steel designing project

84
 [Year] S MAITRA [Company name] [Date] [Document title]

Upload: subhajit-maitra

Post on 04-Jun-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 1/84

 

[Year]

S MAITRA

[Company name]

[Date]

[Document title]

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 2/84

 1

We are supposed to design an Industrial truss in this particular project. It

would be of a specified kind. Here are some given data according to which I am supposeddesign the particular truss. They are given below → 

General data:

  Height of the truss = (3.6+.2y) m [where y = my position in the group]

  Length of the truss = (15+N) m [where N = my group no]

Hence my general data is

  Height of the truss = (3.6+.2×2) m = 4 m

  Length of the truss = (15+6) m = 21 m

STEEL DESIGNING PROJECT

TEACHER - B.K.R SIR• STUDENT - SUBHAJIT MAITRA

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 3/84

 2

From the assumption of the angle shown in the fig. we have,

( )

 

( )=

 

 Now,

From  we have,

()

  [Where, L=AF] …………. (1) 

Again,

From  we have,

()

  [Where, L=AF] …………. (2) 

Here, AB =√ 

= 5.62.

 Now,

()()

   

()()

 

()

()  

() () () ()

()  

()  

()  

()  

 

CALCULATION OF ANGLE:-

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 4/84

 3

We have,

()  

   

   

  Dead Load due to concr ete asbestos sheeting: -Unit load=.13KN

Effective area of point B, C, D, E, F, G, H

=2.81×3× cos(20.85°)=7.88 m2

Effective area of point E

=7.88 m2

Effective area of point A, I

=1.71×3× cos(20.85°)=4.8 m2 

Hence,

Dead load due to sheeting → 

@ Point B, C, D, E, F, G, H = 7.88×.13=1.03KN

@ Point B, C, D, E, F, G, H = 7.88×.13=1.03KN

@ Point B, C, D, E, F, G, H = 4.8×.13=.624KN

  Dead Load due to purl in: -We are using MC-100

Unit load=.098KN

Hence,

Dead load due to purlin → 

@ All points except E = .098×3=.294KN

@ Point E= .294×2=.588KN

  Dead Load due to pur li n: -Total length of tie=21m

DEAD LOAD CALCULATION

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 5/84

 4

Total length of rafter=2×11.24m=22.48m

()  

 

 

 

() 73

5.73×2=11.46m

 

( )  

 

 

 

Sin48.88°=

 

KE=6.33m

 

 

() 

BJ=2.81×tan20.35°=1.05m

 

 

 

 CK=5.62tan20.35°=2.1m

 

Hence total length of truss

= (4.2+4.2+12.66+21+22.48+11.46+9.54) m=85.54m

Total weight

= (2×85.54×.08) =13.686m

This total load will be divided to each hinge of the rafter. Now as we can see from the fig of

the truss that hinge point A & I will bear half the load than the other points. Because the

effective area of the other points is double than the effective area of the points A & I.

Hence, this total load will be distributed to the 8 points of the rafter.

 

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 6/84

 5

Hence total Dead Load → 

  @ node A & I =(.867+.294+.624)×1.05=1.87KN

  @ node B ,C ,D ,F ,G & I =(1.03+.294+1.733)×1.05=3.21KN

  @ node E =(1.03+.588+1.733)×1.05=3.52KN

From IS-875-2007 we have,

[Where θ = angle of inclination of the roof] 

Hence,

  The total Live Load →

  @ nodes A & I = 0.533 =2.558 KN/m2 

  @ all other nodes = 0.533 =5.1168 KN/m2 

LIVE LOAD CALCULATION  

The formula• The live load intensity on the roof

•  =0.75-0.02(-10)KN/m2 

The result

• The live load intensity on the roof

• =0.75-0.02(20.85-10)KN/m2=0.533KN/m2 

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 7/84

 6

My roll no = 27

Hence my city will be Bangalore.

So my basic wind speed according to initial consideration V b = 33 m/s

 Design wind speed

Here,

k 1=1

The total height = (4+4.5) =8.5m

Maximum dimension = 21mAccording to our consideration our building is at category-4 and class-2.

k 2=.076

 Now, considering the upwind sped angle to be less than 3° we get,

k 3=1

 

Wind load calculation

Vz= Vbk1k2k3 

 Vz= Vbk1k2k3=3310.761=25.1m/s

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 8/84

 7

As our opening is less than less than 5%(<5%)

We will take C pi=0.2

 Now,

w=21 m

h=4.5m

 

 

Hence,

WIND ANGLE

=0°

WIND ANGLE

=90°

EF GH EG FH

20° -0.4 -0.4 -0.7 -0.6

30° 0 -0.4 -0.7 -0.6

20.85° -0.366 -0.4 -0.7 -0.6

C pi=0.2 WIND ANGLE

=0°

WIND ANGLE

=90°

C pe - C pi 

EF GH EG FH

-0.2-0.366

=-0.566

-0.2-0.4

=-0.6

-0.7-0.2

=-0.9

--0.6-0.2

=-0.8

C pi=-0.2 WIND ANGLE

=0°

WIND ANGLE

=90°

C pe - C pi 

EF GH EG FH

0.2-0.366

=-0.166

0.2-0.4

=-0.2

-0.7+0.2

=-0.5

--0.6+0.2

=-0.4

 Now, from the IS-875-1984 we have,

Wind load F= (C pe - C pi)Apa 

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 9/84

 8

FOR WIND ANGLE θ=0°  

Point Influence

Area (m2

)

Wind angle,

Θ=0° 

 pa  Fz 

C pi=0.2 C pi=

-0.2

0.387 C pi=0.2 C pi=

-0.2

A 4.8 -0.566 -0.166 0.387 -1.03 -0.3

B 7.88 -0.566 -0.166 0.387 -1.68 -0.5

C 7.88 -0.566 -0.166 0.387 -1.68 -0.5

D 7.88 -0.566 -0.166 0.387 -1.68 -0.5

E 3.94 -0.566 -0.166 0.387 -0.84 -0.25

E 3.94 -0.6 -0.2 0.387 -0.9 -0.3

F 7.88 -0.6 -0.2 0.387 -1.79 -0.6

G 7.88 -0.6 -0.2 0.387 -1.79 -0.6

H 7.88 -0.6 -0.2 0.387 -1.79 -0.6

I 4.8 -0.6 -0.2 0.387 -1.1 -0.36

FOR WIND ANGLE θ=90° 

 

FOR EG  

Point Influence

Area (m2)

Wind angle,

Θ=0° 

 pa  Fz 

C pi=0.2 C pi=

-0.2

0.387 C pi=0.2 C pi=

-0.2

A 4.8 -0.9 -0.5 0.387 -1.63 -0.91

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 10/84

 9

B 7.88 -0.9 -0.5 0.387 -2.68 -1.5

C 7.88 -0.9 -0.5 0.387 -2.68  -1.5 

D 7.88 -0.9 -0.5 0.387 -2.68  -1.5 

E 3.94 -0.9 -0.5 0.387 -1.38 -0.75 

E 3.94 -0.9  -0.5  0.387 -1.38 -0.75 

F 7.88 -0.9  -0.5  0.387 -2.68  -1.5 

G 7.88 -0.9  -0.5  0.387 -2.68  -1.5 

H 7.88 -0.9  -0.5  0.387 -2.68  -1.5 

I 4.8 -0.9  -0.5  0.387 -1.63 -0.91

FOR WIND ANGLE θ=90°  

FOR FH

Point Influence

Area (m2)

Wind angle,

Θ=0° 

 pa  Fz 

C pi=0.2 C pi=

-0.2

0.387 C pi=0.2 C pi=

-0.2

A 4.8 -0.8 -0.4 0.387 -1.45 -0.72

B 7.88 -0.8 -0.4 0.387 -2.38 -1.19

C 7.88 -0.8 -0.4 0.387 -2.38  -1.19 

D 7.88 -0.8 -0.4 0.387 -2.38  -1.19 

E 3.94 -0.8 -0.4 0.387 -1.29  -0.6 

E 3.94 -0.8 -0.4 0.387 -1.29  -0.6 

F 7.88 -0.8 -0.4 0.387 -2.38  -1.19 

G 7.88 -0.8 -0.4 0.387 -2.38  -1.19 

H 7.88 -0.8 -0.4 0.387 -2.38  -1.19 

I 4.8 -0.8 -0.4 0.387 -1.45 -0.72

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 11/84

 10

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 12/84

 11

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 13/84

 12

DEAD LOAD ANALYSIS

Plan length of AI=21m

Hence, plan length of AB=

2.625m

Vertical length of AB = 1m

 Now we will evaluate & find out the member loads considering each points.

As the structure is having symmetrical loading, then → 

 R A=R I=

 KN

Consideri ng Poin t A: -

 V=0,

FAB FAJ=-R A+1.87

LOAD ANALYSIS 

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 14/84

 13

 FAB  FAJ= -11.39

 H=0,

 FAB+ FAJ= 0

 FAB  FAJ= 0

FAB=-32.745KN

FAJ=30.647KN

Consideri ng Poin t B: -

 V=0,

 FBC  FBJ= FAB 

 FBC  FBJ= 8.445

 H=0,

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 15/84

 14

 FBC + FBJ = FAB  

 FBC + FBJ= 30.616

FBC=31.6KN

FBJ=3 KN

Consideri ng Poin t J:-

 V=0,

 FJC  FJK = FJA  FJB 

 FJC  FJK =  

 H=0,

 FJC+ FJK = FJB  FJB 

 FJC+ FJK =  

FJC=4.318KN

FJK =26.328 KN

Taking a section 11’ 

 M=0,

FKL ( )  

 FKL=17.47KN

Consideri ng Poin t K: -

 V=0,

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 16/84

 15

 FKN  FKC = FJK  

 FKN  FKC =  

 H=0,

 FKN + FKC= FJK   FKL 

 FKN + FKC=  

FKN=10.26KN

FKC=8.91 KN

Considering Point C:-

 V=0,

 FCD  FCN= FCK   FCB  FCJ  

 FCD  FCN=  

 H=0,

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 17/84

 16

 FCD+ FCN= FCB  FCJ FCK  

 FCD+ FCN=  

FKN=38.32KN

FKC=12.713 KN

Consideri ng Poin t D: -

 V=0,

 FDE  FDN= FDC  

 FDE  FDN=  

 H=0,

 FDE + FDN = FDC 

 FDE + FDN =  

FKN=KN

FKC=3 KN

Consideri ng Poin t N: -

 V=0,

 FDE  FDN= FDC  

 FDE  FDN=  

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 18/84

 17

LIVE LOAD ANALYSIS 

 H=0,

 FDE

+ FDN

= FDC

 

 FDE + FDN =  

FKN=KN

FKC=3 KN

In this case also, 

Plan length of AI=21m

Hence, plan length of AB=

2.625m

Vertical length of AB = 1m

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 19/84

 18

 Now we will evaluate & find out the member loads considering each points.

As the structure is having symmetrical loading, then → 

 R A=R I=

 KN

Consideri ng Poin t A: -

 V=0,

 FAB  FAJ= -R A+1.87

 FAB  FAJ=  

 H=0,

 FAB+ FAJ= 0

 FAB  FAJ= 0

FAB=51.53KN

FAJ=48.22KN

Consideri ng Poin t B: -

 V=0,

 FBC  FBJ= FAB 

 FBC  FBJ= 13.22

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 20/84

 19

 H=0,

 FBC + FBJ = FAB   FBC + FBJ= 48.06

FBC=49.68KN

FBJ=4.78 KN

Consideri ng Poin t J:-

 V=0,

 FJC  FJK = FJA  FJB 

 FJC  FJK =  

 H=0,

 FJC+ FJK = FJB  FJB 

 FJC+ FJK =  

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 21/84

 20

FBC=6.72KN

FBJ=52.8 KN

Taking a section 11’ 

 M=0,

FKL ( )  

 FKL=27.22KN

Consideri ng Poin t K: -

 V=0,

 FKN  FKC = FJK  

 FKN  FKC =  

 H=0,

 FKN + FKC= FJK   FKL 

 FKN + FKC=  

FKN=47.72KN

FKC=42.19 KN

Considering Point C:-

 V=0,

 FCD  FCN= FCK   FCB  FCJ  

 FCD  FCN=  

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 22/84

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 23/84

 22

 H=0,

 FDE + FDN = FDC 

 FDE + FDN =  

FKN=KN

FKC=4.78 KN

Consideri ng Poin t N: -

 V=0,

 FDE  FDN= FDC  

 F NE=KN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 24/84

 23

WIND LOAD ANALYSIS

WL θ=90° EG Cpi=0.2 

In this case also, Plan length of AI=21m

Hence, plan length of AB=

2.625m

Vertical length of AB = 1m

 Now we will evaluate & find out the member loads considering each points.

As the structure is having symmetrical loading, then → 

 R A=R I=

 KN

Consideri ng Poin t A: -

 V=0,

 FAB  FAJ= R A1.63 

 H=0,

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 25/84

 24

 FAB+ FAJ= 1.63 

FAB=25.22KN

FAJ=23KN

Consideri ng Poin t B: -

 V=0,

 FBC  FBJ=FAB  

 H=0,

 FBC + FBJ = FAB  

FBC=KN

FBJ= KN

Consideri ng Poin t J:-

 V=0,

 FJC  FJK = FJA  FJB 

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 26/84

 25

 H=0,

 FJC+ FJK = FJB  FJA 

FBC=KN

FBJ= KN

Taking a section 11’ 

 M=0,

FKL

(

)

 

 FKL=11.3KN

Consideri ng Poin t K: -

 V=0,

 FKN  FKC = FJK  

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 27/84

 26

 H=0,

 FKN + FKC= FJK   FKL 

FKN=33.44KN

FKC= KN

Considering Point C:-

 V=0,

 FCD  FCN=FCK   FCB  FCJ  

 H=0,

 FCD+FCN= FCB  FCJ FCK   

FKN=70.1KN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 28/84

 27

FKC=97.82 KN

Consideri ng Poin t D: -

 V=0,

 FDE  FDN= FDC  

 H=0,

 FDE + FDN = FDC  

FKN= 

FKC= KN

Consideri ng Poin t N: -

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 29/84

 28

WIND LOAD ANALYSIS

WL θ=90° EG C  pi = -0.2

[Cite your source here.]

 V=0,

 FDE  FDN= F NC F NK   

 F NE=KN

In this case also, 

Plan length of AI=21m

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 30/84

 29

Hence, plan length of AB=

2.625m

Vertical length of AB = 1m

 Now we will evaluate & find out the member loads considering each points.

As the structure is having symmetrical loading, then → 

 R A=R I=

 KN

Consideri ng Poin t A: -

 V=0,

 FAB  FAJ= R A0.91 

 H=0,

 FAB+ FAJ= 0.91 

FAB=14.1KN

FAJ=12.84KN

Consideri ng Poin t B: -

 V=0,

 FBC  FBJ=FAB  

 H=0,

 FBC + FBJ = FAB  

FBC=KN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 31/84

 30

FBJ= KN

Consideri ng Poin t J:-

 V=0,

 FJC  FJK = FJA  FJB 

 H=0,

 FJC+ FJK = FJB  FJA 

FBC=KN

FBJ= KN

Taking a section 11’ 

 M=0,

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 32/84

 31

FKL( )  

 FKL=6..3KN

Consideri ng Poin t K: -

 V=0,

 FKN  FKC = FJK  

 H=0,

 FKN + FKC= FJK   FKL 

FKN=KN

FKC= KN

Considering Point C:-

 V=0,

 FCD  FCN=FCK   FCB  FCJ  

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 33/84

 32

 H=0,

 FCD+FCN= FCB  FCJ FCK   

FKN=KN

FKC= KN

Consideri ng Poin t D: -

 V=0,

 FDE  FDN= FDC  

 H=0,

 FDE + FDN = FDC  

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 34/84

 33

WIND LOAD ANALYSIS

WL θ=90° FH C  pi = 0.2 

[Cite your source here.]

FKN=KN

FKC= KN

Consideri ng Poin t N: -

 V=0,

 FDE  FDN= F NC F NK   

 F NE=KN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 35/84

 34

In this case also, 

Plan length of AI=21m

Hence, plan length of AB=

2.625m

Vertical length of AB = 1m

 Now we will evaluate & find out the member loads considering each points.

As the structure is having symmetrical loading, then → 

 R A=R I=

 KN

Consideri ng Poin t A: -

 V=0,

 FAB  FAJ= R A1.45 

 H=0,

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 36/84

 35

 FAB+ FAJ= 1.45 

FAB=22.37KN

FAJ=20.39KN

Consideri ng Poin t B: -

 V=0,

 FBC  FBJ=FAB  

 H=0,

 FBC + FBJ = FAB  

FBC=KN

FBJ=2.38 KN

Consideri ng Poin t J:-

 V=0,

 FJC  FJK = FJA  FJB 

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 37/84

 36

 H=0,

 FJC+ FJK = FJB  FJA 

FJC=KN

FJK = KN

Taking a section 11’ 

 M=0,

FKL ( )  

 FKL=8.1KN

Consideri ng Poin t K: -

 V=0,

 FKN  FKC = FJK  

 H=0,

 FKN + FKC= FJK   FKL 

FKN=KN

FKC= KN

Considering Point C:-

 V=0,

 FCD  FCN=FCK   FCB  FCJ  

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 38/84

 37

 H=0,

 FCD+FCN= FCB  FCJ FCK   

FKN=KN

FKC= KN

Consideri ng Poin t D: -

 V=0,

 FDE  FDN= FDC  

 H=0,

 FDE + FDN = FDC  

FDE=KN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 39/84

 38

WIND LOAD ANALYSIS

WL θ=90° FH C  pi = - 0.2

[Cite your source here.]

FDN= KN

Consideri ng Poin t N: -

 V=0,

 FDE  FDN= F NC F NK   

 F NE=KN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 40/84

 39

In this case also, 

Plan length of AI=21m

Hence, plan length of AB=

2.625m

Vertical length of AB = 1m

 Now we will evaluate & find out the member loads considering each points.

As the structure is having symmetrical loading, then → 

 R A=R I=

 KN

Consideri ng Poin t A: -

 V=0,

 FAB  FAJ= R A0.72 

 H=0,

 FAB+ FAJ= 0.72 

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 41/84

 40

FAB=11.28KN

FAJ=10.29KN

Consideri ng Poin t B: -

 V=0,

 FBC  FBJ=FAB  

 H=0,

 FBC + FBJ = FAB  

FBC=KN

FBJ=1.2 KN

Consideri ng Poin t J:-

 V=0,

 FJC  FJK = FJA  FJB 

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 42/84

 41

 H=0,

 FJC+ FJK = FJB  FJA 

FJC=KN

FJK = KN

Taking a section 11’ 

 M=0,

FKL( )  

 FKL=5.1KN

Consideri ng Poin t K: -

 V=0,

 FKN  FKC = FJK  

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 43/84

 42

 H=0,

 FKN + FKC= FJK   FKL 

FKN=KN

FKC= KN

Considering Point C:-

 V=0,

 FCD  FCN=FCK   FCB  FCJ  

 H=0,

 FCD+FCN= FCB  FCJ FCK   

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 44/84

 43

FCD=KN

FCN= KN

Consideri ng Poin t D: -

 V=0,

 FDE  FDN= FDC  

 H=0,

 FDE + FDN = FDC  

FDE=KN

FDN= KN

Consideri ng Poin t N: -

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 45/84

 44

 WIND LOAD ANALYSIS

Θ=0°

[Cite your source here.]

 V=0,

 FDE  FDN= F NC F NK   

  F NE=KN

In this case also, 

Plan length of AI=21m

Hence, plan length of AB=

2.625m

Vertical length of AB = 1m

 Now we will evaluate & find out the member loads considering each points.

Here, we get R A=6.785 KN

R B=6.985 KN

Consideri ng Poin t A: -

 V=0,

 FAB  FAJ= R A1.03 

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 46/84

 45

 H=0,

 FAB+ FAJ= 1.03 

FAB=15.76KN

FAJ=13.9KN

Consideri ng Poin t B: -

 V=0,

 FBC  FBJ=FAB  

 H=0,

 FBC + FBJ = FAB  

FBC=KN

FBJ= KN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 47/84

 46

Consideri ng Poin t J:-

 V=0,

 FJC  FJK = FJA  FJB 

 H=0,

 FJC+ FJK = FJB  FJA 

FJC=KN

FJK =

 KN

Taking a section 11’ 

 M=0,

FKL ( )  

 FKL=12.4KN

Consideri ng Poin t K: -

 V=0,

 FKN  FKC = FJK  

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 48/84

 47

 H=0,

 FKN + FKC= FJK   FKL 

FKN=KN

FKC= KN

Considering Point C:-

 V=0,

 FCD FCN=FCK   FCB  FCJ  

 H=0,

 FCD+FCN= FCB  FCJ FCK   

FCD=KN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 49/84

 48

FCN= KN

Consideri ng Poin t D: -

 V=0,

 FDE  FDN= FDC  

 H=0,

 FDE + FDN = FDC  

FDE= 

FDN= KN

Consideri ng Poin t N: -

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 50/84

 49

 WIND LOAD ANALYSIS

Θ=0°

[Cite your source here.]

 V=0,

 FDE  FDN= F NC F NK   

 F NE=KN

In this case also, 

Plan length of AI=21m

Hence, plan length of AB=

2.625m

Vertical length of AB = 1m

 Now we will evaluate & find out the member loads considering each points.

Here, we get R A=2.03 KN

R B=2.18 KN

Consideri ng Poin t A: -

 V=0,

 FAB  FAJ= R A0.3 

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 51/84

 50

 H=0,

 FAB+ FAJ= 0.3  FAB=5.79KN

FAJ=4.89KN

Consideri ng Poin t B: -

 V=0,

 FBC  FBJ=FAB  

 H=0,

 FBC + FBJ = FAB  

FBC=KN

FBJ= KN

Consideri ng Poin t J:-

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 52/84

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 53/84

 52

 H=0,

 FKN + FKC= FJK   FKL 

FKN=KN

FKC= KN

Considering Point C:-

 V=0,

 FCD FCN=FCK   FCB  FCJ  

 H=0,

 FCD+FCN= FCB  FCJ FCK   

FCD=KN

FCN= KN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 54/84

 53

Consideri ng Poin t D: -

 V=0,

 FDE  FDN= FDC  

 H=0,

 FDE + FDN = FDC  

FDE= 

FDN= KN

Consideri ng Poin t N: -

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 55/84

 54

 V=0,

 FDE  FDN= F NC F NK   

 F NE=KN

 factored compressive load =335.175 KN

The angle belongs to buckling class ‘c’(from IS -800-2007,table 10). f cd varies from 227 to 24.3 MPa

depending on ⁄  .

Assuming f cd =100 N/mm2 

 Ac=

mm

2

Since we will be using double angle on the same side of the gusset plate.

DESIGNING OF MEMBERS

DESIGN OF MEMBER cd fG

• COMPRESSION DESIGN

• TENSION DESIGN

Compressive load on CD and FG member

• = 335.175 KN

Tensile load on the CD and FG member

• =37.48 KN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 56/84

 55

so area of each angle = 3351.75/2 = 1675.875  

As this is the double angle rafter so the section must be joined on a single side of a gusset plate of

thickness 8mm and the dimension of the angle is 110×110×12 @ 19.7 kg/m. The angles are joined

 by fillet welding.

As per IS 800:2007 SECTION 7 clause no. 7.5.1.2 and 7.1.2.1 and table 5, 7, 10, 12

λ c=2 2

1 2 3vvk k k         

2810

21.5 1.461 88.812

250

r vv

vv E 

 

  

 

1 2   110 110

2   2 12 0.1031 88.812

250

b b

 E 

  

  

 

 

For hinge support we have ,k 1=0.70, k 2=0.60, k 3=5.

2 20.70 0.60 1.46 5 0.103 1.425e

    

Again for fixed support we have, k 1=0.20, k 2=0.35, k 3=20.

2 20.20 0.35 1.46 20 0.103 1.076e    

It is given in the IS-800-2007 that

 

ϕ = 0.5[1+0.49(1.251-0.2) +1.2512] = 1.539

• DESIGN FOR COMPRESSIVEFORCE

IS code specification

•For partial restraint, the λe  can be interpolated between the λe results for fixed & hingedcases.

the interpolated result

•λe=1.251

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 57/84

 56

2

2 2 0.5   N

2501.1

93.341.539 [1.539 1.251 ]

/mmcd   f    

 

Pc =   cd c  f A = 93.33 × 2 × 21.1×100 = 393.852 KN > 335.175KN

Hence our design is safe.

Here we are assuming that all the joints are partially hinged.

So for hinged joint K = 1

Again for fixed joint K = 0.625

So for our case K = 0.825

Hence K =0.825 is alright.

 Now,0.825 2810

159.88 18014.5

 KL

 Hence ok.

Again we know that,

COMPRESSION

ELEMENT

RATIO CONDITION RESULT

Double angle with

components separated,

axial compression

 

 

 

 

 

 

According to IS-800-2007

•In case for bolted, riveted & welded trusses the effective length,KL,of compression members shallbe taken as 0.7 to 1 times of distance between centres of commections depending upon degree ofend restraint provided.

According to IS-800-2007 table no-2

(The limiting width to thickness ratio )

clauses (3.7.2 & 3.7.4)

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 58/84

 57

Hence our assumed section is ok.

From IS 800:2007 clause 10.5.7.1.1

2

1

 410

189.3713 1.25

  N/mm3

uwd 

m

  f    f  

  

 

Maximum size of welding (a) = 8−1.5 = 6.5 mm 

Minimum size of welding (a) = 5 mm

So, taking weld size of 6 mm

Then t =0.7×a = 0.7×4 = 4.2 mm

 Now,

Shearing area at the throat × design shear strength of the weld = design load

2×L×t×189.371= 335.175×103

L =  335.175 1000

210.72 4.2 189.371

mm

 

So we have to provide 225 mm length of welding.

.

Factored tensile load = 37.48×1.5=56.22 KN

DESIGN OF WELDED JOINTS

• DESIGN FOR TENSILESTRENGTH

TENSION

As per IS 800: 2007 SECTION 6 clause 6.1, 6.2 and 6.3.3

Design strength due to Yielding of Gross Section,

Tdg = Ag × f y/γm0 

• Hence we can can find out the trial area for the design form this.

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 59/84

 58

25.1 250 100570.454

1.1

 g y

dg 

mo

dg 

 A f  T 

T KN 

 

 

From IS 800:2007 clause 10.5.7.1.1

2

1

 410

189.3713 1.25

  N/mm3

uwd 

m

  f    f  

  

 

Maximum size of welding (a) = 8−1.5 = 6.5 mm Minimum size of welding (a) = 5 mm

So, taking weld size of 6 mm

Then t =0.7×a = 0.7×6 = 4.2 mm

 Now,

Shearing area at the throat × design shear strength of the weld = design load

2×L×t×189.371= 56.22×103

L =   56.22 1000 35.342 4.2 189.371

mm  

So as we have provided 225 mm length of welding , so it is ok.

Here bs = 110 mm, and Lc = 175 mm, W = 110 mm, t = 12 mm, f y =250N/mm2 , and f u = 410 N/mm

 0.7≰ β =1.19

 β = 1.19 

0.9 (110 12) 12 410 1.19 (110 12) 12 250 665.2091.25 1.1

dnT KN   

DESIGN OF WELDED JOINTS

Design strength due to Rupture of Critical Section

Tdn = 0.9Anc× f u/γm1+β×Ago× f y/γm0 Where, β = 1.4−0.076× (w/t)×(f y/f u)× (bs/Lc)

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 60/84

 59

 Design tensile strength=570.454×2=1140.908KN > 56.22KN

Hence our design is safe.

.

DESIGN OF MEMBER aj mi

• COMPRESSION DESIGN

• TENSION DESIGN

Compressive load on AJ and MI member

• = 23 KN

Tensile load on the AJ and MI member

• =133.305 KN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 61/84

 60

 factored compressive load =23×1.5=34.5 KN

The angle belongs to buckling class ‘c’(from IS -800-2007,table 10). f cd varies from 227 to 24.3 MPa

depending on ⁄  .

Assuming f cd =100 N/mm2 

 Ac=

mm

2

Since we will be using double angle so area of each angle = 345/2 = 172.5  

As this is the double angle rafter so the section must be joined on a single side of a gusset plate of

thickness 8mm and the dimension of the angle is 70×70×6 @ 6.3 kg/m. The angles are joined byfillet welding

As per IS 800:2007 SECTION 7 clause no. 7.5.1.2 and 7.1.2.1 and table 5, 7, 10, 12

λ c=2 2

1 2 3vvk k k         

2865

13.6 2.371 88.812

250

r vv

vv E 

 

  

 

1 2   70 70

2 2 6 0.1311 88.812

250

b b

 E 

  

  

 

For hinge support we have ,k 1=0.70, k 2=0.60, k 3=5.

2 20.70 0.60 2.37 5 0.131 2.038e

    

Again for fixed support we have, k 1=0.20, k 2=0.35, k 3=20.

2 20.20 0.35 2.37 20 0.131 1.584e

    

It is given in the IS-800-2007 that

 

• DESIGN FOR COMPRESSIVEFORCE

IS code specification

•For partial restraint, the λe  can be interpolated between the λe results for fixed & hingedcases.

the interpolated result

•λe=1.811

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 62/84

 61

ϕ = 0.5[1+0.49(1.811-0.2) +1.8112] = 2.534

2

2 2 0.5  N

2501.1

52.8542.534 [2.534 1.811 ]

/mmcd 

  f   

 

Pc =   cd c  f A = 52.854 × 2 × 8.06×100 = 85.2 KN > 34.5KN

Hence our design is safe.

Here we are assuming that all the joints are partially hinged.

So for hinged joint K = 1

Again for fixed joint K = 0.65

So for our case K = 0.825

Hence K =0.825 is alright.

 Now,0.825 2865

168.53 18013.6

 KL

 Hence ok.

Again we know that,

COMPRESSION

ELEMENT

RATIO CONDITION RESULT

Double angle with

components separated,

axial compression

 

 

 

 

According to IS-800-2007

•In case for bolted, riveted & welded trusses the effective length,KL,of compression members shallbe taken as 0.7 to 1 times of distance between centres of commections depending upon degree ofend restraint provided.

According to IS-800-2007 table no-2

(The limiting width to thickness ratio )

clauses (3.7.2 & 3.7.4)

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 63/84

 62

 

 

From IS 800:2007 clause 10.5.7.1.1

2

1

 410

189.3713 1.25

  N/mm3

uwd 

m

  f    f  

  

 

Maximum size of welding (a) = 8−1.5 = 6.5 mm 

Minimum size of welding (a) = 3 mm

So, taking weld size of 4 mm

Then t =0.7×a = 0.7×4 = 2.8 mm

 Now,

Shearing area at the throat × design shear strength of the weld = design load

4×L×t×189.371= 28.8×103

L =  28.8 1000

38.02

4 2.8 189.371

mm

 

So we have to provide 40 mm length of welding.(as per IS Code).

Factored tensile load = 133.305 KN

DESIGN OF WELDED JOINTS

• DESIGN FOR TENSILESTRENGTH

TENSION

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 64/84

 63

8.06 100 250183.181

1.1

 g y

dg 

mo

dg 

 A f  T 

T KN 

 

 

.

From IS 800:2007 clause 10.5.7.1.1

2

1

 410

189.3713 1.25

  N/mm3

uwd 

m

  f    f  

  

 

Maximum size of welding (a) = 8−1.5 = 6.5 mm 

Minimum size of welding (a) = 3 mm

So, taking weld size of 4 mm

Then t =0.7×a = 0.7×4 = 2.8 mm

 Now,

Shearing area at the throat × design shear strength of the weld = design load

4×L×t×189.371= 133.305×103

L = 133.305 1000

62.854 2.8 189.371

mm  

So we have to provide 75 mm length of welding.

As per IS 800: 2007 SECTION 6 clause 6.1, 6.2 and 6.3.3

Design strength due to Yielding of Gross Section,

Tdg = Ag × f y/γm0 

• Hence we can can find out the trial area for the design form this.

DESIGN OF WELDED JOINTS

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 65/84

 64

Here bs = 70 mm, and Lc = 75 mm, W = 70 mm, t = 6 mm, f y =250N/mm2 , and f u = 410 N/mm

 0.7≰ β = .89 ≤ (f uγm0/f yγm1)=1.44

 β = 0.89 

0.9 (70 6) 6 410 0.89 (70 6) 6 250191.02

1.25 1.1dn

T KN 

 

 Design tensile strength=183.181×2=366.362KN > 133.305KN

Hence our design is safe.

Design strength due to Rupture of Critical Section

Tdn = 0.9Anc× f u/γm1+β×Ago× f y/γm0 

Where, β = 1.4−0.076× (w/t)×(f y/f u)× (bs/Lc)

DESIGN OF MEM BER kl

• COMPRESSION DESIGN

• TENSION DESIGN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 66/84

 65

.

 factored compressive load =11.3×1.5=16.95 KN

The angle belongs to buckling class ‘c’(from IS -800-2007,table 10). f cd varies from 227 to 24.3 MPa

depending on ⁄  .

Assuming f cd =100 N/mm2 

 Ac=

mm

2

Since we will be using double angle so area of each angle = 169.5/2 = 84.75  

As this is the double angle rafter so the section must be joined on a single side of a gusset plate of

thickness 8mm and the dimension of the angle is 200×200×20 @ 4.5 kg/m. The angles are joined by

fillet welding

As per IS 800:2007 SECTION 7 clause no. 7.5.1.2 and 7.1.2.1 and table 5, 7, 10, 12

λ c=2 2

1 2 3vvk k k         

9542

39.3 2.7341 88.812

250

r vv

vv E 

 

  

 

Compressive load on KL member• = 11.3 KN

Tensile load on the KL member

• =65.16 KN

• DESIGN FOR COMPRESSIVEFORCE

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 67/84

 66

1 2   200 200

2 2 20 0.1121 88.812

250

b b

 E 

  

  

 

 

For hinge support we have ,k 1=0.70, k 2=0.60, k 3=5.

2 20.70 0.60 2.734 5 0.112 1.789e    

Again for fixed support we have, k 1=0.20, k 2=0.35, k 3=20.

2 20.20 0.35 2.734 20 0.112 1.751e

    

It is given in the IS-800-2007 that

 

ϕ = 0.5[1+0.49(1.811-0.2) +1.8112] = 2.451

22 2 0.5   N

250

1.1 54.822.451 [2.451 1.77 ]

/mmcd   f    

 

Pc =   cd c  f A = 54.82 × 2 × 76.4×100 = 837.649 KN > 16.95KN

Hence our design is safe.

Here we are assuming that all the joints are partially hinged.

So for hinged joint K = 1

Again for fixed joint K = 0.65

So for our case K = 0.825

Hence K =0.825 is alright.

IS code specification

•For partial restraint, the λe  can be interpolated between the λe results for fixed & hingedcases.

the interpolated result

•λe=1.77

According to IS-800-2007

•In case for bolted, riveted & welded trusses the effective length,KL,of compression members shallbe taken as 0.7 to 1 times of distance between centres of commections depending upon degree ofend restraint provided.

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 68/84

 67

 Now,0.825 9542

194.24 25039.3

 KL

 Hence ok.

Again we know that,

COMPRESSION

ELEMENT

RATIO CONDITION RESULT

Double angle with

components separated,

axial compression

 

 

 

 

 

 

From IS 800:2007 clause 10.5.7.1.1

2

1

 410

189.3713 1.25

  N/mm3

uwd 

m

  f    f  

  

 

Maximum size of welding (a) = 8−1.5 = 6.5 mm 

Minimum size of welding (a) = 5 mm

So, taking weld size of 6 mm

Then t =0.7×a = 0.7×6 = 4.2 mm

 Now,

Shearing area at the throat × design shear strength of the weld = design load

4×L×t×189.371= 28.8×103

L =  16.95 1000

3.894 4.2 189.371

mm

 

According to IS-800-2007 table no-2(The limiting width to thickness ratio )

clauses (3.7.2 & 3.7.4)

DESIGN OF WELDED JOINTS

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 69/84

 68

So we have to provide 40 mm length of welding.(as per IS Code).

Factored tensile load = 65.16 KN

76.4 100 250 1736.361.1

 g y

dg 

mo

dg 

 A f  T 

T KN 

 

 

.

From IS 800:2007 clause 10.5.7.1.1

2

1

 410

189.3713 1.25

  N/mm3

uwd 

m

  f    f  

  

 

Maximum size of welding (a) = 8−1.5 = 6.5 mm 

Minimum size of welding (a) = 5 mm

So, taking weld size of 6 mm

Then t =0.7×a = 0.7×6 = 4.2 mm

 Now,

Shearing area at the throat × design shear strength of the weld = design load

• DESIGN FOR TENSILESTRENGTH

TENSION

As per IS 800: 2007 SECTION 6 clause 6.1, 6.2 and 6.3.3

Design strength due to Yielding of Gross Section,

Tdg = Ag × f y/γm0 

• Hence we can can find out the trial area for the design form this.

DESIGN OF WELDED JOINTS

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 70/84

 69

4×L×t×189.371= 65.16×103

L =  65.16 1000

40.962 4.2 189.371

mm

 

So we have to provide 350 mm length of welding.

Here bs = 200 mm, and Lc = 350 mm, W = 200 mm, t = 20 mm, f y =250N/mm2 , and f u = 410 N/mm2 

 0.7≰ β = 1.135 ≤ (f uγm0/f yγm1)

 β = 1.135 

0.9 (200 20) 20 410 1.135 (200 20) 20 2501991.35

1.25 1.1dn

T KN 

 

 Design tensile strength=1736.36×2=3472.72KN > > 65.16KN

Hence our design is safe.

Design strength due to Rupture of Critical Section

Tdn = 0.9Anc× f u/γm1+β×Ago× f y/γm0 

Where, β = 1.4−0.076× (w/t)×(f y/f u)× (bs/Lc)

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 71/84

 70

.

 factored compressive load =103.631 KN

The angle belongs to buckling class ‘c’(from IS -800-2007,table 10). f cd varies from 227 to 24.3 MPa

depending on ⁄  .

Assuming f cd =100 N/mm2

 

 Ac=

mm

2

Since we will be using double angle so area of each angle = 1036.31/2 = 518.155  

As this is the double angle rafter so the section must be joined on a single side of a gusset plate of

thickness 8mm and the dimension of the angle is 70×70×8 @ 8.3 kg/m. The angles are joined by

fillet welding

As per IS 800:2007 SECTION 7 clause no. 7.5.1.2 and 7.1.2.1 and table 5, 7, 10, 12

λ c=2 2

1 2 3vvk k k         

DESIGN OF MEMBER ck lg

• COMPRESSION DESIGN

• TENSION DESIGN

Compressive load on CK and LG member

• = 103.631 KN

Tensile load on the CK and LG member

• =8.97 KN

• DESIGN FOR COMPRESSIVEFORCE

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 72/84

 71

2084

13.5 1.781 88.812

250

r vv

vv E 

 

  

 

1 2  710 70

2 2 8 0.0981 88.812

250

b b

 E 

  

  

 

For hinge support we have ,k 1=0.70, k 2=0.60, k 3=5.

2 20.70 0.60 1.78 5 0.098 1.627e

    

Again for fixed support we have, k 1=0.20, k 2=0.35, k 3=20.

2 20.20 0.35 1.78 20 0.098 1.225e

    

It is given in the IS-800-2007 that

 

ϕ = 0.5[1+0.49(1.426-0.2) +1.4262] = 1.817

2

2 2 0.5   N

2501.1

77.221.817 [1.817 1.426 ]

/mmcd   f    

 

Pc =   cd c  f A = 77.22 × 2 ×10.6×100 = 163.766 KN > 103.631KN

Hence our design is safe.

Here we are assuming that all the joints are partially hinged.

So for hinged joint K = 1

Again for fixed joint K = 0.65

So for our case K = 0.825

IS code specification

•For partial restraint, the λe  can be interpolated between the λe results for fixed & hingedcases.

the interpolated result

•λe=1.426

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 73/84

 72

Hence K =0.825 is alright.

 Now,0.825 2084

123.49 18013.5

 KL

 Hence ok.

Again we know that,

COMPRESSION

ELEMENT

RATIO CONDITION RESULT

Double angle with

components separated,

axial compression

 

 

   

 

 

From IS 800:2007 clause 10.5.7.1.1

2

1

 410

189.3713 1.25

  N/mm3

uwd 

m

  f    f  

  

 

Maximum size of welding (a) = 8−1.5 = 6.5 mm 

Minimum size of welding (a) = 5 mm

So, taking weld size of 6 mm

Then t =0.7×a = 0.7×6 = 4.2 mm

 Now,

According to IS-800-2007

•In case for bolted, riveted & welded trusses the effective length,KL,of compression members shallbe taken as 0.7 to 1 times of distance between centres of commections depending upon degree ofend restraint provided.

According to IS-800-2007 table no-2

(The limiting width to thickness ratio )

clauses (3.7.2 & 3.7.4)

DESIGN OF WELDED JOINTS

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 74/84

 73

Shearing area at the throat × design shear strength of the weld = design load

2×L×t×189.371= 103.631×103

L =  103.631 1000

65.172 4.2 189.371

mm

 

So we have to provide 75 mm length of welding.

Factored tensile load = 8.97×1.5=13.455 KN

10.6 100 250240.9

1.1

 g y

dg 

mo

dg 

 A f  T 

T KN 

 

 

.

From IS 800:2007 clause 10.5.7.1.1

2

1

 410

189.3713 1.25

  N/mm3

uwd 

m

  f    f  

  

 

Maximum size of welding (a) = 8−1.5 = 6.5 mm 

Minimum size of welding (a) = 3 mm

• DESIGN FOR TENSILESTRENGTH

TENSION

As per IS 800: 2007 SECTION 6 clause 6.1, 6.2 and 6.3.3

Design strength due to Yielding of Gross Section,

Tdg = Ag × f y/γm0 

• Hence we can can find out the trial area for the design form this.

DESIGN OF WELDED JOINTS

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 75/84

 74

So, taking weld size of 4 mm

Then t =0.7×a = 0.7×4 = 2.8 mm

 Now,

Shearing area at the throat × design shear strength of the weld = design load4×L×t×189.371= 13.455×10

3

L =  13.455 1000

6.3434 2.8 189.371

mm

 

So we have to provide 75 mm length of welding.

Here bs = 70 mm, and Lc = 75 mm, W = 70 mm, t = 8 mm, f y =250N/mm2 , and f u = 410 N/mm

 0.7≰ β =1.021 ≤ (f uγm0/f yγm1)

 β = 1.021 

0.9 (70 8) 8 410 1.021 (70 8) 8 250261.513

1.25 1.1dn

T KN 

 

 Design tensile strength=240.9×2=481.8KN > 13.455 KN

Hence our design is safe.

Design strength due to Rupture of Critical Section

Tdn = 0.9Anc× f u/γm1+β×Ago× f y/γm0 

Where, β = 1.4−0.076× (w/t)×(f y/f u)× (bs/Lc)

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 76/84

 75

.

 factored compressive load =19.82×1.5=29.73 KN

The angle belongs to buckling class ‘c’(from IS -800-2007,table 10). f cd varies from 227 to 24.3 MPa

depending on ⁄  .

Assuming f cd =100 N/mm2 

 Ac=

mm

2

Since we will be using double angle so area of each angle = 345/2 = 172.5  

As this is the double angle rafter so the section must be joined on a single side of a gusset plate of

thickness 8mm and the dimension of the angle is 70×70×6 @ 6.3 kg/m. The angles are joined by

fillet welding

As per IS 800:2007 SECTION 7 clause no. 7.5.1.2 and 7.1.2.1 and table 5, 7, 10, 12

DESIGN OF MEMBER CN GO

• COMPRESSION DESIGN

• TENSION DESIGN

Compressive load on CN and OG member• = 19.82 KN

Tensile load on the CN and OG member

• =275.925 KN

• DESIGN FOR COMPRESSIVEFORCE

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 77/84

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 78/84

 77

Hence K =0.825 is alright.

 Now,0.825 2865

168.53 18013.6

 KL

 Hence ok.

Again we know that,

COMPRESSION

ELEMENT

RATIO CONDITION RESULT

Double angle with

components separated,axial compression

 

 

 

 

 

 

From IS 800:2007 clause 10.5.7.1.1

2

1

 410

189.3713 1.25

  N/mm3

uwd 

m

  f    f  

  

 

Maximum size of welding (a) = 8−1.5 = 6.5 mm 

Minimum size of welding (a) = 3 mm

So, taking weld size of 4 mm

Then t =0.7×a = 0.7×4 = 2.8 mm

According to IS-800-2007

•In case for bolted, riveted & welded trusses the effective length,KL,of compression members shallbe taken as 0.7 to 1 times of distance between centres of commections depending upon degree ofend restraint provided.

According to IS-800-2007 table no-2

(The limiting width to thickness ratio )

clauses (3.7.2 & 3.7.4)

DESIGN OF WELDED JOINTS

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 79/84

 78

 Now,

Shearing area at the throat × design shear strength of the weld = design load

2×L×t×189.371= 19.82×103

L =   19.83 1000 18.682 2.8 189.371

mm  

So we have to provide 40 mm length of welding.

Factored tensile load = 275.925 KN

8.06 100 250183.181

1.1

 g y

dg 

mo

dg 

 A f  T 

T KN 

 

 

.

From IS 800:2007 clause 10.5.7.1.1

2

1

 410

189.3713 1.25

  N/mm3

uwd 

m

  f    f  

  

 

Maximum size of welding (a) = 8−1.5 = 6.5 mm 

• DESIGN FOR TENSILE

STRENGTH

TENSION

As per IS 800: 2007 SECTION 6 clause 6.1, 6.2 and 6.3.3

Design strength due to Yielding of Gross Section,

Tdg = Ag × f y/γm0 

• Hence we can can find out the trial area for the design form this.

DESIGN OF WELDED JOINTS

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 80/84

 79

Minimum size of welding (a) = 3 mm

So, taking weld size of 4 mm

Then t =0.7×a = 0.7×4 = 2.8 mm

 Now,Shearing area at the throat × design shear strength of the weld = design load

2×L×t×189.371= 275.925×103

L = 275.925 1000

230.22 2.8 189.371

mm

 

So we have to provide 250 mm length of welding.

Here bs = 70 mm, and Lc = 250 mm, W = 70 mm, t = 8 mm, f y =250N/mm2 , and f u = 410 N/mm

 0.7≰ β =1.21 ≤ (f uγm0/f yγm1)

 β = 1.21 

0.9 (70 8) 8 410 1.21 (70 8) 8 250282.819

1.25 1.1dn

T KN 

 

 Design tensile strength=183.181×2=366.362 > 275.925

Hence our design is safe.

Design strength due to Rupture of Critical Section

Tdn = 0.9Anc× f u/γm1+β×Ago× f y/γm0 

Where, β = 1.4−0.076× (w/t)×(f y/f u)× (bs/Lc)

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 81/84

 80

.

Here we are supposed to find out the maximum load at minor & major axis. To do so we

need to do the load combinations for various condition. They are explained below→ 

LOAD COMBINATIONS

Load Types Major axis MAX. LOADING IN KN Type

1.5(DL+LL) 1.5×{(0.588+1.03)+5.12} × cos θ = 9.44  Tension

1.5(DL+WL 1) 1.5{(0.588+1.03) × cos θ − 1.68} = − 0.25  Compression

1.5(DL+WL 2) 1.5{(0.588+1.03) × cos θ –  0.6} = 1.35 Tension

1.5(DL+WL 3) 1.5{(0.588+1.03) × cos θ –  2.68} = − 1.75  Compression

1.5(DL+WL 4) 1.5{(0.588+1.03) × cos θ –  1.5} = 0.018 Tension

1.5(DL+WL 5) 1.5{(0.588+1.03) × cos θ –  2.38} = 1.30 Compression

1.5(DL+WL 6) 1.5{(0.588+1.03) × cos θ 1.19} =0.255 Compression

1.2(DL+LL+WL 1) 1.2[{(0.588+1.03)+5.12}× cos θ –  1.68] = 5.26 Tension

1.2(DL+LL+WL 2) 1.2[{(0.588+1.03)+5.12}× cos θ –  0.6] = 6.836 Tension

1.2(DL+LL+WL 3) 1.2[{(0.588+1.03)+5.12}× cos θ –  2.68] = 4.34 Tension

1.2(DL+LL+WL 4) 1.2[{(0.588+1.03)+5.12}× cos θ –  1.5] = 5.76 Tension

1.2(DL+LL+WL 5) 1.2[{(0.588+1.03)+5.12}× cos θ –  2.38] = 4.7 Tension

DESIGN OF PURLIN 

LO D COMBIN TION

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 82/84

 81

1.2(DL+LL+WL 6) 1.2[{(0.588+1.03+5.12} × cos θ 1.19] = 6.13 Tension

Load Types Minor axis MAX. LOADING IN KN Type

1.5(DL+LL) 1.5×{(0.588+1.03)+5.12} ×sin θ = 3.59 Tension

1.5(DL+WL 1) 1.5{(0.588+1.03) ×sin θ} = 0.864  Tension

1.5(DL+WL 2) 1.5{(0.588+1.03) ×sin θ} = 0.864  Tension

1.5(DL+WL 3) 1.5{(0.588+1.03) ×sin θ} = 0.864  Tension

1.5(DL+WL 4) 1.5{(0.588+1.03) ×sin θ} = 0.864  Tension

1.5(DL+WL 5) 1.5{(0.588+1.03) ×sin θ} = 0.864  Tension

1.5(DL+WL 6) 1.5{(0.588+1.03) ×sin θ} = 0.864  Tension

1.2(DL+LL+WL 1) 1.2×{(0.588+1.03)+5.12} ×sin θ = 2.88  Tension

1.2(DL+LL+WL 2) 1.2×{(0.588+1.03)+5.12} ×sin θ = 2.88  Tension

1.2(DL+LL+WL 3) 1.2×{(0.588+1.03)+5.12} ×sin θ = 2.88  Tension

1.2(DL+LL+WL 4) 1.2×{(0.588+1.03)+5.12} ×sin θ = 2.88  Tension

1.2(DL+LL+WL 5) 1.2×{(0.588+1.03)+5.12} ×sin θ = 2.88  Tension

1.2(DL+LL+WL 6) 1.2×{(0.588+1.03)+5.12} ×sin θ = 2.88  Tension

Maximum design load on plane of major axis = 9.44 KN 

Maximum design load on plane of minor axis = 3.59 KN

Let assume length of purlin = 3 m

 Now factor applied moment about the minor axis, Mz =2 2

1 WL 1 (3.59) 30.41

10 8 10 8

KN – m

 Now factor applied moment about the major axis, My =2 2

1 WL 1 (9.54) 31.07

10 8 10 8

 KN-m

Assuming f cd =100 N/mm2

According to IS 808: 1989,

DESIGN

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 83/84

 82

Try with ISMC 100,

Area (a) = 1220 mm2, b = 50 mm, tw = 5 mm, tf = 7.7 mm,

Z pz = 43.83cm3 

According to IS 800: 2007, Now, b/ tf  = 50/7.7 =6.493 < 9.4ϵ 

And d/tw = (100-2×7.7)/5 = 16.92 < 42ϵ 

So the section is plastic.

 Now, Z py =31220 50

152502 2 2 2

a bmm

 

Design strength under corresponding moment

Mndz = (β b × Z pz × f y)/ γm0 and Mndy = (β b × Z py × f y)/ γm0 

For plastic section β b = 1,

So, Mdz = (1 × 43.83 × 103 × 250) / 1.1

= 9.9613×106 N-mm = 9.9613 KN-m

Mdy = (1 ×15250 × 250) / 1.1

= 3.465×106 N-mm = 3.465 KN-m

 Now,1   2

1 y z 

ndy ndz  

 M M 

 M M 

     

 

 

 

1 20.8619 0.3064

 0.2497 13.465 9.9613

 

So our design is safe

CHECK FOR DEFLECTION

 

DEEFLECTION OF THE PURLI N:-

=

4

4

5 4

9.445 3000

5 1.5 35.762

384 384 2 10 192 10

WLmm

 EI 

 

Whereas allowable deflection is 3000 20150

 

CHECK FOR DEFLECTION

8/13/2019 Steel Designing Project

http://slidepdf.com/reader/full/steel-designing-project 84/84

So it is also safe from deflection.