summer school 2007b. rossetto1 french summer school phnom penh 2007 mechanics i rossetto bruno...

23
Summer School 2007 B. Rossetto 1 French Summer School Phnom Penh 2007 Mechanics I ROSSETTO Bruno Institut Universitaire de Technologie Université du Sud-Toulon-Var (France) tél. + 336 08 45 48 54 email: [email protected] site: http://rossetto.univ-tln.fr

Post on 18-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Summer School 2007

B. Rossetto 1

French Summer School Phnom Penh 2007

Mechanics I

ROSSETTO Bruno Institut Universitaire de TechnologieUniversité du Sud-Toulon-Var (France)

tél. + 336 08 45 48 54 email: [email protected] site: http://rossetto.univ-tln.fr

Summer School 2007

B. Rossetto 2

Mechanics I Summary

Chap. 1 – CoordinatesChap. 2 – VectorsChap. 3 – Differential operatorsChap. 4 – Forces. EquilibriumChap. 5 – Kinematics. Particle motionChap. 6 – Relative motionChap. 7 – System of particlesChap. 8 – Rigid body motion

Summer School 2007

B. Rossetto 3

Mechanics I

References

M. Alonso and E. J. Finn, Fundamental University Physics, vol. 1 Mechanics, Addison Wesley (1969)C. Kittel, W. D. Knight, M. A. Ruderman, The Berkeley Course on Physics, vol. 1 Mechanics, Mc Graw Hill, (1965)R. W. Feynmann, M. Leighton and M. Sands, The Feynmann Lectures on Physics, vol 1, Mainly Mechanics, Radiation and Heat, Addison Wesley, early 1960s)

Summer School 2007

B. Rossetto 4

1. Coordinates Cartesian

x

y

0 22222222222222xu

22222222222222yu

2-dim.

1 - Origin 0 2 - System of orthogonal axis (0xy) 3 - Unit vectors andxu

22222222222222yu

22222222222222

x

y

022222222222222xu

22222222222222yu

zu22222222222222

z3-dim.

Orientation of the three-dimensional system of coordinates:

- screw rule - right hand rule

Summer School 2007

B. Rossetto 5

1. Coordinates Orientation rules

x

y

z

y

z

x

Summer School 2007

B. Rossetto 6

1. Coordinates Orientation rules

x

y

z

y

x

z

Summer School 2007

B. Rossetto 7

1. Coordinates

x

y

0 22222222222222xu

u22222222222222

Polar (2-dim.)

ru22222222222222

22222222222222yu

Cylindrical (3-dim.)

P(r,)

x0

zu22222222222222z

ru22222222222222

P(r,,z)

P(r,)r 0

0 2

P(r, ,z): r 0, 0 2 , z - , +

r cos sin x yu u u222222222222222222222222222222222222222222

sin cos θ x yu u u222222222222222222222222222222222222222222

andFor both:

u22222222222222 zu

22222222222222

x r cos sin u u u222222222222222222222222222222222222222222

y r sin cos u u u222222222222222222222222222222222222222222

and

z zu u2222222222222222222222222222

3-dim.:

Summer School 2007

B. Rossetto 8

1. Coordinates Transformations

ru22222222222222

r

x

y

z

0u

22222222222222zu

22222222222222

r

z

1 – From polar to cartesian x = r cos y = r sin z = z

1 – From cartesian to polar

2 2r = x y

y = Arctg and sign of x or y

x

z = z

Summer School 2007

B. Rossetto 9

1. Coordinates Spherical

ru22222222222222

r

r sin

x

y

z

0

u22222222222222

u22222222222222

r sin

z

P(r, , ) : r 0, 0 2 , 0

x r sin cos

y r sin sin

z r cos

2 - Transformations

2 2 2

2 2

r = x y z

y = Arctan and sign of x or y

x

x +y = Arctan , 0

z

1 - Definitions

Summer School 2007

B. Rossetto 10

1. Coordinates

System of coordinates

Differential line elements along the coordinate axis of the system

Cartesian (x, y, z) dx, dy, dz

Cylindrical (r, , z) dr, r d, dz (cf applications 2, 4)

Spherical (r, , ) dr, r sind, r d(cf applications 5, 6)

Definition of radianAB

(rad)r

(for the disk : = 2 radians)

AB : length of the oriented arc of circonferencer

0r

A

B AB r

From this definition:

Summer School 2007

B. Rossetto 11

1. Applications (1)

1 – Triangle area from the equation

b

pb = h

x0

h

rx

0-r

2 – Surface of a disk from the equation

If b is the basis and h the height:

- Find the equation of the line OA- Use a property of integrals

A

- Find the equation of the circle- Use a property of integrals

Summer School 2007

B. Rossetto 12

1. Applications (1)

1 – Triangle area from the equation

b

f(x) = px

pb = h

x0

h

rx

0-r

2 2f(x) = ± r - x

2 – Surface of a disk from the equation

If b is the basis and h the height:

Equation: f(x)=px

2 2Equation : f(x) = ± r - x

Summer School 2007

B. Rossetto 13

1. Applications (1)

b b2

0 0

1 1A = f(x)dx = px dx = pb = hb

2 2

1 – Triangle area from the equation

b

f(x) = px

pb = h

x0

h

rx

0-r

2 2f(x) = ± r - x

2 – Surface of a disk from the equation

r2 2

0

A = 4 r - x dxr 2

0

x= 4 r 1 - dx

r

x dxsinθ = , cos θ dθ =

r rLet

22 2

0

A = 4r cos θ dθ

2

2 2

0

= 2r 1 + cos 2θ dθ = r

If b is the basis and h the height:

Summer School 2007

B. Rossetto 14

1. Applications (2)

0

r d

r

r

2 - Surface of a disk using polar cordinates The contribution to the area of the sector having r as length and as angle is the aerea of the triangle having r as basis and rd as height:

r0

rd

AB

dl AB rd

1 - Length of a circonference Contribution of the angle d to the length:

Total length: sum of contributions:

Total area : A=

dA=

2

0

L dl

Summer School 2007

B. Rossetto 15

1. Applications (2)

22 2

0

1A = r dθ = r

2

0

r d

r

r

21dA = r dθ

2

2 - Area of a disk using polar cordinates The contribution to the area of the sector having r as length and as angle is the aerea of the triangle having r as basis and rd as height:

Total aerea :

r0

rd

AB AB rd

1 - Length of a circonference Contribution of the angle d to the length:

Total length :2

0

L = rdθ = 2 r

Summer School 2007

B. Rossetto 16

1. Applications (3)

1 – Surface of a triangle (base b , height: h)

b

f(x)=px

pb=h

x0

h

2 – Surface of the ellipse

0a

b2 2

2 2x y

+ = 1a b

dA=

A=

Contribution of the infinitesimal surface dy.dx :

dA =

Equation:

Summer School 2007

B. Rossetto 17

1. Applications (3)

1 – Surface of a triangle (base b , height: h)

b

f(x)=px

pb=h

x0

h

pxb b2

0 0 0

1 1A = dy dx = pxdx = pb = hb

2 2

2 – Surface of the ellipse

x dxLet sinθ = , cosθdθ = . We find : ab

a a

2xb 1-

2a aa 2

20 y=0 0

xdxdy = 4 dy dx = 4b 1- dx

a

0

a

b

2 2

2 2x y

+ = 1a b

Area:

Contribution of the infinitesimal surface dy.dx : dA = dy.dx

Summer School 2007

B. Rossetto 18

1. Applications (4)

x

y

z Cylinder area

0r

x

y

z

0dz

h

rd

1 - Double integral: contribution of theelement of length r d height dz: rddz

2 - Simple integral: contribution of the element of length 2r height: dz:2rdz

dzdA=

A=

dA=

A=

Summer School 2007

B. Rossetto 19

1. Applications (4)

x

y

z Cylinder area

h 2

0 0

A r dθ dz =2 rh

h

0

A = 2 r dz = 2 rh

0r

x

y

z

0dz

h

rd

1 - Double integral: contribution of theelement of length r d height dz:dA=rddz

2 - Simple integral: contribution of the element of length 2r height: dz:dA=2rdz

dz

Summer School 2007

B. Rossetto 20

1. Applications (5)

r sin

x

y

z

rd

r

length: 2 r sin, width: r d

Total area: A=

Sphere area using symetries (simple integral): contribution of the element:

Sphere area using double integral

Contribution of the elementlenght : r sin d, width: r d

r sin

0

0

r

rd

rsind

Area : A = sum of contributions

dA=

dA=

Summer School 2007

B. Rossetto 21

1. Applications (5)

r sin

x

y

z

rd

r

length: 2 r sin, width: r d dA = 2 r2 sin d

Total area: 2 2

0

A = 2 r sinφ dφ = 4 r

Sphere area using symetries (simple integral): contribution of the element:

Sphere area using double integral

Contribution of the elementlenght : r sin d, width: r d

22 2 2

0 0 0

A = r d sin d = 2 r sin d = 4 r

r sin

0

0

r

rd

rsind

dA = r2 sin d d

Summer School 2007

B. Rossetto 22

1. Applications (6)

r

r sin

x

y

z

r d

r sin d

r

Sphere volume (or mass if homogeneous)

Contribution of the element length : r sin d weidth : r d height : dr

r sin

0

0

Summer School 2007

B. Rossetto 23

1. Applications (6)

r

r sin

x

y

z

r d

r sin d

r

Sphere volume (or mass if homogeneous)Contribution of the element length : r sin d weidth : r d height : dr

r 22

0 0 0

V r sinφ dφ dθ dr

r2 3

0

4V = 4 r dr = r

3

r sin

0

0

2dV=r sinφ dφ dθ