmYmYon5GV2JuvMz/AH/wk8wSSv4ODDM4dx7ufccN+RMadP8MObmFxaXlgsrxdW19Y3N0tZ2RwWRJLRNAh7IaxcryplP25ppTq9DSbFwOe26N+dZvXtLpWKBf6UnIe0LPPKZxwjWqTQo7VacMdax44rYEViPlRffJUlSGZTKZs3MgX6QY9Nq1C1kzZTy2SfkaA1K784wIJGgviYcK9WzzFD3Yyw1I5wmRSdSNMTkBo9oL6U+FlT149xAgg5SZYi8QKbP1yhXf07EWKjsumr6Zx0qI2oi3KorqllBKk/92aG9037M/DDS1CfTFV7EkQ5QlgMaMkmJ5pOUYCJZeiUiYywx0Wlaxdx+o2Hb9SP0n3zb79g166hmX9rlpj3NAQqwB/twCBacQBMuoAVtIJDAI7zAq3FvPBhPxvO0dc6YzezALxhvXzHVlmA=</latexit>

'̂<latexit sha1_base64="1SBlzFdPSB0rJQrj+HWNOo2g64s=">AAAB93icZVDbSsNAEJ14rfVWL2++LLaCD6UkES99suCLjxVsK5hQNttNu3Q3CbubQgz9Fn0S9c3/8Af8Cz/BJFXwcmCYw5kZZuZ4EWdKm+a7MTe/sLi0XFopr66tb2xWtra7KowloR0S8lDeeFhRzgLa0UxzehNJioXHac8bX+T13oRKxcLgWicRdQUeBsxnBOtM6ld2a84I69TxROpMsIxGbDqt9StVs2EWQD/IsWk1TyxkfSnV8w8o0O5X3pxBSGJBA004VurWMiPtplhqRjidlp1Y0QiTMR7S24wGWFDlpsX1U3SQKQPkhzKLQKNC/TmRYqEE1qN6lvMOlROVCK/uiXpekMpXf3Zo/8xNWRDFmgZktsKPOdIhyk1AAyYp0TzJCCaSZVciMsISE51ZVS7ebzZt++QI/Sff73fthnXUsK/sasue+QAl2IN9OAQLTqEFl9CGDhC4gwd4hhcjMe6NR+Np1jpnfM3swC8Yr5+N15TZ</latexit>

÷ D

FPGA

Page 7: Stability Measurement of 3 CSOs with Tracking DDSs and Two

The 6-Channel TDDS 7

DDS

Clock

Cyclone III FPGA

VoCore2 Linux computer (back side)

DC/DC & voltage regulator

Thermally symmetric design

12 V, 10 W supply

Mixer

SMA input connectors

6 TDDSs, control unit, and interface in a small instrument

Ethernet

RS-232

Page 8: Stability Measurement of 3 CSOs with Tracking DDSs and Two

Thermal Image 8

Small dissipation and thermal symmetry improve phase stability

Page 9: Stability Measurement of 3 CSOs with Tracking DDSs and Two

Statistics

TIC /ϕM12

TIC /ϕM34

TIC /ϕM56

A

B

C

x12

x34

x562

)()(),( ττ

−−≡

tytytz

tttyd)(d)( x

=

02)()(

πυ

ϕ tt =x

][E)(, AByy zzBA

=τσ

2-Sample COV

Bx 2xBAx 21x 21nx

By 2yBAy 21y 21ny

Bz 2zBAz 21z 21nz

2Bσ

2BAσ

AB,σ

21σ

221σ 2

21nσ

Oscillator Instrument

Single DeltaOutputSingle Delta

Noi

se

9

AVAR][E)( 22 zy =τσ

Time Interval Counters

Page 10: Stability Measurement of 3 CSOs with Tracking DDSs and Two

Statistical ToolsTIC /ϕM

12

TIC /ϕM34

TIC /ϕM56

A

B

C

x12

x34

x56 ⎪⎩

⎪⎨

=

=

=

][E][E][E

256

2

234

2

212

2

zzz

CA

BC

AB

σ

σ

σ

23421 ][E Bzz σ=

3-Cornered Hat

2-Sample COV

][E21 2

56234

212

2 zzzB −+=⇒σ

3-cornered hat with noise-free instruments

Noisy Instruments

][21][E

21 2

56n243n

212n

2256

234

212 σσσσ −++=−+ Bzzz

10

At 100 MHz the Time Interval Counter is not an option

background noise —> 0

Page 11: Stability Measurement of 3 CSOs with Tracking DDSs and Two

1

2

3

4

5

6

x1

x6

x2

x3

x4

x56-

chan

nel

Trac

king

DD

S

A

B

C

2-Sample COV with TDDS 11

2kj

ijkizz

zz+

−=←

Channels remapping ][E 45322 zzB =σ

][E 5641232 zzB =σ

][E21

5631245641232 zzzzB +=σ

First improvement

Second improvement

• Expand all terms • Look at convergence laws • Room for improvement

We use this —>

Page 12: Stability Measurement of 3 CSOs with Tracking DDSs and Two

x1

x6

x2

x3

x4

x5

6-ch

anne

l Tr

acki

ng D

DS

A

B

C

• Lange / K&K counters• 10 GHz outputs• Different beat notes

prevent crosstalk

Synt

h.Sy

nth.

Synt

h.

Cou

nter

ϕAB

ϕBC

ϕCA

12

• INRIM 6-Ch TDDS• 100 MHz outputs• 2-sample covariance

3-cornered hat classical)

2-sample COV (new)

Experiment

Page 13: Stability Measurement of 3 CSOs with Tracking DDSs and Two

13

Page 14: Stability Measurement of 3 CSOs with Tracking DDSs and Two

Time Domain and ADEV 14

TDDS

CSOs drift

not re

moved

CSOsdrift removed

correlated thermal effects

Page 15: Stability Measurement of 3 CSOs with Tracking DDSs and Two

2-COV vs 3-CH 15

100 MHz outputs 6-Ch TDDS2COV Algorithm

≈10 GHz outputs HF beat notes (1…10 MHz)Lange/K&K Counters3CH Algorithm

10GHz —> 100 MHz synthesizer affects short-term (≤100 s) stability

2COV algorithm and 3CH give the same result

Page 16: Stability Measurement of 3 CSOs with Tracking DDSs and Two

Conclusions (1) 16

Achieved • Full validation of the 100

MHz output• 5–400 MHz TDDS range

New TDDS in progress • 12 channels•Composite clock, 2×10–14/τ

DDS limit•Cable-length compensation

at the output

ABCC (neg)

averaging limit 8×10 –16/τ 3/4

Ove

rlapp

ed A

DEV

A

B C B

AC

B

AB

2.1×10 –14/τ, two channels

τ, s

100 MHz carrier

Page 17: Stability Measurement of 3 CSOs with Tracking DDSs and Two

Conclusions (2)

♇☿♁

♃̧

♄☾ ̦ ♆⛢

semi-major axes

1-m

G s

hift

at g

nd le

vel

ABCC (neg)

8×10 –16/τ 3/4Ove

rlapp

ed A

DEV

A

B C B

AC

B

AB

2.1×10 –14/τ, two channels

17

τ, s

100 MHz carrier Oscillator • A probe for the Solar

System and for Fundamental Science• A (traveling) standard of

ADEV

TDDS • Defines the state of the

art in the measurement of ADEV