subband wavenet with overlapped single-sideband filterbanks · 2019-02-05 · subband wavenet with...

1
Target: High-quality statistical parametric speech synthesis Conventional: HMM to DNN STRAIGHT, WORLD, GlottDNN etc.. State-of-the-art: 1. WaveNet 2. End-to-end: Char2wav, Deep voice, Tacotron WaveNet: Dilated causal convolutional NN-based raw audio generative model Autoregressive model to directly predict raw audio samples Categorical problem (8bit μ-law encoding) rather than regression Synthesis speed problem since past samples are required Parallel WaveNet: Fast generation but complicated training architecture Proposal: Rapid and high quality synthesis for WaveNet with simple approach Parallel training and synthesis based on Multirate signal processing Realizing high-quality synthesis with square-root Hann window-based filterbanks Single-sideband (SSB) filterbank 1. Dividing fullband signal into N subband signals 2. Decimating them with a factor M Signal length and sampling frequency: 1/M 3. Upsampling and inverse processing Reconstructing fullband signal Subband WaveNet WaveNet training and synthesis for each subband waveform Enabling parallel synthesis: M times synthesis speed Japanese speech corpora with a sampling frequency of 32 kHz Female and male corpora: 4.7 and 3.7 hours for training sets, 100 utts for test sets Filterbank setting (Decimation factor: M=4) LPF-MD: N=4 with simple lowpass filter LPF-OL: N=9 with simple lowpass filter SQRT-Hann-OL: N=9 with overlapped square-root Hann window-based analysis/synthesis filter WaveNet models Unconditional WaveNet training and synthesis without additional input Predicting from correct input Receptive field: 0.192 s, mini-batch size: 2.5 s with Adam optimizer Dilation channel: 32, Residual channel: 32, Skip channel: 512 Number of parameter update: 20 k (Fullband), 10 k (Subband) Results of synthesis speed with CPUs: Female (3.85 s) and male (3.87 s) Fullband: 11.40 and 11.21 mins, Subband: 2.68 and 2.65 mins about 4 times Results of objective evaluations Proposed SQRT-Hann-OL colors each subband waveform Improving prediction accuracy: Realizing higher-quality synthesis than fullband Results of subjective evaluations: Paired comparison with 21 listening subjects Significant quality improvement by proposed SQRT-Hann-OL Subband WaveNet with overlapped single-sideband filterbanks Takuma OKAMOTO 1 , Kentaro Tachibana 1 , Tomoki Toda 2,1 , Yoshinori Shiga 1 , and Hisashi Kawai 1 1 National Institute of Information and Communications Technology, Japan, 2 Nagoya University, Japan 1. Introduction 2. Subband WaveNet 3. Experiments ASRU 2017 19th Dec. 2017. (a) Training stage Subband WaveNet Single-sideband modulation-based analysis filtering # M # M # M WaveNet for N-th band WaveNet for 2nd band WaveNet for 1st band ··· ··· ··· Fullband waveform x x N x 2 x 1 Additional input h (b) Synthesis stage WaveNet for 1st band WaveNet for 2nd band WaveNet for N-th band " M " M " M Single-sideband modulation-based synthesis filtering Fullband waveform ˆ x ˆ x 1 ˆ x 2 ˆ x N ˆ x 1 ˆ x 2 ˆ x N Additional input h ··· ··· ··· 0 π/4 π/2 3π/4 π Angular frequency [rad] -80 -60 -40 -20 0 Relative level [dB] 0 π/4 π/2 3π/4 π Angular frequency [rad] -80 -60 -40 -20 0 Relative level [dB] LPF-MD SQRT-Hann-OL [dB] 0 1 2 3 Time [s] 0 2 4 6 8 10 12 14 16 Frequency [kHz] -60 -50 -40 -30 -20 -10 0 10 [dB] 0 1 2 3 Time [s] 0 2 4 6 8 10 12 14 16 Frequency [kHz] -60 -50 -40 -30 -20 -10 0 10 [dB] 0 1 2 3 Time [s] 0 2 4 6 8 10 12 14 16 Frequency [kHz] -60 -50 -40 -30 -20 -10 0 10 [dB] 0 1 2 3 Time [s] 0 2 4 6 8 10 12 14 16 Frequency [kHz] -60 -50 -40 -30 -20 -10 0 10 [dB] 0 1 2 3 Time [s] 0 2 4 6 8 10 12 14 16 Frequency [kHz] -60 -50 -40 -30 -20 -10 0 10 Original Fullband LPF-MD LPF-OL SQRT-Hann-OL 0 1 2 3 4 Frequency [kHz] -50 -45 -40 -35 -30 -25 -20 -15 -10 Power spectrum [dB] 0 1 2 3 4 Frequency [kHz] -50 -45 -40 -35 -30 -25 -20 -15 -10 Power spectrum [dB] 6 7 8 9 10 Frequency [kHz] -58 -56 -54 -52 -50 -48 Power spectrum [dB] 6 7 8 9 10 Frequency [kHz] -58 -56 -54 -52 -50 -48 Power spectrum [dB] 1 2 3 4 5 6 7 8 9 Frequency band 0.5 1 1.5 2 2.5 Softmax loss LPF-OL SQRT-Hann-OL 0 4 8 12 16 Frequency [kHz] -60 -50 -40 -30 -20 -10 0 Power spectrum [dB] (A) Original (B) Estimated by WaveNet (C) Residual between original and estimated (D) Re-analyzed SNR [dB] SD [dB] MCD [dB] Method (WaveNet) (WaveNet) (WaveNet) Fullband 21.5 ± 0.35 8.72 ± 0.07 2.45 ± 0.03 Female LPF-MD 13.6 ± 0.28 7.68 ± 0.07 2.80 ± 0.04 fs = 32 kHz LPF-OL 13.1 ± 0.22 7.16 ± 0.05 1.95 ± 0.04 SQRT-Hann-OL 13.0 ± 0.27 6.45 ± 0.09 1.72 ± 0.04 Fullband 23.2 ± 0.26 9.51 ± 0.08 2.75 ± 0.03 Male LPF-MD 14.0 ± 0.25 8.17 ± 0.08 2.75 ± 0.05 fs = 32 kHz LPF-OL 13.4 ± 0.26 7.48 ± 0.06 2.10 ± 0.04 SQRT-Hann-OL 13.6 ± 0.31 7.26 ± 0.10 2.07 ± 0.06 Fullband LPF-OL (2nd) SQRT-Hann (2nd) LPF-OL (5th) SQRT-Hann (5th) Softmax loss comparison Fullband SQRT-Hann-OL Neutral p-value Z-score Female 33 413 79 10 -10 -18.0 (%) (6.3) (78.7) (15.0) Fullband SQRT-Hann-OL Neutral p-value Z-score Male 31 439 55 10 -10 -18.8 (%) (5.9) (83.6) (10.5) p(x|h)= T Y t=1 p(x(t)|x(1), ··· ,x(t - 1), h) Text Text analysis Linguistic features Acoustic model Acoustic features Vocoder Speech waveforms [x(1), ··· ,x(t - 1)] ˆ x(t) ˆ x = [ˆ x(1), ··· , ˆ x(T )] Shift with W -t(n-1/2) N fs 2 fs 2 0 (a) 0 (b) Hz Hz fs 2M (d) 0 # M Hz Shift with W t(n-1/2) N fs 2 fs 2 0 (f) 0 ··· ··· (e) " M Aliasing components Hz Hz Complex value Real value fs 2 0 (c) Hz Complex conjugate

Upload: others

Post on 28-May-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Subband WaveNet with overlapped single-sideband filterbanks · 2019-02-05 · Subband WaveNet with overlapped single-sideband filterbanks Takuma OKAMOTO1, Kentaro Tachibana1, Tomoki

Target: High-quality statistical parametric speech synthesis

Conventional: HMM to DNN STRAIGHT, WORLD, GlottDNN etc..State-of-the-art: 1. WaveNet 2. End-to-end: Char2wav, Deep voice, Tacotron

WaveNet: Dilated causal convolutional NN-based raw audio generative model Autoregressive model to directly predict raw audio samples

Categorical problem (8bit μ-law encoding) rather than regressionSynthesis speed problem since past samples are required

Parallel WaveNet: Fast generation but complicated training architectureProposal: Rapid and high quality synthesis for WaveNet with simple approach

Parallel training and synthesis based on Multirate signal processing Realizing high-quality synthesis with square-root Hann window-based filterbanks

Single-sideband (SSB) filterbank 1. Dividing fullband signal into N subband signals2. Decimating them with a factor M

Signal length and sampling frequency: 1/M3. Upsampling and inverse processing

Reconstructing fullband signal

Subband WaveNet WaveNet training and synthesis for each subband waveformEnabling parallel synthesis: M times synthesis speed

Japanese speech corpora with a sampling frequency of 32 kHz Female and male corpora: 4.7 and 3.7 hours for training sets, 100 utts for test sets

Filterbank setting (Decimation factor: M=4) LPF-MD: N=4 with simple lowpass filterLPF-OL: N=9 with simple lowpass filterSQRT-Hann-OL: N=9 with overlapped square-root Hann window-based analysis/synthesis filter

WaveNet models Unconditional WaveNet training and synthesis without additional input

Predicting from correct input Receptive field: 0.192 s, mini-batch size: 2.5 s with Adam optimizerDilation channel: 32, Residual channel: 32, Skip channel: 512Number of parameter update: 20 k (Fullband), 10 k (Subband)

Results of synthesis speed with CPUs: Female (3.85 s) and male (3.87 s) Fullband: 11.40 and 11.21 mins, Subband: 2.68 and 2.65 mins about 4 times

Results of objective evaluations Proposed SQRT-Hann-OL colors each subband waveform

Improving prediction accuracy: Realizing higher-quality synthesis than fullband

Results of subjective evaluations: Paired comparison with 21 listening subjects Significant quality improvement by proposed SQRT-Hann-OL

Subband WaveNet with overlapped single-sideband filterbanksTakuma OKAMOTO1, Kentaro Tachibana1, Tomoki Toda2,1, Yoshinori Shiga1, and Hisashi Kawai1

1National Institute of Information and Communications Technology, Japan, 2Nagoya University, Japan

1. Introduction

2. Subband WaveNet

3. Experiments

ASRU 2017 19th Dec. 2017.

(a) Training stage

Subband WaveNet

Single-sideband modulation-based analysis filtering

# M # M # M

WaveNet for N-th band

WaveNet for 2nd band

WaveNet for 1st band

· · ·

· · ·

· · ·

Fullband waveform x

xNx2x1

Additional input h

(b) Synthesis stage

WaveNet for 1st band

WaveNet for 2nd band

WaveNet for N-th band

" M " M " M

Single-sideband modulation-based synthesis filtering

Fullband waveform x̂

x̂1 x̂2 x̂N

x̂1 x̂2 x̂N

Additional input h

· · ·

· · ·

· · ·

0 π/4 π/2 3π/4 π

Angular frequency [rad]

-80

-60

-40

-20

0

Rel

ativ

e le

vel

[d

B]

0 π/4 π/2 3π/4 π

Angular frequency [rad]

-80

-60

-40

-20

0

Rel

ativ

e le

vel

[d

B]

LPF-MD SQRT-Hann-OL

[dB]0 1 2 3

Time [s]

0

2

4

6

8

10

12

14

16

Fre

qu

ency

[k

Hz]

-60

-50

-40

-30

-20

-10

0

10

[dB]0 1 2 3

Time [s]

0

2

4

6

8

10

12

14

16

Fre

qu

ency

[k

Hz]

-60

-50

-40

-30

-20

-10

0

10

[dB]0 1 2 3

Time [s]

0

2

4

6

8

10

12

14

16

Fre

qu

ency

[k

Hz]

-60

-50

-40

-30

-20

-10

0

10

[dB]0 1 2 3

Time [s]

0

2

4

6

8

10

12

14

16

Fre

qu

ency

[k

Hz]

-60

-50

-40

-30

-20

-10

0

10

[dB]0 1 2 3

Time [s]

0

2

4

6

8

10

12

14

16

Fre

qu

ency

[k

Hz]

-60

-50

-40

-30

-20

-10

0

10

Original Fullband LPF-MD LPF-OL SQRT-Hann-OL

0 1 2 3 4Frequency [kHz]

-50

-45

-40

-35

-30

-25

-20

-15

-10

Pow

er s

pec

trum

[dB

]

0 1 2 3 4Frequency [kHz]

-50

-45

-40

-35

-30

-25

-20

-15

-10

Pow

er s

pec

trum

[dB

]

6 7 8 9 10Frequency [kHz]

-58

-56

-54

-52

-50

-48

Pow

er s

pec

trum

[dB

]

6 7 8 9 10Frequency [kHz]

-58

-56

-54

-52

-50

-48

Pow

er s

pec

trum

[dB

]

1 2 3 4 5 6 7 8 9Frequency band

0.5

1

1.5

2

2.5

So

ftm

ax l

oss

LPF-OLSQRT-Hann-OL

0 4 8 12 16

Frequency [kHz]

-60

-50

-40

-30

-20

-10

0

Po

wer

sp

ectr

um

[d

B]

(A) Original

(B) Estimated by WaveNet

(C) Residual between original and estimated

(D) Re-analyzed

Table 1 Results of objective evaluations with 100 test set utterances.

SNR [dB] SD [dB] MCD [dB]

Method (WaveNet) (WaveNet) (WaveNet)

Fullband 21.5 ± 0.35 8.72 ± 0.07 2.45 ± 0.03

Female LPF-MD 13.6 ± 0.28 7.68 ± 0.07 2.80 ± 0.04

fs = 32 kHz LPF-OL 13.1 ± 0.22 7.16 ± 0.05 1.95 ± 0.04

SQRT-Hann-OL 13.0 ± 0.27 6.45 ± 0.09 1.72 ± 0.04

Fullband 23.2 ± 0.26 9.51 ± 0.08 2.75 ± 0.03

Male LPF-MD 14.0 ± 0.25 8.17 ± 0.08 2.75 ± 0.05

fs = 32 kHz LPF-OL 13.4 ± 0.26 7.48 ± 0.06 2.10 ± 0.04

SQRT-Hann-OL 13.6 ± 0.31 7.26 ± 0.10 2.07 ± 0.06

SQRT-Hann-OL: N = 9,M = 4のオーバーラップ条件であり,分析,合成フィルタは共に,

H(ω) =

⎧⎨

√cos(N−1

2 ω) for − πN−1 ≤ ω ≤ π

N−1

0 otherwise

の周波数特性 (ω:各周波数)を実現する。分析→合成後の周波数特性 h(t)∗g(t)が Fig. 3(b)に相当する。離散逆フーリエ変換により 1024サンプルの FIRフィルタで実現した。条件なしWaveNetによる学習,生成を行う。補助入力hは用いず,正解入力 [x(1), · · · , x(t−1)]から,x̂(t)を推定し,生成サンプル x̂ = [x̂(1), · · · , x̂(T )]

を出力とする。WaveNet における受容野は 0.192 s

とし,フル帯域 (fs = 32 kHz)では,{1, 2, 4, · · · ,1024} × 3 = 33 層,8 万サンプルを,サブバンド(fs = 8 kHz)では,{1, 2, 4, · · · , 256} × 3 = 27層,2万サンプルをそれぞれ拡張型畳み込み層,バッファサイズ (2.5 s)とした。拡張チャネル,初期フィルタ長,差分チャネル,スキップ接続数はそれぞれ,32,32,32,512とした。パラメータのアップデートにはAdamを採用した。フルバンドは 20万回,サブバンドは 10万回のパラメータ更新とした。テストセット 1文の生成速度 (Intel Xeon(R) CPU

E7-8837)を比較した。女性 (3.85 s),男性 (3.78 s)それぞれの音声で,フルバンドでは 11.40および,11.21 m

に対して,サブバンドでは 2.68および 2.65 mとなり,約 4倍の生成速度を実現した。主観評価として,SN 比 (SNR),スペクトル歪み

(SD)およびメルケプストラム歪み (MCD)の結果をTable. 1に示す。また,Fig. 4に女性音声テストセット 1文のスペクトログラムを示す。SNRはフルバンドの方がよいが,SD,スペクトログラムやMCDは提案法の SQRT-Hann-OLが最もよい。Fig. 5に (A)原音声,(B)推定音声,(C)差分信号,

(D) 推定信号の再分析結果の平均パワースペクトル

Table 2 Results of paired comparison listening

test. C, P and N are answer number of conventional

fullbandWaveNet, proposed subbandWaveNet with

SQRT-Hann-OL and neutral.

C P N p-value Z-score

F 33 413 79 ≪ 10−10 −18.0

M 31 439 55 ≪ 10−10 −18.8

(女性テストセット)を示す。また,Fig. 6に,LPF-

OLおよび SQRT-Hann-OLの学習セットのソフトマックス損失 (最後 1000回平均)を示す。WaveNetはSNRを最大化するように学習されるため,誤差は各周波数帯に均一に分散され,(B)の周波数特性は全てフラットになる。そのため,フルバンドWaveNetは高域のスペクトル構造がモデル化できておらず,SDやMCD は劣化する。LPF-OL と SQRT-Hann-OL

では,分割周波数帯域は共通で,異なるのは分析,合成フィルタ h(t),g(t)のみである。2帯域目は両方式共に再分析結果が原信号と比較的近いスペクトルを実現している。しかし,5帯域目等の高い領域では,LPF-OLの残差成分は原信号よりも大きくなっており,うまく推定できていない。そのため,LPF-MD

とLPF-OLではサブバンドの切り替わる点で不連続が見られる (Fig. 4(c),(d))。それに対して,Fig. 6

に示す損失の結果からも,SQRT-Hann-OLは高い帯域でもスペクトルの推定に成功しているため,推定スペクトルも滑らかであり,良好な結果が得られている。これは,2乗根Hann窓により信号に強制的に「色」が付けられ,予測し易い信号となり,WaveNet

の予測精度が向上したためであると考えられる。主観評価として,対比較聴取実験によりフルバンド

WaveNetと SQRT-Hann-OLを比較した。テストセット男女それぞれ 100文から 25文ずつのフルバンドとサブバンドでランダム順序でヘッドホン提示し

Fullband LPF-OL (2nd) SQRT-Hann (2nd) LPF-OL (5th) SQRT-Hann (5th)

Softmax loss comparison

1 2 3 4 5 6 7 8 9Frequency band

0.5

1

1.5

2

2.5

Soft

max

loss

LPF-OLSQRT-Hann-OL

Fig. 6. Results of softmax loss averaged in last 1 k out of 100 ktraining times for female training set with a sampling frequency of32 kHz.

Table 3. Results of paired comparison listening test with a samplingfrequency of 32 kHz with 21 adult Japanese native speakers. C, P,and N are answers of conventional fullband WaveNet, proposed sub-band WaveNet with SQRT-Hann-OL, and neutral.

Fullband SQRT-Hann-OL Neutral p-value Z-scoreFemale 33 413 79 ⌧ 10�10 �18.0

(%) (6.3) (78.7) (15.0)

1 2 3 4 5 6 7 8 9Frequency band

0.5

1

1.5

2

2.5

Soft

max

loss

LPF-OLSQRT-Hann-OL

Fig. 6. Results of softmax loss averaged in last 1 k out of 100 ktraining times for female training set with a sampling frequency of32 kHz.

Table 3. Results of paired comparison listening test with a samplingfrequency of 32 kHz with 21 adult Japanese native speakers. C, P,and N are answers of conventional fullband WaveNet, proposed sub-band WaveNet with SQRT-Hann-OL, and neutral.

Fullband SQRT-Hann-OL Neutral p-value Z-scoreMale 31 439 55 ⌧ 10�10 �18.8(%) (5.9) (83.6) (10.5)

p(x|h) =TY

t=1

p(x(t)|x(1), · · · , x(t� 1),h)

Text

Text analysis

Linguistic features

Acoustic model

Acoustic features

Vocoder

Speech waveforms

[x(1), · · · , x(t� 1)]x̂(t) x̂ = [x̂(1), · · · , x̂(T )]

Shift with W�t(n�1/2)N

fs

2

fs

20

(a)0

(b)

Hz Hz

fs

2M(d)

0

# M

Hz

Shift with W t(n�1/2)N

fs

2

fs

20

(f)

0

· · ·· · ·

(e)

" MAliasing components

Hz Hz

Complex valueReal value

fs

20

(c)

Hz

Complex conjugate