[tanate matum] identification of critical parameters of flows in multi-narrow gap coaxial short...

Upload: tont-ekawuth

Post on 02-Mar-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 [Tanate Matum] Identification of Critical Parameters of Flows in Multi-Narrow Gap Coaxial Short Cylinder

    1/8

    TSF-017225

    234 7 2552

    Identification of Critical Parameters of Flows in Multi-Narrow Gap

    Coaxial Short Cylinder

    1 1,*

    1

    The complex flows in Multi-Narrow Gap Coaxial Short Cylinder are the combination of Couetteflow in a four-couple coaxial short cylinders with different radius that comprise the axial bound influences

    -

    10800

    *: [email protected],: (662) 913-2500 8101, : (662) 586-9541

    4

    290 320

    :, ,,, ,-, ,

    Abstract

  • 7/26/2019 [Tanate Matum] Identification of Critical Parameters of Flows in Multi-Narrow Gap Coaxial Short Cylinder

    2/8

    TSF-017225

    along each set of cylinder. The first set of Multi-Narrow Gap Coaxial Short Cylinder turns with constantangular velocity while the second set is kept unmoving. The characteristics of this flow are the instabilityof flow pattern which occur when the angular velocity of the first set of Multi -Narrow Gap Coaxial Short

    Cylinder reaches some critical values. This research studies the critical angular velocity takes place fromthe evolution of the laminar regime to the transition and from the transition regime to the turbulenceregime. With the help of finite volume method, the system of continuity and momentum equation is solvedand the flow behavior based on the turbulence model, Large Eddy Simulation, in Computational FluidDynamic commercial software is visualized through the numerical simulation.Purposely, this research canbe identified the subcritical angular velocity and the supercritical angular velocity which are equal to 290rpm and 320 rpm, respectively. In addition, the flow also changes from Couette flow to Taylor vorticesand from Taylor vortices to wavy vortices when the angular velocities reach the critical values.

    Keywords:Coaxial Cylinder, Critical Velocity, Instability,LES,CFD, Couette flow, Taylor vortices flow,wavy vortices flow

    1.

    3 3

    " "

    ( )

    Maurice Marie

    Alfred Couette

    -

    Sir GeoffreyIngram Taylor

    " (Taylor vortices)" "

    http://en.wikipedia.org/w/index.php?title=Maurice_Marie_Alfred_Couette&redirect=nohttp://en.wikipedia.org/w/index.php?title=Maurice_Marie_Alfred_Couette&redirect=nohttp://en.wikipedia.org/w/index.php?title=Maurice_Marie_Alfred_Couette&redirect=nohttp://en.wikipedia.org/w/index.php?title=Maurice_Marie_Alfred_Couette&redirect=nohttp://en.wikipedia.org/w/index.php?title=Maurice_Marie_Alfred_Couette&redirect=nohttp://en.wikipedia.org/w/index.php?title=Maurice_Marie_Alfred_Couette&redirect=nohttp://en.wikipedia.org/w/index.php?title=Maurice_Marie_Alfred_Couette&redirect=nohttp://en.wikipedia.org/w/index.php?title=Maurice_Marie_Alfred_Couette&redirect=no
  • 7/26/2019 [Tanate Matum] Identification of Critical Parameters of Flows in Multi-Narrow Gap Coaxial Short Cylinder

    3/8

    TSF-017225

    (subcritical velocity)"

    "(Wavy vortices)"

    S.T.Wereley[2,3] particle image velocimetry(PIV)

    P.S.Marcus[4] shiftt and reflect D. Pirr[5] (DNS)

    O.Czarny [6,7] - J.Y.Hwang [8] Wereley and Lueptow

    I. Raspo [9] L.A. Bordag [10] S.Kumar [11]

    -

    U

    m s P

    m s U m s u m s 2m s k g m s 3kg m .rpm y

    +

    Py m

    w 2

    N m

    2. 2.1

    ( , , )r z

    1 2( , , )

    r zU U U U

    =

    ( 1)

    ( , , )r z

    P P P P

    =

    (2)- 3 4

    0U =

    (3)21( )dU U U U U

    dt

    + = +

    (4)

  • 7/26/2019 [Tanate Matum] Identification of Critical Parameters of Flows in Multi-Narrow Gap Coaxial Short Cylinder

    4/8

    TSF-017225

    (Fluctuation) 5 6

    U U u= +

    (5)

    P P p= +

    (6)4 5 - 7 8

    )( 0U u+ =

    (7)

    { }2

    )) )

    ) )

    (( (

    1( (

    U uU u U u

    U u U u

    d

    dt

    + + +

    + +

    +

    = +

    (8)

    y+ (wall boundedflow) y + 9 10

    Py u y

    += (9)

    wu

    = (10)

    2.2

    1

    3998.2 kg m =

    0.001003 k g m s =

    (RAM) (CPU)

    1

    45 r z 23,200 40 40 100 (Hexahedral) (Structure Grid) 2,320,000 2

  • 7/26/2019 [Tanate Matum] Identification of Critical Parameters of Flows in Multi-Narrow Gap Coaxial Short Cylinder

    5/8

    TSF-017225

    y + 1 1y + = 400

    5

    1.27 10 m

    51.0 10 m 2 r z

    3.

    ANSYS 12.0 (Pressure basedsolver) - (Pressure-Velocity Coupling) PISO

    2 r

    (Discretization) PRESTO Bounded Central

    Differencing Large Eddy Simulation (LES)

    SGS Smagorinsky - Lilly 3

    1

    ( )0,r z

    U U U U r

    = = = =

    (8)

    2

    ( )0r z

    U U U U

    = = = =

    (9)

    (No-slip condition)

    3

    ( )0r zU U U U = = = =

    (10)

    4

    1P atm=

    (11)

    5 Periodic

    3

    4.

    (residuals) - 10 -3

    r z

    (transient) 4

    90 r z

    4

    32

    1

    4

    3

    5

  • 7/26/2019 [Tanate Matum] Identification of Critical Parameters of Flows in Multi-Narrow Gap Coaxial Short Cylinder

    6/8

    TSF-017225

    -0.001, -0.002, -0.003, -0.004, -0.005 5

    4 z 90

    5 r 90

    4.1 -

    290 4 5

    r z 6

    6

    - 2 4 7 8

    1 3

    6 r z 290

    7 r z 290

  • 7/26/2019 [Tanate Matum] Identification of Critical Parameters of Flows in Multi-Narrow Gap Coaxial Short Cylinder

    7/8

    TSF-017225

    8

    4.2

    320 2 4 9

    10 shift and reflect 11 4

    1 3

    5.

    9 r z 320

    10 r z 320

    11

  • 7/26/2019 [Tanate Matum] Identification of Critical Parameters of Flows in Multi-Narrow Gap Coaxial Short Cylinder

    8/8

    TSF-017225

    90 290

    290 320 320

    6.

    (.) (DMIE)

    7.

    [1] G.I.Taylor,(1923). Stability of a viscous liquidcontained between two rotating cylinders. Philos.

    Trans. R. Soc. London, Ser. A, 223,289 343.

    [2] S.T.Wereley and R.M.Lueptow. (1998). Spatio-

    temporal character of non-wavy and wavy Taylor-

    Couette flow,J. Fluid Mech, Vol. 364, pp. 5980.

    [3] A.Akonur and R.M.Lueptow.(2003). Three-

    dimensional velocity field for wavy TaylorCouetteflow,Phys. Fluids,Vol. 15, April 2003, No. 4.

    [4] P.S.Marcus.(1984) Simulation of Taylor

    Couette flow.Part 2 Numerical results for wavy

    cortex flow with one traveling wave. J.Fluid

    Mech.Vol.1466,pp.65-113

    [5] D.Pirr and M.Quadrio.(2008). Direct

    numerical simulation of turbulent TaylorCouette

    flow, European Journal of Mechanics B/Fluids, vol.

    27, pp. 552566.

    [6] O.Czarny, E.Serre, P.Bontoux and

    R.M.Lueptow.(2001). Identification of complex

    flows in TaylorCouette counter-rotating cavities,

    C. R. Acad. Sci. Paris, t. 329, Srie II b, pp. 727

    733.

    [7] O.Czarny, E.Serre, P.Bontoux and

    R.M.Lueptow (2002). Spiral and Wavy Vortex

    Flows in Short Counter-Rotating TaylorCouette

    Cells, Theoretical and ComputationalFluidDynamics, Vol. 16, pp.5 15

    [8] J. Y. Hwang and K. S. Yang. (2004).

    Numerical study of TaylorCouette flow with an

    axial flow, Computers &FluidsVol. 33, pp. 97

    118

    [9] I. Raspo, E. Crespo del Arco. (2003).

    Instability in a rotating channelcavity system with

    an axial through-flow, International Journal of Heat

    and Fluid FlowVol. 24, pp. 41 53.

    [10] L. A. Bordag, O. G. Chkhetiani, M.Frohner

    and V. Myrnyy. (2005). Interaction of a rotational

    motion and an axial flow in small geometries for a

    TaylorCouette problem, Fluids and Structures,Vol. 20, pp. 621 641

    [11] S.Kumar, J.M.Bergada and J.Watton, (2009).

    Axial piston pump grooved slipper analysis by

    CFD simulation of three-dimensional NVS

    equation in cylindrical coordinates, Computers &

    Fluids, vol. 38, pp. 648 663.