test plan template - rochester institute of...

28

Click here to load reader

Upload: vanliem

Post on 06-May-2018

215 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

P10505 Low Energy Printing - Cold Pressure Fusing 2Test Plans & Test Results

By: Aniket Arora, David Hatch, Eric Wilcox, Jon Burville, and Thomas Stojanov

Table of contents

1. MSD I: PRELIMINARY TEST PLAN............................................................31.1. Introduction and Overview.............................................................................................................3

1.2. Systems and Critical Components being tested.............................................................................4

1.3. Approval: Team, Guide, Technical TA, Customer/Sponsor........................................................6

1.4. Test Strategy.....................................................................................................................................7

1.5. Definitions: Important Terminology............................................................................................10

2. MSD II: FINAL TEST PLAN........................................................................122.1. Introduction....................................................................................................................................12

2.2. Test Structure, Sampling Techniques/Safety and Problem Reporting.....................................13

2.3. Measurement Capability, Equipment..........................................................................................16

2.4. Test Conditions, Setup Instructions.............................................................................................16

2.5. Sponsor/Customer, Site Related, Requests..................................................................................18

2.6. DOE Test Matrix............................................................................................................................19

2.7. Assumptions....................................................................................................................................20

MSD II – WKS 3-10 DESIGN TEST VERIFICATION..........................................212.8. Test Results.....................................................................................................................................21

2.9. Logistics and Documentation........................................................................................................21

2.10. Definition of a Successful Test, Pass / Fail Criteria....................................................................21

2.11. Contingencies/ Mitigation for Preliminary or Insufficient Results...........................................21

2.12. Analysis of Data – Design Summary............................................................................................21

2.13. Conclusion or Design Summary....................................................................................................21

2.14. Function/ Performance Reviews...................................................................................................21

2.15. References.......................................................................................................................................21

2.16. Appendices......................................................................................................................................22

RIT KGCOE MSD Program Page 1 Revision:

Page 2: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

P10505 Low Energy Printing - Cold Pressure Fusing 2Test Plans & Test Results

1. MSD I: PRELIMINARY TEST PLAN

1.1. Introduction and OverviewProject Purpose

The purpose of this year’s project is to design and test a fixture that is able to uniformly

fuse toner on the paper solely based on pressure instead of heat. This technology is

expected to reduce the overall energy consumed in the printing process.

Project Background

This project is the second part of the Cold Pressure Fusing project at Xerox. The project

last year (P09505) was focused at designing a text fixture that was capable of fusing

toner with high pressure instead of heat. This year’s project (P10505) is focused mainly

at optimizing the design from last year and testing the design under various

configurations.

Project Summary (provided by Xerox)

It is broadly recognized that xerographic digital printers are quite energy intensive and

as customers become more and more environmentally conscious they are demanding

improvements. The ability to be more energy efficient is not just the "green" thing to do;

it is increasingly becoming a significant competitive advantage. In addition, all print

engine providers, Xerox, HP, Ricoh, Samsung, Lexmark, Kodak, etc. strive to meet

more and more stringent Energy Star and other certification requirements. While print

engine providers have considerably reduced the power required to print at a given

process speed over the last decade, there still is opportunity and a need to further

reduce printer power. A large share of any xerographic printer power is consumed by

the fusing sub-system: where toner is heated well above its melting point, so as to

enable heat flow, coalescence and paper adhesion. Improved low energy fusing is the

target for this project.

RIT KGCOE MSD Program Page 2 Revision:

Page 3: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

Project testing plan

The testing for this project will encompass a full factorial DOE with 5 factors: skew

angle, load, compliance, paper orientation and paper weight. The output data from the

experiment will include the percentage of fusing and uniformity as metrics. These

outputs will be measured using the Smudge test (described later).

1.2. Systems and Critical Components being tested

The system level diagram consists of five input variables:

1. Paper Orientation – This is the direction the paper is fed into the fuser. This

factor has 2 levels: Landscape and Portrait. These levels affect the overall

print quality as the forces acting on the main rollers will change according to

the length of the paper in contact with the rollers. It is expected that the

RIT KGCOE MSD Program Page 3 Revision:

Figure 1: System level design (block diagram)

Page 4: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

portrait configuration will cause a lower deflection as compared to the

Landscape configuration.

2. Paper Weight – The system needs to accommodate for different paper

weights. The paper weight factor has two levels: 20lb and 24 lb. The weight

of the paper in the system affects the overall paper thickness that goes

through the system. This thickness would affect the amount of load that is

exerted on the main rollers. It is assumed that the 24lb paper would exert

higher loads on the system because of greater thickness. To accommodate

for these load changes, the system is designed with compliance that can

adjust the load on the rollers.

3. Skew Angle – The system needs to be able to adjust to a minimum of three

different skew angles: 1.4°, 1.9° and 2.4°. These skew angles are defined as

the angle between the top main roller and the support rollers. The skew

angles concentrate the force of the support rollers towards the center of the

main top roller and hence help in reducing its deflection.

4. Compliance – The compliance in the system is required for adjusting to two

different paper weights. It is tested under two levels: Low and High. These

levels are important to decide the optimum level of compliance that would be

required for the system to adjust for the different paper weights. The

compliance also absorbs the ‘shock’ that the system undergoes as soon as

the paper enters the rollers.

5. Pressure/Load – The pressure or load is applied on the system at 4 points,

two on each side of the roller. The amount of load on the system can vary

from 50lbs – 150lbs for each of the four points. The load is measured by

Load Cells present on all four points and a signal conditioner will be used to

amplify the signal so that it is easily read in the DAQ system. The system is

analyzed under 2 different load conditions: 50lbs and 150lbs of weight on the

load points. These levels will help in the analysis of an optimum level for load

on the system.

RIT KGCOE MSD Program Page 4 Revision:

Page 5: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

1.3. Approval: Team, Guide, Technical TA, Customer/SponsorApproved by:

Team Members

i. Aniket Arora _____________________

ii. David Hatch _____________________

iii. Eric Wilcox _____________________

iv. Jon Burville _____________________

v. Thomas Stojanov _____________________

Guide i. Bill Nowak _____________________

Technical Teaching Assistant

i. Mike Zona _____________________

Customer/Sponsor

i. Grace Brewington _____________________

ii. Tony Condello _____________________

RIT KGCOE MSD Program Page 5 Revision:

Page 6: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

1.4. Test Strategyi. Product Specifications and Pass Criteria

Engr. Spec. # Imp. Source Specification (description) Unit of Measure Marginal Value Ideal Value Pass Criteria

ES4 1 Customer NeedPrototype will fuse print across 95% of the page

% fused, Width of unfused 90% fusing 95% fusing

90% of print fused according to

Xerox smudge test.

ES6 1 Customer NeedPrototype will vary in nip pressure less than 10%

Width of Pressure Indication, Xerox

Metric 10% variation 5% variation

Less than 10% variation on

pressure sensitive paper.

ES8 1 Customer NeedPrototype must be capable of adjusting to three skew angles

Number of Settings 3 angles Analog

3 sets of end plates at different

angles.

ES10 1 Customer NeedPrototype must adhere to Abaqus model created by Xerox Yes/No N/A Yes

Product follows all specs in the

Abaqus model.

ES12 1 Customer NeedPrototype must be able to reach a 1.9° skew angle Degrees 1.8°-2.0° 1.9°

1.9° end plate is manufacturable.

ES14 1 Customer Need

Prototype must be adjustable to the same skew angle to a 1/10th degree for ~25 runs

Standard Deviation

1/5th degree variation

1/10th degree variation

The % fusing does not change by more than 5%

ES16 1 Customer NeedPrototype vibration will be less than 3 lbs as measured by the load cells. Force 5 lbs 0 lbs

Load output stays within 5lbs while

running.

ES7 1 Customer Need

Prototype must accommodate both 20 and 24 lb paper while meeting all other specifications Yes/No

20 and 24lb paper

All paper weights

>90% fusing with no physical

damage to paper for 20 and 24lb.

ES3 2 Customer Need Prototype will minimally calendar print Qualitative Moderate NoneNo visible damage.

ES5 2 Customer Need

Prototype will produce trailing edge wrinkles less than once every twenty prints Number

1 wrinkle every 10 prints

No wrinkles ever

Number of wrinkles < 1 every

10 prints

ES11 3 Customer NeedFeed rate must not decrease by more than 15% Torque

15% reduction of speed

5% reduction of speed

Torque output does not show

>15% reduction.

ES1 3 ImpliedPrototype must be manufacturable within ~2 week

Time Required, Y/N 4 weeks 2 week

Time recorded for manufacture in

MSD 2 is < 4weeks.

ES15 3 ImpliedPrototype must be able to print >1000 copies without failure

Life Cycle (Number of Prints) 500 copies 1000

Outside scope of measurement.

ES2 4 Customer Need Prototype must cost less than $3000 Dollars $3,000 $1,500

Overall project cost <$3000 as

suggested by the BOM.

ES13 5 ImpliedPrototype must be dimensionally stable for a load of 4000 psi Force Vibration Stationary

No noticeable Vibration

ES9 5 ImpliedPrototype will take less than 60 sec. of user time to set up print Time Required 120 sec 0 sec.

Timing suggests time required <

120 sec.

Table 1: Engineering Specifications (Importance Scale, 1-Highest, 5-Lowest)

RIT KGCOE MSD Program Page 6 Revision:

Page 7: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

a. Functions (hardware) and Features (software, customer needs)

b. Test Equipment available

DAQ

1 Signal Conditioner

Motor

Power Supply

4 Load cells

Wires

P09505 Fixture

Pressure Sensitive Paper

Kill Switches

c. Test Equipment needed but not available

CPU

3 Signal Conditioners

Multi-meter

Tachometer

Dynamometer

Additionally, See BOM

ii. Phases of Testing

1.4.1.1. Component/ Device

1. Load Cells: The load cells provided to the group need to be tested to

check for load range compatibility and output voltage consistency.

2. Compliance washers: The compliance washers need to be tested for

spring factor (k) that is listed on the manufacturing specifications. The

spring factor for the washers (springs) can change overtime because of

repeated use or excessive force (fatigue).

3. Rollers: The rollers need to be checked for concentricity before they are

used for the project. They also need to be checked at pre-assigned

intervals between test runs.

RIT KGCOE MSD Program Page 7 Revision:

Page 8: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

4. Skew Angle: The skew angle needs to be checked for accuracy before

and during the course of the runs.

1.4.1.2. Subsystem

1. DAQ system: The DAQ system can be checked periodically by running

the load cells under known loads and checking for output in the VI. This

would ensure that the system is operating under the initial configuration.

The loads can be applied using the UTM and the outputs can be

compared to the expected output from the mathematical model.

2. Fusing System: The fusing system needs to be checked for:

I. Permanent roller deflection: This can be periodically checked by

inspection with a Micrometer.

II. Concentricity: This can be periodically checked by inspection with a

Micrometer.

III. Bearings Rotation: Deviations in the torque output could suggest

issues with the bearings. The bearings can be tested using a simple

torque experiment. In this experiment, the bearings are subjected to

a constant torque and the number of rotations it achieves before

coming to rest is used as the output. This output can be compared

over time to see the issues.

3. Safety System: The ‘kill switch’ can be tested periodically to ensure that

performs as expected.

1.4.1.3. Integration

1. Hardware: The machined part can be checked against the system

schematics to verify that the dimensions are within tolerance. This can

be done with the help of a micrometer. The critical areas of testing would

be:

a. Outside diameter of bearing vs. housing diameter.

RIT KGCOE MSD Program Page 8 Revision:

Page 9: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

b. Dimensions that affect the skew angle.

c. Inner diameter of the bearing vs. shaft diameter.

d. Diameter of rollers.

2. Software: The outputs can be checked against a known load to check

against expected response. Critical areas of testing could be:

I. Load cells

II. Torque output

III. Kill Switches

IV. Signal Conditioners

The wiring of the prototype must be checked against electrical schematics.

1.4.1.4. Reliability

The system can be periodically checked for wear in the following ways:

a. Roller deflection: As discussed in section 1.4.1.3.2.a

b. Concentricity: As discussed in section 1.4.1.3.2.b

c. Bearings issues: As discussed before 1.4.1.3.2.c

d. Compliance: As discussed in section 1.4.1.2.2

1.4.1.5. Customer Acceptance

Show the customer the final optimized product and run the system under

randomized settings.

1.5. Definitions: Important Terminology

1.5.1. Skew Angle: The skew angle is the angle between the Main Roller and the

support rollers. It is designed in order to focus the pressure towards the

centre of the main roller.

RIT KGCOE MSD Program Page 9 Revision:

Page 10: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

1.5.2. Compliance: The compliance for the system is the ability for the system to

adjust to the variation in the load. This is achieved by the use of compliance

washers or springs with a specified spring constant. Compliance is

understood to be the inverse function of spring constant of the compliant

material.

1.5.3. Calendaring: The change in the thickness of the paper (deformation) due to

pressures exceeding its yield strength.

1.5.4. Nip Width: This is the area of contact between the fusing rollers due to

application of load.

2. MSD II: FINAL TEST PLAN

2.1. Introduction

The testing process for the team will include specific test procedures that are

designed to test the configuration of all sub-systems. The testing is divided into

three sections:

i. Sub-systems testing: This testing is performed to check the configuration and

functioning of various sub-systems in the prototype. The various sub-systems in the

prototype are:

RIT KGCOE MSD Program Page 10 Revision:

1.9 degrees

Main Roller

Support Roller

Page 11: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

a. DAQ system: The DAQ system can be checked periodically by running the

load cells under known loads and checking for output in the VI. This would

ensure that the system is operating under the initial configuration. The loads

can be applied using the UTM and the outputs can be compared to the

expected output from the mathematical model.

b. Fusing System: The fusing system needs to be checked for:

I. Permanent roller deflection: This can be periodically checked by

inspection with a Micrometer.

II. Concentricity: This can be periodically checked by inspection with a

Micrometer.

III. Bearings Rotation: Deviations in the torque output could suggest issues

with the bearings. The bearings can be tested using a simple torque

experiment. In this experiment, the bearings are subjected to a constant

torque and the number of rotations it achieves before coming to rest is

used as the output. This output can be compared over time to see the

issues.

c. Safety System: The ‘kill switch’ can be tested periodically to ensure that

performs as expected.

ii. Initial testing: This set of test procedures are used to define and understand the

scope of the final product testing. This stage of testing requires a small number of

tests under specific conditions (1/4th factorial design). The expected results from this

test include: prototype functioning, timing studies (setup, data acquisition and data

processing), types of output achieved, feasibility of concept etc. These test results

are analyzed and the used to determine the testing procedures for the Final testing

phase.

iii. Final testing: This is the main set of test procedures that are performed on the

prototype. These test procedures check and confirm the effects of the four factors

(skew angle, load, compliance and paper orientation) on the uniformity of the

pressure across the nip. The tests are performed under 24 different test conditions

RIT KGCOE MSD Program Page 11 Revision:

Page 12: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

(full factorial design) on medium or high grade pressure sensitive paper. The testing

is then extended to the check the effects of the four factors on the fusing of the print

on the paper. In this phase, only the factors with a co-relation with uniformity are

varied and tested on unfused printed paper. The results from the two tests are then

analyzed to determine the set of optimal settings that would achieve a uniform print

across the paper. These settings are then used to manufacture and assemble a final

working prototype.

2.2. Test Structure, Sampling Techniques/Safety and Problem Reporting

2.2.1. Test Structure, Work Breakdown Structure

Test #

System Component

Details Pass criteria Person in charge

Due Date

TI1 Hardware The machined part needs to be checked against the system schematics to verify that the dimensions are in tolerance. Refer to section 1.4.1.3.

The critical dimensions follow the schematics and stay within xxx thou.

David Hatch, Eric Wilcox

TI2 System Wiring

The system wiring needs to be checked against the electrical schematics to ensure consistency.

The system absolutely follows the electrical schematics.

Thomas Stojanov, Jon Burville

TC1 Load cells The load cells are checked for compatibility of load range and consistency of output voltage by placing under the UTM at fixed load for 3 iterations and checking for output on the VI.

Load cells show consistent outputs (within 5% deviation of Voltage from the mean) for the test.

Thomas Stojanov, Aniket Arora

TC2 Compliance Washers

The compliance washers are checked for spring factor (k) by placing under specific loads and measuring the displacement. This needs to be done periodically (every 10 runs) to avoid spring fatigue.

The deviation stays within 5% of the original.

David Hatch, Aniket Arora

TC3 Skew Angle The prototype needs to be checked for consistency of skew angle using XXX

The skew angle stays within 5% of the expected.

David Hatch, Aniket Arora

TS1 DAQ System

Check the DAQ system by applying known loads (using UTM) and checking the output on the VI.

The VI shows same output for the fixed load applied on the system.

Thomas Stojanov, David Hatch

TS2 Fusing System

Permanent Roller deflection – This can be checked with micrometer.

The roller deflection stays within xxxx thou.

David Hatch, Eric Wilcox

TS3 Fusing Concentricity – The concentricity of the Xxx David Hatch,

RIT KGCOE MSD Program Page 12 Revision:

Page 13: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

System rollers can be checked with a micrometer.

Eric Wilcox

TS4 Fusing System

Bearings Rotation – Bearings are subjected to a known torque and the number of rotations they make before stopping is measured.

The number of rotations stays within 5% of original.

Jon Burville, Eric Wilcox

TS5 Safety System

Kill Switch – The kill switch needs to be checked after every test to ensure proper functioning.

Kill switch turns the system ‘off’ every time.

Team (user)

2.2.2. Phases of Testing

Refer to section 1.4.v.

2.2.3. Sampling Techniques

To ensure safety and valid data collection, certain steps need to be followed prior to every test:

a. Valid data collection:

i. Check the electrical connections with the electrical schematics.ii. Check and ensure that all the mechanical components are secured

tightly in place (for e.g. screws and bolts are fastened).iii. Check the DAQ’s and the LabVIEW VI to ensure that the configuration

for the test match the Text Matrix.

b. Safetyi. Check the Emergency STOP button for proper functioning by turning

the system ON and OFF with the emergency STOP prior to every test.ii. Always perform the tests with a partner to ensure safety in case of an

accident.iii. Avoid wearing loose clothing or a tie while operating the device. Use a

tie pin if necessary.

2.2.4. Reporting Problems; Corrective Action

Any problems that arise during the course of data collection and equipment configuration must be recorded and reported to the group in the following format.

S.No Date/Time

Test # (from Test

Structure table)

Configuration #

(from test matrix)

Team members present

Problem description

Reasons (if known)

Suggestions/ actions taken

Problem Fixed (Yes/No/Pending)

e.g. 3/14/2010, 6:30 PM TS5 4

Aniket Arora,

Thomas Stojanov

The kill switch does not turn the motor

OFF.Loose wiring

Rechecked wiring with schematics and

rewired the connection

Yes

RIT KGCOE MSD Program Page 13 Revision:

Page 14: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

1

2

3

4

5

6

7

8

2.3. Measurement Capability, Equipment2.3.1. Torque measurement for Bearings

2.3.2. Laser skew angle measurement

2.3.3. UTM

2.3.4. DAQ

2.4. Test Conditions, Setup Instructions2.4.1. Test Conditions

RIT KGCOE MSD Program Page 14 Revision:

Page 15: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

The test conditions for the testing procedure should remain fairly consistent

throughout the sampling and testing process. For the same reason testing is

to be performed in RIT, College of Engineering (4th floor, Design Center).

This would work best for controlling the temperatures and the humidity

factors for the current scope of the project.

As far as equipment verification and tests are considered, it is recommended

to use the same machine for each process throughout the entire length of the

project. For the machining process, it is recommended to use the same

machines and tools for the most part (might not be possible in some cases).

This will also reduce the variability in the testing process.

2.4.2. Setup Conditions and Procedure

The setup conditions for the prototype should remain fairly consistent

throughout the course of the project. After loading the rollers, it is necessary

to check the spacing between the main rollers. It has been observed during

the test runs that sometimes after loading the device, a small gap exists

between the main rollers on the P09505 prototype.

The setup procedure for the tests is:

1. Get the setup conditions from the test matrix.

2. If the skew angle stays the same go to step h or else go to step c.

3. Take the main bolts out from the motor assembly. These bolts hold

the motor to the base. The motor should slide out of the assembly.

4. Unscrew the side bolts on the roller assembly. These bolts attach the

L-brackets that hold the roller assembly to the base. The roller

assembly should now be free and easy to take out.

5. Take the main bolts out off the roller assembly. These bolts go into

the end plates and hold the rollers in place.

6. The end plates can now be swapped with the new set for the required

angle.

RIT KGCOE MSD Program Page 15 Revision:

Page 16: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

7. After assembling the end plates, rebuild the system. Check the

assembly of the system with the assembly schematics.

8. Connect the load cells to the DAQ and configure the load cells if

necessary. The load cells need to stay ON for 15 minutes

(startup/warm up time).

9. Check the wiring of the prototype with the Wiring Schematic.

10.For test number U1, U4, U7, U10, U13, U16, U19 and U22, the load

cells need to be checked with the UTM (refer to section 2.2.1 – TC1).

11.For test number U1, U11 and U21, the compliance washers need to

be tested under specific known load for deflection (refer to section

2.2.1 – TC2).

12.Load the system to the amount specified in the test matrix. It is a good

practice to wait for 30-60 seconds and check the output on the VI after

loading the system. It is observed that the compliance material tends

to dampen the load once it is exerted initially. This load slowly

steadies out and needs to be rechecked and reconfigured.

13.After the system is loaded, check the system by dry-running it and

stopping it with the Kill Switch. Observe any unnecessary vibrations or

noises that may arise. If any, record them in section 2.2.4.

14.Only if everything works well, insert a sheet of pressure sensitive

paper (or unfused paper) according to the angle orientation from the

test matrix.

15.CAUTION: The device tends to pull the paper in the system very fast

(watch out for your fingers).

16.Collect the print of the other side of the device and mark the print with

Test Date, Time, Test number (from the Design Matrix) and team

members present.

17.Save the print in the group folder and unload the device.

RIT KGCOE MSD Program Page 16 Revision:

Page 17: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

2.5. Sponsor/Customer, Site Related, Requests2.5.1. Scanning of output prints at Xerox

2.5.1.1. Pressure sensitive paper

The outputs from the pressure sensitive paper scans would give an

indication of the uniformity of pressure over the length of the rollers. The

pressure sensitive paper outputs from the tests are to be scanned at the

Xerox facility in Webster, NY on Xerox equipment. The scanner scans

the film and assigns pressure values as a function of the density of the

pigments on the film. Higher density of pigments means that higher

pressure was applied to that area. The scanner can single out any point

on the film or take an average of the area density on the film. For the

experiments, it would be good to take two sets of measurements for

each condition:

Full sheet going through the rollers: The length of the film needs to

be at least 3.14 * 2 = 6.28 inches for each sample so that it covers one

complete rotation of the main roller.

Narrow nip impressions.

2.5.1.2. Unfused prints

The unfused prints will be tested based on the results of the Pressure

sensitive paper tests. The prints are provided by Xerox on xxx paper and

printed in a chess board pattern. This pattern will enable the team to easily

perform and analyze the Xerox smudge test. The smudge test is to be

performed at the Xerox facility in Webster, NY on Xerox equipment. The

smudge test involves swiping the area of the fused paper with a cloth and

scanning the cloth to determine the amount of toner that was removed

from the paper. The outputs from the smudge test are entered in the test

RIT KGCOE MSD Program Page 17 Revision:

Page 18: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

matrix and the results are analyzed to determine the optimal combination

of settings that would fuse the print on the paper.

2.6. DOE Test Matrix2.6.1. Test Matrix (Test for Uniformity)

S.No.

Skew Angle

Compliance

Load

Paper orientation

Output

S.No.

Skew Angle

Compliance

Load

Paper orientation

Output

U1 1.4 Low Low Landscape U13 1.9 High Low Landscape

U2 1.4 Low Low Portrait U14 1.9 Low Low Portrait

U3 1.4 High Low Portrait U15 1.9 High High Landscape

U4 1.4 Low High Landscape U16 1.9 Low High Landscape

U5 1.4 Low High Portrait U17 2.4 Low Low Portrait

U6 1.4 High High Landscape U18 2.4 High Low Landscape

U7 1.4 High High Portrait U19 2.4 High High Portrait

U8 1.4 High Low Landscape U20 2.4 Low Low Landscape

U9 1.9 Low Low Landscape U21 2.4 Low High Portrait

U10 1.9 Low High Portrait U22 2.4 High Low Portrait

U11 1.9 High Low Portrait U23 2.4 Low High Landscape

U12 1.9 High High Portrait U24 2.4 High High Landscape

RIT KGCOE MSD Program Page 18 Revision:

Page 19: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

2.7. Assumptions2.7.1. Sequential Skew Angle factor in test matrix – The skew angle factor in the

test matrix for the DOE is sequentially organized to reduce the time taken to

perform the tests. Each skew angle change requires an additional 10

minutes because it requires changing the end blocks on the prototype. This

sequential organization requires periodic skew angle verification tests (TC3)

as described in the Test Structure (section 2.1).

RIT KGCOE MSD Program Page 19 Revision:

Page 20: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

MSD II – WKS 3-10 DESIGN TEST VERIFICATION Note to Teams: Populate the templates and test processes established in Final Test Plan.

These elements can be integrated or rearranged to match project characteristics or personal/team preferences.

2.8. Test Results2.8.1. Component

2.8.2. Subsystem.

2.8.3. Integration

2.8.4. Reliability

2.8.5. Customer Acceptance

2.9. Logistics and DocumentationWhere are the test results being performed, logged (i.e. project notebook) and documented (i.e. excel spreadsheet)? EDGE team website structure (i.e. document names, file types, and header location).

2.10. Definition of a Successful Test, Pass / Fail Criteria2.11. Contingencies/ Mitigation for Preliminary or Insufficient Results2.12. Analysis of Data – Design Summary2.13. Conclusion or Design Summary

Can you explain why a particular function doesn’t work? Add here or remove how the conclusions are to be reported or summarized (i.e. significance with confidence, pass/fail, etc.) as applicable.

2.14. Function/ Performance ReviewsNote: Some teams organize reviews on a weekly bases starting in week 4 or 5 and other may wish to wait until week 10 or 11. Discuss with your Guide.

2.14.1. Debriefing your Guide and Faculty ConsultantsShare test results, conclusions, any follow-on recommendations, design summary.

2.14.2. Lab Demo with your Guide and Faculty Consultants Perform each of the specifications and features.

2.14.3. Meeting with Sponsor See Customer Acceptance above. Field Demonstration. Deliver the project. Demonstrate to the Sponsor. Customer needs met / not met.

2.15. References

RIT KGCOE MSD Program Page 20 Revision:

Page 21: Test Plan Template - Rochester Institute of Technologyedge.rit.edu/content/P10505/public/TestTemplate.docx · Web viewTest Plan s & Test Results By: Aniket Arora, David Hatch, Eric

Document Revision No.: 2 Revised: 05/08/23 RIT KGCOE MSD Program

Add here or remove as applicable.

2.15.1.Add here or remove as applicable.

2.16. AppendicesAdd or remove as applicable.

2.16.1.Add here or remove as applicable.

RIT KGCOE MSD Program Page 21 Revision: