synchronization patterns in coupled optoelectronic oscillators caitlin r. s. williams university of...

52
Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Upload: cody-bell

Post on 17-Jan-2016

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Synchronization patterns in coupled optoelectronic oscillators

Caitlin R. S. WilliamsUniversity of Maryland

Dissertation DefenseTuesday 13 August 2013

Page 2: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

My Research• Random Number Generation:

– C. R. S. Williams, J. C. Salevan, X. Li, R. Roy, and T. E. Murphy. “Fast physical random number generator using amplified spontaneous emission.” Optics Express, 18(23):23584-23597 (2010).

• Optoelectronic Oscillators and Synchronization:– T. E. Murphy, A. B. Cohen, B. Ravoori, K. R. B. Schmitt, A. V. Setty, F. Sorrentino, C. R. S.

Williams, E. Ott, and R. Roy. “Complex dynamics and synchronization of delayed-feedback nonlinear oscillators.” Phil. Trans. R. Soc. A, 368(1911):343-366 (2010).

– C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, “Group Synchrony in an Experimental System of Delay-coupled Optoelectronic Oscillators,” Conference Proceedings of NOLTA2012, 70-73 (2012).

– C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll. “Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators.” Phys. Rev. Lett., 110:064104 (2013).

– C. R. S. Williams, F. Sorrentino, T. E. Murphy, and R. Roy. “Synchronization States and Multistability in a Ring of Periodic Oscillators: Experimentally Variable Coupling Delays.” Manuscript submitted.

Page 3: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Outline

• Introduction: Dynamical Systems and Synchronization

• Synchrony of periodic oscillators in a unidirectional ring

• Group synchrony of chaotic oscillators

3

Page 4: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Pendulum: The Simplest Dynamical System

4

• For an ideal, small amplitude oscillation:

θ(t) = θ0 cos(2πt

T)

T = 2πL

g

• Not so simple for large amplitudes or real pendulum!

Image: Wikipedia.org

Page 5: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Weather: Example of Chaos

5

Lorenz System:

• Deterministic• Sensitive to initial

conditions€

˙ x = σ (y − x)

˙ y = x(ρ − z) − y

˙ z = xy − βz

R. C. Hilborn, Chaos and Nonlinear Dynamics.

Image: Wikipedia.org

Page 7: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Synchronization Example: Millennium Bridge

Bridge-pedestrian coupling created pedestrian synchrony and bridge swaying!

7S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt and E. Ott, Nature 438, 43-44 (2005).

Page 8: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Synchronization of Brain Signals

8

Image: Wikipedia.org

Page 9: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Experiment

9

Page 10: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Experiment

• Insert photo of experiment hereLaser

10

Mach-Zehnder Modulator

Digital Signal Processing (DSP) Board

Photoreceivers andVoltage Amplifier

Page 11: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Experimental Diagram

11

Page 12: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Nonlinearity

12

-4 -2 0 2 40

0.5

1

VRF

(V)

tran

sm

issio

n

V

V

oo V

VPP

2

cos2

Transmission:

P

V

Image: B. Ravoori

Page 13: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Single Node Block Diagram

13

Page 14: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Dynamics of a Single Node

β

14

B. Ravoori, Ph.D. Dissertation, 2011.A. B. Cohen, Ph.D. Dissertation, 2011.T. E. Murphy, et al., PTRSA (2010).

Page 15: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Dynamics of a Single Node

15

B. Ravoori, Ph.D. Dissertation, 2011.A. B. Cohen, Ph.D. Dissertation, 2011.T. E. Murphy, A. B. Cohen, B. Ravoori, K. R. B. Schmitt, A. V. Setty, F. Sorrentino, C. R. S. Williams, E. Ott, PTRSA 368 (2010).

Page 16: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Four Node Network: Flexible Experiment

Page 17: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Synchronization TypesIdentical,

isochronalPhase Lag

(amplitude)

17

Page 18: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Phase Synchrony States

• Control of phase synchronization states in coupled oscillators is interesting because of neurological disorders and other phenomena observed in coupled neurons

• Interested in controlling synchronization in coupled oscillators from complete synchrony, cluster synchrony, and different types of lag synchrony, specifically ‘splay phase’ synchrony

18C. R. S. Williams, F. Sorrentino, T. E. Murphy, and R. Roy, Manuscript submitted.

Page 19: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Coupled Periodic Oscillators

Page 20: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

• Coupled Neurons: Transitions from lag to isochronal synchrony

Unidirectional Ring of Neurons

20B. Adhikari, et al. Chaos 21, 023116 (2011).

v is membrane potentialh, m are membrane channel gating variables

Page 21: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Background

• In numerical and analytical studies, changing the coupling delay has produced different synchronization states

21C. Choe, et al., PRE 81, 025205 (2010).

Page 22: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Experiment on Unidirectional Ring

22

Page 23: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

dui (t)

dt=Eui (t) −Fβ cos2(x i (t − τ f ) + φ0)

x i (t) =G(ui (t) + ε K ij[u j (t − τ c + τ f ) −ui (t)])j

Mathematical Model

i =1,2,3,4 (node)

K =

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

(coupling matrix)

23

Page 24: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Mathematical Model

β = 1.2 ( )feedback strength

ε =0.8 (coupling strength)

τ f =1.4 ms (feedback delay)

τ c ≥1.4 ms (coupling delay)

φ0 = π4 (Modulator bias)

ωL = 2π • 2.5kHz

ωH = 2π • 0.1kHz

E =−(ωH + ωL ) −ωL

ωH 0

⎝ ⎜

⎠ ⎟

F =ωL

0

⎝ ⎜

⎠ ⎟

G = (1 0)

dui (t)

dt=Eui (t) −Fβ cos2(x i (t − τ f ) + φ0)

x i (t) =G(ui (t) + ε K ij[u j (t − τ c + τ f ) −ui (t)])j

24

Page 25: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Isochronal Synchrony(Phase = 0)

Tuning Coupling Delay

Experiment Simulation

fc

25

Page 26: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Splay-phase (Lag) Synchrony

(Phase = π/2)

c =1.3τ f

Tuning Coupling Delay

Experiment Simulation

26

Page 27: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

c =1.5τ f

Cluster (Lag) Synchrony(Phase = π)

Tuning Coupling Delay

Experiment Simulation

27

Page 28: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

c =1.8τ f

Splay-phase (Lag) Synchrony

(Phase = 3 π/2)

Tuning Coupling Delay

Experiment Simulation

28

Page 29: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Varying Coupling Delay

c (ms)

Ph

ase

Re

latio

nsh

ip

1.4 1.8 2.2 2.6

3pi/2

pi

pi/2

00

20

40

60

80

100

2

3

2

0

Experiment10 Measurements per delay

Simulation2000 Random initial conditions per delay

c (ms)

Ph

ase

Re

latio

nsh

ip

1.4 1.8 2.2 2.6

3pi/2

pi

pi/2

0

0

20

40

60

80

100

Frequency of Occurrence (%

)

c (ms)

Ph

ase

Re

latio

nsh

ip

1.4 1.8 2.2 2.6

3pi/2

pi

pi/2

0

0

20

40

60

80

100

29

Page 30: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Predicted Stability

30

ΔX(t) = ΔX(t0)λmax ( t−t0 )

e

λmax

Page 31: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Coupled Chaotic Oscillators

Page 32: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

• Groups of different oscillators• Intra-group identical synchrony, but not inter-

group• This has been studied numerically and

analytically, but previously not in an experiment

Group Synchrony

32Dahms, Lehnert, and Schöll, PRE 86, 016202 (2012)C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, PRL 110, 064104 (2013)

Page 33: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

• Special case of group synchrony with identical nodes

Cluster Synchrony

33

Page 34: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Motivation

• Neurons can display a variety of dynamical behaviors, and they are coupled to each other

34J. Lapierre, et al., Journal of Neuroscience 27 (44), 2007.

Page 35: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Experimental Network Structure

35

Page 36: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Synchrony of Coupled Groups

36

Page 37: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Mathematical Model

j

mi

mj

mij

mi

mi

mi

mmi

mi

ttKttx

txtdt

td

))]()(()([)(

))((cos)()(

)()'()()()(

0)(2)()(

)(

uuuG

FEuu

ε

β

i 1,2 (node)m,m' A,B (group) (m' m)

K =0 K(A )

K(B ) 0

⎝ ⎜

⎠ ⎟=

1

2

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

(coupling matrix)

37

Page 38: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Mathematical Model

β (A ),β (B ) from 0 to 10 (feedback strength)

ε = 0.8 (coupling strength)

τ =1.4 ms (feedback and coupling delay)

φ0 = π4 (Modulator bias)

ωL = 2π • 2.5kHz

ωH = 2π • 0.1kHz

E =−(ωH + ωL ) −ωL

ωH 0

⎝ ⎜

⎠ ⎟

F =ωL

0

⎝ ⎜

⎠ ⎟

G = (1 0)

j

mi

mj

mij

mi

mi

mi

mmi

mi

ttKttx

txtdt

td

))]()(()([)(

))((cos)()(

)()'()()()(

0)(2)()(

)(

uuuG

FEuu

ε

β

38

Page 39: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Stability of Group Synchrony

39C. R. S. Williams, et al., PRL 110 (2013).

Page 40: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Global Synchronyβ(A)=β(B) = 3.3 Simulation

Experiment

40

Page 41: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Cluster Synchronyβ(A)=β(B) = 7.6 Simulation

Experiment

41

Page 42: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Group Synchronyβ(A)=7.6β(B) = 3.3

Simulation

Experiment

42

Page 43: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Dissimilar Nodesβ(A) = 7.6 β(B) = 3.3

43

Autocorrelation Function Autocorrelation Function

Page 44: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Coupled Nodes

44

Cross-correlation Function

Page 45: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Group Synchrony and Time-lagged Phase Synchrony

Group B Traces Delayed

45

Page 46: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Group Sync for Different Structures

46

Page 47: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Group Sync for Different Structures

47

Page 48: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Group Sync for Different Structures

48

Page 49: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Larger Networks

49

Page 50: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Conclusions I

• Shown transitions between isochronal, cluster, and splay-phase synchrony by varying coupling delays between periodic oscillators

• Have an experiment with tunable coupling delay

• Tested stability calculations and predictions with experiments and simulations

50

Page 51: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Conclusions II

• Experimental demonstration of global, cluster and group synchrony

• Stability calculations extended to group synchrony with time-delayed systems, used to correctly predict experimental results of this optoelectronic system, with coupled non-identical nodes

• Results can be generalized to groups of different sizes, and to different coupling configurations

51

Page 52: Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

Acknowledgements

• Thomas E. Murphy, Rajarshi Roy (University of Maryland)

• Francesco Sorrentino (Mechanical Engineering, University of New Mexico)

• Thomas Dahms, Eckehard Schöll (Tecnische Universität Berlin)

• MURI grant ONR N000140710734 (CRSW, TEM, RR)• DFG in the framework of SFB 910 (TD, ES)• Adam Cohen and Bhargava Ravoori• Hien Dao and Aaron Hagerstrom

52