status of ssrf control system

41
STATUS OF SSRF CONTROL SYSTEM SSRF Control Group Shen liren 2009/2/13

Upload: jenna

Post on 16-Jan-2016

71 views

Category:

Documents


0 download

DESCRIPTION

STATUS OF SSRF CONTROL SYSTEM. SSRF Control Group Shen liren 2009/2/13. Introduction. Shanghai Synchrotron Radiation Facility (SSRF) Third-generation of synchrotron radiation light source SSRF consist of a 150MeV LINAC, a booster and a 3.5GeV electron storage ring. Beam current 300mA - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: STATUS OF SSRF CONTROL SYSTEM

STATUS OF SSRF CONTROL SYSTEM

SSRF Control GroupShen liren 2009/2/13

Page 2: STATUS OF SSRF CONTROL SYSTEM

Introduction

• Shanghai Synchrotron Radiation Facility (SSRF)– Third-generation of synchrotron radiation light source– SSRF consist of a 150MeV LINAC, a booster and a 3.5GeV electron

storage ring. – Beam current 300mA– Minimum emittance 4 nmrad– Lifetime >10 hours. – By using advanced insertion device, photon energy range is from 0.1

to 40keV

• SSRF control system is EPICS based control system designed for light source– Hardware (including network)– Software– Subsystems

• Inserting devices

Page 3: STATUS OF SSRF CONTROL SYSTEM

Control System Network

•1G Ethernet with 3 layer switcher •backbone reach 2G. •Full Network manage ability•Remote access and monitor•Backbone redundancy design to ensure reliability•Isolated from office network•VPN access (Nokia hardware)

•Sub system division by VALN•10.30.X.X/24

•Static 3 layer route table•Access List table for access control•Can be extended easily in future

PS system

BI system

Server system

OPI

Page 4: STATUS OF SSRF CONTROL SYSTEM

Hardware

• Not so much VME devices are used in SSRF– GE VME7050

– Motorola MV5500

• PLCs are widely used (Subsystems&PPS)– Yokogawa FM3

– SIEMENS S7-300

• Various kinds of serial devices– Vacuum, Power supply, motor controller, etc.

• All of devices are connected via Ethernet– Serial/Ethernet converter box (Moxa Nport5610)

• These make our system clean and simple

Page 5: STATUS OF SSRF CONTROL SYSTEM

VME System

• CPU:

– Motorola MV5500

– GE VMIVME-7050

VME 64X crateby Elma

4U 7Slots9U 12 Slots

Crate status can be monitored by Ethernet or serial port

Can be monitored with PV names (NetDrv)

Page 6: STATUS OF SSRF CONTROL SYSTEM

PLCs and Nport5610

• Serial to Ethernet converter

MOXA NPort 5610-16

Page 7: STATUS OF SSRF CONTROL SYSTEM

Software

• The SSRF control system is composed of EPICS toolkits– base v3.14.8.2/3.14.8.10

– extensions

– Cross-compile environment

• OS– Fedora core 7 (mainly)

– Ubuntu server 8.10/ CentOS5.2/ Scientific Linux

• OPI– EDM

• High level physics application– Matlab v2007a

– MCA/LabCA

– Accelerator Toolbox (AT) & middle layer was adopted

Page 8: STATUS OF SSRF CONTROL SYSTEM

EPICS Development Platform

• Two servers– HP Rack PC Server 580GG4, Xeon 3.0G/8G RAM/300G SCSI HD– One Master, the other Slave– NIS/NTP/NFS– RSYNC backup

– Local yum update/PXE server• EPICS environment

– OS• Linux FC7/Kernel 2.6x/GCC 4.xx

– EPICS base• 3.13.9/3.14.7/3.14.8.2/3.14.10

– Extensions• Edm/medm/SDDS/Archiver/Sequencer/etc.

– Cross-compiler environment• Vxworks 5.5.1• Monta-vista linux gcc3.4

Page 9: STATUS OF SSRF CONTROL SYSTEM

EPICS Drivers/Records

• EPICS Drivers– 5-10 types of new serial device drivers are modified based on netDev– Yokogawa Plcs uses netDev– Simens PLC uses driver from PSI– Stream device driver are used for several kinds of serial devices– Modbus driver from EPICS website– VME device drivers are copy from device manufactures or other labs

• Records– Bi/bo– ai/ao– Mbbi/mbbo– Subrutin/gensub– Waveform– Caculate– fanout

Page 10: STATUS OF SSRF CONTROL SYSTEM

Data Archive and Analysis Tools

• Distributed archive engine with center relational database

• Native XML data type with xml schema for data storage

• Developed a data retrieval system based XML Web Services to access the archived data.

• The system included bottom layer interface and interface applicably for accelerator physics as well as client samples exemplifying how to use the interface.

• Tools for users that can browse, retrieve and plot data

• By the client samples, user can development their own application.

• Memo: not be used now, just in test progress

Page 11: STATUS OF SSRF CONTROL SYSTEM

Data Archive and Analysis Tools

Page 12: STATUS OF SSRF CONTROL SYSTEM

Database

• The hardware platform using SAN & database server cluster

• Now we have tested on the MS SQL Server 2005 and will transfer to Oracle 10g with RAC later

Page 13: STATUS OF SSRF CONTROL SYSTEM

e-Log

• Based on center database system

• Using Web2.0 Blog system

• Support RSS

• Integrated with uniform authentication system

Page 14: STATUS OF SSRF CONTROL SYSTEM

Subsystems

• Three part of control system:– Linac, Booster, Storage Ring

– PS, Vacuum, Modulator, e-gun, Microwave, Transport Line (injector/extract ), Timing, MPS, RF

• Some subsystems statistics

Page 15: STATUS OF SSRF CONTROL SYSTEM

PS Control• Over 550 magnet power supplies

are used at SSRF

• All PS are digital controlled

• 2 types of digital controllers– SINAP self-developed digital PS

controller

• LINAC, Booster and Transport Lines

– PSI designed digital controller (Purchased from DLS Co., Ltd)

• Storage Ring and the Booster Ramp PS

• Performance of stability and reliability has been proved since SSRF commission

Page 16: STATUS OF SSRF CONTROL SYSTEM

Storage Ring PS Control

Page 17: STATUS OF SSRF CONTROL SYSTEM

Booster PS Control

Page 18: STATUS OF SSRF CONTROL SYSTEM

Vacuum Control

• Most devices are based on serial port– VARIAN Multi Gauge

– JJJvac Sputter Ion Pump Power Supply

– VAT valve

– RGA (Residual Gas Analyzer)

– Etc.

• PLCs– Yokogawa FAM3

Page 19: STATUS OF SSRF CONTROL SYSTEM

Vacuum Control GUI

Page 20: STATUS OF SSRF CONTROL SYSTEM

The Event Timing System• New event timing system

– Structure is simple used broadcasting method

– Low Jitter with distributed RF clock– Run on the EPCIS environment, base

3.14.x– Easy to extend

µç ÀÂ²Û ¼Ü

B L

B LC 0 1

C 0 2

C 0 3

C 0 4

C 0 5

C 0 6

C 0 7

C 0 8

C 0 9

C 1 0C 1 1

C 1 2

C 1 3

C 1 4

C 1 5

C 1 6

C 1 7

C 1 8

C 1 9

C 2 0

F A N 2 -1

F A N 2 -2

F A N 2 -3 F A N 2 -4

F A N 2 -5

E V GF A N 1

R F

F A N 2 -6

F A N 2 -7

S R 1

S R 2

S R 3

S R 4

S R 5

S R 6

S R 7

S R 8

S R 9

S R 1 0B R 2

B R 1

LN 1

S e c o nd le v e l brunc he s, ~ 2 5 0 m

Third le v e l brunc he s, ~ 6 0 m

S R : S to ra g e R ing lo c a l sta tio n ,a ssum ing 1 0B R : B o o ste r R ing lo c a l sta tio n ,a ssum ing 2L N : L ina c lo c a l sta tio n ,a ssum ing 1

F o uth le v e l brunc he s(pla stic fibe rs), ~ 3 5 m

• Compact network based on characteristic event system.

• All EVRs are placed on timing crates and BI local stations not being triggered devices

• All trigger outputs integrate with hardware interlocks

Page 21: STATUS OF SSRF CONTROL SYSTEM

M as ter4 9 9 .6 5 M Hz ~ 1 m c o ax ia l c ab les w ith p h as e s tab ilized

R F L o c al Stat i o n

L i nac C o ntr o l L o c al Stat i o nV

ME

-FO

UT

-12

WM

E-F

OU

T-12

G u n - T x -2 0 0( VM E 6 4 x )

VM E - E VR - 2 3 0(VM E 6 4 x )

B o o s te r R in g L o ca l S ta t io n

0 d b m

E VR -O T B- 2 0 0( VM E 6 4 x )

1 m M u ltim o d e f ib er

250m M

ultimode fiber60m

Multim

ode fiber

G u n - R c- 2 0 0

LVP E C L 4 9 9 .6 5 M Hz

P o w erd ev id er

T r an s f o rm er VM E - E VG - 2 3 0( VM E 6 4 x )

TTL 5 0 H z ·½ ²̈5 0 H z 2 2 0 VAC

- 3 d b

M as te r4 8 9 .6 5 M Hz

P o w erd ev id e r- 3 d b

L P F

+

-

L VP E C LBP F L P F

A/D

A/D

C P U D /A

Ö÷¶¨ ʱ »ú ¹ñµç Ô´ ²å ×ù

ÕýÏÒ ²̈ /·½ ²̈

5 0 H z 5 VAC

P h as e S h if t

VM E - E VR - 2 3 0( VM E 6 4 x )

VM E - E VR - 2 3 0( VM E 6 4 x )

E VR -T T B- 2 0 0( VM E 6 4 x )

3 1 0 m M ult im o de F ibe r

EVR - O E B-2 0 0

EVR - O E B-2 0 0

EVR - O E B-2 0 0

EVR - O E B-2 0 0

LA -BI:BP M -Gu n t rig 02LA -BI:BCM -Gu n t rig 03LA -BI:A D C-Gu n t rig 04LA -BI:CM R-Gu n t rig 05LA -BI:O S G-Gu n t rig 06

LA -CN :EVR1Gu n

WM

E-F

OU

T-12

VM E - EVR - 2 3 0( VM E 6 4 x )

E VR -O T B- 2 0 0( VM E 6 4 x )

VM E - E VR - 2 3 0( VM E 6 4 x )

E VR - O T B-2 0 0(VM E 6 4 x )

E VR -O E B- 2 0 0

E VR -O E B- 2 0 0

E VR -O E B- 2 0 0

E VR -O E B- 2 0 0

BS -CN :H 01EVR1ExtK ic k

VM E - E VR - 2 3 0(VM E 6 4 x )

E VR - T T B- 2 0 0(VM E 6 4 x )

WM

E-F

OU

T-12

VM E - E VR - 2 3 0(VM E 6 4 x )

E VR - O T B- 2 0 0( VM E6 4 x )

VM E - E VR - 2 3 0( VM E 6 4 x )

E VR - T T B-2 0 0( VM E 6 4 x )

E VR - O E B- 2 0 0

E VR - O E B- 2 0 0

BS -BI:H 01EVR1:Brf1

WM

E-F

OU

T-12

VM E - EVR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

EVR - O E B-2 0 0

EVR - O E B-2 0 0

S R-CN :H 20EVR1:In jK ic k1

EVR - O E B-2 0 0

F A N 1

F A N 2-7

F A N 2-9

F A N 2-8

F A N 2-6

Sto r ag e R i ng L o c al Stat i o ns

WM

E-F

OU

T-12

F A N 2-1

WM

E-F

OU

T-12

F A N 2-3

S R-BI:H 01EVR1:S rf1

2m coaxial cable

3 5 m M u ltim o d e f ib er

35m plastic fiber

S R-CN :H 20EVR1:In jK ic k2

S R-CN :H 20EVR1:In jK ic k3

S R-CN :H 20EVR1:In jK ic k4

S R-CN :H 20EVR1:In jS e p t1

S R-CN :H 20EVR1:In jS e p t2

S R-BI:H 01EVR1:S rf1S R-BI:H 01EVR1:S in j1S R-BI:H 01EVR1:S in j2S R-BI:H 01EVR1:S in j3S R-BI:H 01EVR1:4K H z

S R-BI:? 01EVR1:S rf1S R-BI:? 01EVR1:S rf1S R-BI:? 01EVR1:S in j1S R-BI:? 01EVR1:S in j2S R-BI:? 01EVR1:S in j3S R-BI:? 01EVR1:500MS R-BI:H 03EVR1:S rf1

S R-BI:H 03EVR1:S in j1S R-BI:H 03EVR1:S in j2S R-BI:H 03EVR1:4K H zS R-BI:H 05EVR1:S rf1S R-BI:H 05EVR1:S rf1S R-BI:H 05EVR1:S in j1S R-BI:H 05EVR1:S in j2S R-BI:H 05EVR1:S in j3S R-BI:H 05EVR1:4K H z

WM

E-F

OU

T-12

F A N 2-2

S R-BI:H 07EVR1:S rf1S R-BI:H 07EVR1:S rf1S R-BI:H 07EVR1:S in j1S R-BI:H 07EVR1:S in j2S R-BI:H 07EVR1:4K H zS R-BI:H 09EVR1:S rf1S R-BI:H 09EVR1:S rf1S R-BI:H 09EVR1:S in j1S R-BI:H 09EVR1:S in j2S R-BI:H 09EVR1:S in j3S R-BI:H 09EVR1:4K H z

S R-BI:H 11EVR1:S rf1S R-BI:H 11EVR1:S rf1S R-BI:H 11EVR1:S in j1S R-BI:H 11EVR1:S in j2S R-BI:H 11EVR1:4K H z

WM

E-F

OU

T-12

F A N 2-4

S R-BI:H 13EVR1:S rf1S R-BI:H 13EVR1:S rf1S R-BI:H 13EVR1:S in j1S R-BI:H 13EVR1:S in j2S R-BI:H 13EVR1:S in j3S R-BI:H 13EVR1:4K H z

S R-BI:H 15EVR1:S rf1S R-BI:H 15EVR1:S rf1S R-BI:H 15EVR1:S in j1S R-BI:H 15EVR1:S in j2S R-BI:H 15EVR1:4K H z

WM

E-F

OU

T-12

F A N 2-5

S R-BI:H 17EVR1:S rf1S R-BI:H 17EVR1:S rf1S R-BI:H 17EVR1:S in j1S R-BI:H 17EVR1:S in j2S R-BI:H 17EVR1:S in j3S R-BI:H 17EVR1:4K H zS R-BI:H 19EVR1:S rf1S R-BI:H 19EVR1:S rf1S R-BI:H 19EVR1:S in j1S R-BI:H 19EVR1:S in j2S R-BI:H 19EVR1:4K H z

60m M

ultimode fiber

60m M

ultimode fiber

60m M

ultimode fiber

60m M

ultimode fiber

BS -CN :H 01EVR2P S B1BS -CN :H 01EVR2P S B2BS -CN :H 01EVR2P S Q FBS -CN :H 01EVR2P S Q DBS -CN :H 01EVR2P S S DBS -CN :H 01EVR2P S S F

BS -CN :H 01ExtEVR1S e p t1

BS -CN :H 01EVR1ExtS e p t2BS -CN :H 01ExtEVR1S e p t3

BS -CN :H 01EVR1ExtBu mp 1BS -CN :H 01EVR1ExtBu mp 2

BS -CN :H 01EVR1ExtBu mp 3 BS -BI:H 01EVR1:Brf2BS -BI:H 01EVR1:Bin j1BS -BI:H 01EVR1:Bin j2BS -BI:H 01EVR1:Bin j3BS -BI:H 01EVR1:Bin j4BS -BI:H 01EVR1:Bin j5

BS -CN :H 02In jK ic k

BS -CN :H 02In jS e p t

BS -CN :H 02RFBS -BI:H 02EVR1:Brf1BS -BI:H 02EVR1:Brf2BS -BI:H 02EVR1:Bin j1BS -BI:H 02EVR1:Bin j2BS -BI:H 02EVR1:Bin j3

LA -CN :EVR1S a mp 1

LA -CN :EVR1S a mp 2

LA -CN :EVR1S a mp 3LA -CN :EVR1P M o d 1

LA -CN :EVR1M o d 1

LA -CN :EVR1P M o d 2LA -CN :EVR1M o d 2

60m M

ultimode fiber 60m

Multim

ode fiber60m

Multim

ode fiber60m

Multim

ode fiber

250m M

ultimode fiber

VM E - EVR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

VM E - EVR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

VM E - EVR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

VM E - EVR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

VM E - EVR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

VM E - E VR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

VM E - E VR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

S R-BI:H 03EVR1:S rf2

VM E - EVR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

VM E - EVR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

VM E - E VR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

VM E - E VR - 2 3 0( VM E 6 4 x )

E VR - O T B- 2 0 0( VM E 6 4 x )

S R R F L o ca l S ta t io n

Hardware Schematic

Page 22: STATUS OF SSRF CONTROL SYSTEM

Timing System

Page 23: STATUS OF SSRF CONTROL SYSTEM

Performance

• The RMS jitter of gun trigger relative to RF reference is 10.72ps, which includes the jitter of e-gun and oscilloscope.

• The RMS jitters of other injection and extraction trigger are less the 30ps.

• Performance are satisfied with the requirements of physical design.

Page 24: STATUS OF SSRF CONTROL SYSTEM

MPS

• 3 parts :– Accelerator & beam line device interlock– Utility system– Safety system

• Hierarchy– The whole machine layer– Linac, boost, ring layer– Sub system layer – Device layer

P L C

P L CP L C

P L C

P L C

P L C

I O C

I O C

I O C

I O C

I O C

Ö±Ïß

ÔöÇ¿ Æ÷

·ø Éä ·À »¤ ϵ ͳ

¹« ÓÃÉè ʩϵ ͳ

Êø Ïß Õ¾Áª Ëø ϵ ͳP L C ר ÓÃͨ Ѷ·½ ʽ

Áª Ëø ÐźÅ

·½ ʽ´ý ¶¨

¶¨ ʱ Æ÷

¶¨ ʱ Æ÷

¶¨ ʱ Æ÷

¶¨ ʱ Æ÷

SR 9

B R 1

B R 2

L R

P L C Êä ³ö ´¥ ·¢ Áª Ëø

M P S S w itc h

2# IP1# IP

2# IP

1# IP

O P I

Page 25: STATUS OF SSRF CONTROL SYSTEM

MPS GUI

Page 26: STATUS OF SSRF CONTROL SYSTEM

RF System

• Linac microwave system is designed by SSRF

• Thales design RF system for SSRF

• Integrated with EPICS system and can be controlled at center control room

Page 27: STATUS OF SSRF CONTROL SYSTEM

Linac RF Control

Page 28: STATUS OF SSRF CONTROL SYSTEM

RF for Booster and Storage Ring

RF Amplifier & Klystron

Booster 180Kw

Storage Ring300Kw X 3

Epics IOCMVME 5500

Hytec I/O boardsFully Isolated -

Interface

Page 29: STATUS OF SSRF CONTROL SYSTEM

RF and Timing Event DistributionMaster Signal

Generater

RF SignalDistrubution

Unit

Timing & Eent Signal

Generator

Fiber (Om3 ) Distribution

Unit

Page 30: STATUS OF SSRF CONTROL SYSTEM

RF GUI

Storage Ring Booster

Page 31: STATUS OF SSRF CONTROL SYSTEM

Remote Management

•Video & Audio system based on network•Device management•Remote monitor: VME ,Switch, UPS etc•Network management system

•Based on SNMP•Email 、 SMS alarm system (Next)

Page 32: STATUS OF SSRF CONTROL SYSTEM

Center Control Room

• 18 HP7700 OPI PCs in the Control Room

• All the OPIs run on the Linux Fedora 7 and in ssrf.ac.cn domain.

• OPI system running at control system has uniform runtime environment.

• The edm GUI files are stored on NFS file server and all the client can access it by a start script.

Page 33: STATUS OF SSRF CONTROL SYSTEM

Control Group SSRF CN, Shanghai, 2008

Page 34: STATUS OF SSRF CONTROL SYSTEM

Inserting Device (ID)

• More than 60 beam lines could be installed in the ring• 26 of them will be based on insertion devices• First stage will also include 7 initial beam lines and experimental

stations– macromolecular crystallography– XAFS– hard X-ray microfocus– X-ray imaging and biomedical application– soft X-ray spectromicroscopy– diffraction– small angle X-ray scattering respectively

• 5 beam lines are based on insertion devices, 2 are based on bending magnets– 2 wigglers, finished– 1 elliptically polarizing undulator (EPU) , finished– 2 in-vacuum undulators (1 finished, 1 will be finished in this month)

Page 35: STATUS OF SSRF CONTROL SYSTEM
Page 36: STATUS OF SSRF CONTROL SYSTEM

Wiggler and EPU control

Page 37: STATUS OF SSRF CONTROL SYSTEM

Embedded EPICS Controller of IDs• We use embedded EPICS controller to implement ID control

– DI/DO interfaces– 2 Ethernet ports/ 1 RS232 debug ports/PCMCIA wireless card– Intel xscale CPU– CF card storage support

• Full IOC core– Base 3.14.10 cross compile, CF card storage

• Additional programming for converting Ethernet/serial (Full duplex)• Three types of EPICS applications running on it

– S7 PLC driver– Power supply driver– PC Monitor application

• Running stability– Kernel version 2.6– About 15% CPU loading, several tens of Mega storage– Full ioc core supported including sequencer– Startup ioc via /etc/inittab

Page 38: STATUS OF SSRF CONTROL SYSTEM

Embedded EPICS Controller

Page 39: STATUS OF SSRF CONTROL SYSTEM

Conclusion

• SSRF control system is another successful application of EPICS

• We benefit greatly from other control groups, especially KEKB control group

• Ethernet and netDev (J.Odagiri) make our control architecture simple and clean

• The control system was successful during the machine commissioning, has reached design goal

• We hope can do some enhanced works in the future and contribute to EPICS collaboration

Control Group SSRF CN, Shanghai, 2008

Page 40: STATUS OF SSRF CONTROL SYSTEM

Control Group SSRF CN, Shanghai, 2008

Thanks

Page 41: STATUS OF SSRF CONTROL SYSTEM

Design Parameters

• Controller Manages– 4 Gap Servo Motor – 2 Phase Shift Servo Motor– 6 Heidenhain linear absolute encoders – 24 Limit and Kill Switches– 联锁信号– 4 Correction Coils– Software Interface

• 2 in-vacuum undulator– Step motor– Diffirent encoders and so on

Wiggler最小磁隙 13 ( 16 ) mm 最大使用磁隙 50 mm最大可拉开磁隙 150mm最大磁隙调节速度 4 mm/sec打开磁隙从最小到最大~ 67 sec打开磁隙从最小到最大工作磁隙~19sec磁隙最小间隙必须有限位开关通过网络与加速器控制接口.1 um 绝对值光栅尺光电限位开关 & 机电刹车开关

EPU :6 个伺服电机( 4 个磁隙控制, 2 个相位控制)最小磁隙 ~30 mm 最大使用磁隙 85 mm 最大可拉开磁隙 100mm最大磁隙调节速度 4 mm/sec≈10 sec Min to Max Gap Time最小磁隙调节分辨率 5m 最大磁场极化相位调节速度 30s( 从线极化调至圆极化 )相位移动范围 ±55mm磁隙最小间隙必须有限位开关 通过网络与加速器控制接口.1 um 绝对值光栅尺光电限位开关 & 机电刹车开关