supergrid update (milwaukee, 3 april 2003).1. supergrid update (milwaukee, 3 april 2003).2 supergrid...

26
SuperGrid Update (Milwaukee, 3 April 2003) .1

Upload: ernest-mitchell

Post on 20-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update (Milwaukee, 3 April 2003) .1

Page 2: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update (Milwaukee, 3 April 2003) .2

SuperGrid Update

EPRI Superconductivity Working Group3 April 2003

Milwaukee, WI

Paul M. GrantScience Fellow

SS&T

[email protected] Power Research Institute

Palo Alto, California USA

Page 3: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .3

1967 SC Cable !

100 GW dc, 1000 km !

Page 4: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .4

Garwin-Matisoo

Superconducting Lines for the Transmission of Large Amounts of Electric Power over Great Distances,R. L. Garwin and J. Matisoo, Proceedings of the IEEE 55, 538 (1967)

Page 5: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .5

Garwin-Matisoo

• Nb3Sn Wire• TC = 9 K• LHe liquid-vapor

cooled• LN2 heat shield

Page 6: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .6

Electricity Pipe

P.M. Grant, S. Schoenung, W. Hassenzahl, EPRI Report 8065-12, 1997

Initial EPRIstudy on longdistance (1000 km)HTSC dc cablecooled by liquidnitrogen -- 1997 --

Page 7: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .7

P.M. Grant, The Industrial Physicist, Feb/March Issue, 2002

http://www.aip.org/tip/INPHFA/vol-8/iss-1/p22.pdf

SupermarketSchool Home

Family Car

DNA-to-order.com

Nuclearplant

H2

H2

MgB2

SuperCity

Page 8: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .8

“Continential SuperGrid Workshop,” UIUC/Rockefeller U., Palo Alto, Nov. 2002

http://www.epri.com/journal/details.asp?doctype=features&id=511

SuperGrid

Page 9: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .9

Chicago!

PowerPlants

SuperCitySuperGr

id

Page 10: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .10

2 April 2003: abcNEWS.com

They are proposing something they call a SuperGrid.”

Page 11: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .11

SuperCables

H2 H2

Circuit #1 +v I-v

I

H2 H2

Circuit #2

Multiple circuitscan be laid in single tunnel

+v-v

II

Page 12: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .12

SuperCable

HV Insulation

“Super-Insulation”

DO

Hydrogen

DH2

Superconductor

tsc

Page 13: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .14

Power Flows

PH2 = 2(QρvA)H2, where PH2 = Chemical power flow Q = Gibbs H2 oxidation energy (2.46 eV per mol H2)ρ = H2 Density v = H2 Flow Rate A = Cross-sectional area of H2 cryotube PSC = 2|V|IASC, where PSC = Electric power flowV = Voltage to neutral (ground)I = SupercurrentASC = Cross-sectional area of superconducting annulus

Hydrogen

Electricity

Page 14: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .15

3183.8110500

“Equivalent” Current

Density (A/cm2)

H2 Flow Rate (m/sec)

Inner Pipe Diameter, DH2

(cm)

Power (MW)

Hydrogen (LH2, 20 K)

Electric & H2 Power

0.12525,000100,000+/- 50001000

Annular Wall

Thickness (cm)

Critical Current Density (A/cm2)

Current (A)Voltage (V)Power (MW)

Electricity

Page 15: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .16

Thermal Losses

WR = 0.5εσ (T4amb – T

4SC), where

 WR = Power radiated in as watts/unit areaσ = 5.67×10-12 W/cm2K4

Tamb = 300 KTSC = 20 Kε = 0.05 per inner and outer tube surfaceDSC = 10 cm WR = 3.6 W/m Superinsulation: WR

f = WR/(n-1), where n = number of layers Target: WR

f = 0.5 W/m requires ~10 layers Other addenda (convection, conduction): WA = 0.5 W/m WT = WR

f + WA = 1.0 W/m

RadiationLosses

Page 16: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .17

Heat Removal

dT/dx = WT/(ρvCPA)H2, where dT/dx = Temp rise along cable, K/mWT = Thermal in-leak per unit Lengthρ = H2 Density v = H2 Flow RateCP = H2 Heat Capacity A = Cross-sectional area of H2 cryotube

Take WT = 1.0 W/m, then dT/dx = 1.8910-5 K/m, Or, 0.2 K over a 10 km distance

Page 17: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .18

Remaining Issues

• Current stabilization via voltage control• Magnetic forces• Hydrogen gas cooling and transport• Pumping losses• Hydrogen storage• Costs !!

Page 18: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .19

Hindenburg Hysteria

The Hindenburg did not crashBecause of a hydrogen leak!

Page 19: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .20

Tunnels

Yamanashi MagLev Test Line

Page 20: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .21

Tunnels for the SuperGrid

• Joint efforts with research groups, engineering firms, contractors, and machine manufactures to develop and demonstrate appropriate excavation and tunneling systems

• Link directional drilling, micro-tunneling and larger tunnel boring machine technologies

• Support demonstration projects using advanced technologies for driving tunnels (e.g., VLHC @ Fermilab)

What’s Needed:

Page 21: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .22

Rock Group

Page 22: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .23

Transformer Form Factors

Waukasha Transformer Sizes

Weight Width Length

300 MVA

lbs, in 500,000 80 200

tons, ft 250 6.67 16.67

30 MVA Conventional

lbs, in 96,000 108 108

tons, ft 48 9.00 9.00

30 MVA Superconducting

lbs, in 32,000 36 72

tons, ft 16 3 6

Page 23: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .24

“Heavy Movers”

CalTrans/CHP

"18" Wheelers: 20,000 lbs/axle

= 80,000 lbs gross

= 40 tons

Page 24: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .25

“Heavy Lifters”

Helicopters

Boeing Chinook CH-47F

Max Gross Weight: 50,000 lbs = 25 tons

Empty: 23,401 lbs = 11.70 tons

"Freight" 26,599 lbs = 13.30 tons

Planes

Lockheed C-5A Galaxy

4000 Mile Range: 250,000 lbs = 125 tons

8000 Mile Range: 125,000 lbs = 63 tons

Page 25: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .26

A Moveable Substation

Page 26: SuperGrid Update (Milwaukee, 3 April 2003).1. SuperGrid Update (Milwaukee, 3 April 2003).2 SuperGrid Update EPRI Superconductivity Working Group 3 April

SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .27

Supergrid Opportunities• Long-term project• Large capital costs for installation• Special requirements for installing the grid: tunnel size, lengths of

runs, ranges of ground conditions to be encountered. • Trend with time: less space and more difficult access for installing

utlities. Less public tolerance for disturbance• Increasing use of tunneling and trenchless technologies rather

than trenching and open excavation. • Focus for improving tunneling technology for supergrid:

– Contracting practices: mitigation and assignment of risk– Joint efforts with research groups, engineering firms, contractors, and

machine manufactures to develop and demonstrate excavation and tunneling systems that will fit the requirements of the project

– Link directional drilling, micro-tunneling and larger tunnel boring machine technologies.

– Support demonstration projects using advanced technologies for driving tunnels.