tetrahedron report number 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdftetrahedron report number...

58
--- r , 11 00.{() 401() lt9 Sl.{X)+.(X} Pcrganron Prcss plc TETRAHEDRON REPORT NUMBER 259 o ENZYME- c'AT ALYZED SYNTHES IS OF CARB OI{TDRATES Eric J. Toone. trthan S. Simon. \{ark D. Bednarski and GeorgeI\{. \\'1'ritesides* Department of Chemistn'. IIan'rrrr1 Urrncr:.rtr'. ('runl>riil{e, \1A 02 138 USA t/t,',,i,,,,',i: { \ I ll./,1r1, l,trL); CONTENTS Irrtroducuon 5366 Probierns of Ciassicar S1.rrirr..t. 5367 Structure and Scope ofReview 5367 En-4rmes as Catalysts; Auxiliary Technology 5368 Monos.eccharlles .... 5369 Aldolases 5369 D-FYuctose 1,6-diphosphate aldolase 5369 Substrate Specificity 5370 Preparation of DFIAP 5370 Enarme Characteristics 5375 Examples of the Use of RAMA in Synlhesis 5375 N-Acetylneuraminic acid aldolase 5377 KDO Slmthetase S37g DAHP S1'nthetase 5379 Alternative Stereochemical Configurations 5380 Transketolase/Transaldolase 5331 En4.'rnes Useful in the Synthesis of Carrbohydrates that are not Aldolases 5385 Kinases 53g5 Oxidoreductases 5396 Isomerases/Epimerases 5396 Hydrolytic en4,rnes 5386 Obgwrcchades .... 5397 Introduction 5397 Glvcosvl Transferases 53gB Leloir Pathn'ay Glycosyl Transferases 53gg Biochenrical Synthese. 53ga \DP-Sr-rqars. Availability and Prepar-ation 5390 Characteristics of Glycosyl Transfcrases 5390 Exarnples and Potential Use 5391 Non-Leloir Glr-cosvltransferases S39G Glycosidases 5397 Polysaccharides .... .. 5406 Synthesis 5406 Biochen-ricalSvnthesrs anrl Isolation 5406 Cell-free Enzyrnatic Svnthesis 5407 Prospects, Taryets, and Unsoh.cd Proirk'rrrs. 5409 Research Chemicals :rncl Biochcrr.ricrrls: S1'nthetic Intenrrediates 5409 Biochemicals 5409 Chemicals 5409 Immunomodulators 5410 Glycolipids and Gly'copmteins 5410 Bacterial Endotoxin/Lipid A 5411 Polysaccharides 5411 Drug Delivery 5413 Glycosidase and Glycosyl Trilnsferase Inhiltitors 5413 Glycoprotein Remodeling 5474 Biocompatible Materials 5414 Other Opportunities 5415 UstofAbbrn'iations. ..5416 Refererrcs . ... 5417 A a. 6. .7

Upload: truongnguyet

Post on 17-Mar-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

---

r , 1 1

00.{() 401() l t9 Sl.{X)+.(X}Pcrganron Prcss plc

TETRAHEDRON REPORT NUMBER 259

o

ENZYME- c'AT ALY ZED SYNTHES IS OF CARB OI{TDRATES

Eric J. Toone. trthan S. Simon. \{ark D. Bednarskiand George I \ { . \ \ '1 ' r i tesides*

Depar tmen t o f Chemis tn ' . I I an ' r r r r1 Ur rnc r : . r t r ' . ( ' r un l> r i i l { e , \ 1A 02 138 USA

t / t , ' , , i , , , , ' , i : { \ I l l . / , 1 r 1 , l , t r L ) ;

CONTENTS

Irrtroducuon 5366Probierns of Ciassicar S1.rrirr..t. 5367Structure and Scope ofReview 5367En-4rmes as Catalysts; Auxiliary Technology 5368

Monos.eccharlles.... 5369Aldolases 5369

D-FYuctose 1,6-diphosphate aldolase 5369Substrate Specificity 5370Preparation of DFIAP 5370Enarme Characteristics 5375Examples of the Use of RAMA in Synlhesis 5375

N-Acetylneuraminic acid aldolase 5377KDO Slmthetase S37gDAHP S1'nthetase 5379Alternat ive Stereochemical Conf igurat ions 5380

Transketolase/Transaldolase 5331En4.'rnes Useful in the Synthesis of Carrbohydrates that are not Aldolases 5385

Kinases 53g5Oxidoreductases 5396Isomerases/Epimerases 5396Hydrolytic en4,rnes 5386

Obgwrcchades. . . . 5397In t roduc t ion 5397Glvcosvl Transferases 53gB

Leloi r Pathn'ay Glycosyl Transferases 53ggBiochenr ical Synthese. 53ga\DP-Sr-rqars. Avai labi l i ty and Prepar-at ion 5390Character is t ics of Glycosyl Transfcrases 5390Exarnples and Potent ia l Use 5391

Non-Le lo i r G l r - cosv l t rans fe rases S39GGlycosidases 5397

Polysaccharides.... .. 5406Synthesis 5406

Biochen-r ical Svnthesrs anr l Isolat ion 5406Cell-free Enzyrnatic Svnthesis 5407

Prospects, Taryets, and Unsoh.cd Proirk'rrrs. 5409Research Chemicals : rncl Biochcrr . r icrr ls : S1'nthet ic Intenrrediates 5409

Biochemicals 5409Chemicals 5409

Immunomodulators 5410Glycol ip ids and Gly 'copmteins 5410Bacter ia l Endotoxin/L ip id A 5411Po lysacchar ides 5411

Drug Delivery 5413Glycosidase and Glycosyl Tr i lnsferase Inhi l t i tors 5413Glycoprotein Remodeling 5474Biocompat ib le Mater ia ls 5414Other Opportuni t ies 5415

UstofAbbrn' iat ions. . .5416Refererrcs. . . .5417

Aa .

6..7

Page 2: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

5366 E. J. T<xlxr , , t , t t r l .

I . INTRODUCTION.

Carbohydrates are one of the most important classes of compounds in biologr.. r.r

cells, for example, carbohydrates function as structural components, to regulate viscosit5.

for energlr storage, and as key components of cell surfaces. Their fundamental role in

molecular biologr, coupled with the synthetic challenges they pose, has made

carbohydrates a target for synthetic chemists since the work of Emil Fischer. Classical

techniques for the synthesis of carbohydrates are extensively developed.T-15 fhs

diff icult ies in these techniques center on selective protection and deprotection. These

difficulties, coupled with those of isolating and purifying carbohydrates and of analyzing

their structures, have made this area of chemistry a demanding one. This review examines

the potential of enzymes. as catalysts for the synthesis of carbohydrates. The major

advantage of enryme-catalyzed synthesis is the potential for effecting regioselective

reactions using unprotected carbohydrates under mild condit ions in aqueous solut ions.

En4rmatic methods certainly offer the most plausible routes for the modificaUon of

ol igosaccharides on proteins and on cel l surfaces. The n-rajor uncertainty in the potential

of en-4rmes as catalysts in carbol-rydrate s'r'nthesis involves the availability of the range of

enzyrnes required to accomplish ntajor tasks in this area, and the stabi l i ty and breadth in

substrate acceptabi l i tv characterizing these cnzvrnes. The rapicl ly developing methodology

of genet ic engineer ing ho lds E i reat J l romisc l i r r rn l i l< inq tnrpor tan l ( 'nz \ rn tes readi ly

ava i lab le , and may evcnt r - r : - r l l v nr : r l i c i t 1 ;oss i l t l ( ' to rno( i i l v t l rc s t lec t r r - i1r . o l ' thcse c t lzvr l les ,

Current in terest in carbohvdrate chcnt is tn ' r l tn {es l rorn fund: rnrenta l b io logr r to

applied biotechnology. Glycoproteins ar-rd glycol ipicls play important roles in intra- and

intercel lular communication.2-4.16 Thev sen'e as bincl ing sites for antibodies, enzyrnes,

hormones, toxins, bacteria, dn-rgs. and viruseq.tT-24 Cell-surface 6l lvcoconjugates function

as cel lular labels during dif fercntiat ion arlr i r lcvelopnrent. Oligosaccirarides are important

for sor t ing newly synthes ized prote ins bet rvccn ce l lu lar cornpar tnrcnts and in f luenc ing

growth through in terce l lu lar contag1.25-31 ' l 'he presencc o l ' rnor l i f - ied g lycoconjugates is

associatecl with several disease states. inclurl ing a variet-\ , t .r f nral ignancies. r4'32-35

Glycosylat ion of proteins mav increase solubi l i tv. altcr Lrptake and residency t ime in

p ip6,36,37 and decrease ant igen ic i ty .33 Modi f ic : r t ic i r - r o1- thc carbohydrate groups on

therapeut ic g lycoprote ins is a lso an areA of in tcr -cs t i l s conrpanies a t tempt to d i f ferent ia te

products such as t iss t re p lasminogen act ivator ( t l " \ ) f ror t r s inr i la r prodr- rc ts o f the i r

competitors. Other areas of practical intcn'st concc'rn biodcgradable poly'rners. si te-

spec i f ic and cont ro l led drug de l ivery . agcn ls l i r r nroc l i f f i r - rg v iscos i ty , i t t t tn t tnornodrr la t ion,

and non-nutr i t ive fat substi tutes and srvi 'ct( ' i . rcls.

Page 3: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

\

-s367

hfilems o;f Clossical Synthesis.

The synthesrs and modif icat ion of carbohydrates is a dif f icult problem in classical

synthetic chemistr-r,'. In particular, four features of carbohydrate chemistry limit the

application of exist ing slr l thetic methods for the practical ( ie. mult i-gram) preparation of

th is c lass o f molecu les:

I) Glycos_vl act ivat ion. The development of

construcUon of glycosidic l inkages is st i l l an area

techniques provide high yields of a single anorrer,

e l s e w h e r e . 7 ' r 2

good, general chemical methods for the

of ongoing concern. Few general' fhis

issue has been discussed

2) Selectivi ty. High regio- and stereoselectivi ty are rcquired for the construction of

mono- and ol igosaccharides. The presence of nrult iple functior-ral groups (such as hydroxyl

or amino groups) of similar reactivi ty nrakes this issue non-tr ivial. ' l 'o

ensure regio- and

stereoselect iv i ty , c lass ica l organic srn thes is uscs seqt rcr - t t i : r l p ro tect ion and deprotect ion

steps. Such an approach of ten rcs t r l ts in conrp le . r s r - r ' r t l rc t ic schcnrcs.

3) Complexity. The diversity in l inkages in carbohydrates exceeds that found in other

areas of biological chemistry, including peptide chemistry. Even simple biological ly

important structures often contain several dist inct ntonosaccharide units joined by specif ic

I inkages, and are frequently l inked to proteins or l ipids.

4) Aqueous media. Although many carbohydrates are only soluble in water, a large

fraction of the reactions in the armamentarium of organic chemists is incompatible with

aqueous systems. This incompatibi l i ty has posed problems for organic chemists who are

re luctant to manipu la te compounds in aqueous nrec l ia . and has tended to requi re

extensive. i f reversible, modif icat ion of the carboh)'drater {roups simply to achieve solubi l i ty

in non-aqueous so lvents .

The appl icat ion o f enr rymes as cata lys ts in org l rn ic svnthr :s is has succeeded in

so lv ing synthet ic prob lems of s imi lar cornp lex i ty , nota l t lv t l - rc product ion o f ch i ra l

synthons.39-42 The use of en:rvnratic slmthesis is nou' bi l i r-rq c.rtenrlcr l to the synthesis and

modif icat ion of carbohvdrates. '13-'1'1 This rerdew evaluates t l ' re ( ' rrrr( ' r1t level of appl icat ion of

enzyrnes to the synthesis of both ntonorneric and ol igontcric carl tohvdrate structures, and

the potent ia l for fur ther developrr rcnts in thc f ie ld .

Straeture rrnd *ope of Rasieus.

The f i rs t sect ion o f th is rcr - icn-c lcscr i l rc ts advAnccs in 1hc cnz\mte-cata lyzed

const ruct ion o f natura l and unnatura i lnonosacchar ides. ' l 'he

pr i rnary emphasis in th is

sect ion is on the const ruct ion o f carbon-carbon bonds l ) \ ' cnzvn ie-cata lyzed a ldo l react ions.

l-he fol lowing sections outl ine ntethocls for cnzvnre-cAtalvzecl formation of glycosyl bonds

Page 4: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

5 368 F . . l . T o o r l t t t t l

by tr loir and non-Leloir pathu'ays. These sections inclr-rde descript ir)ns of methods for the

synthesis of ol igosaccharides and, in less detai l , of polysaccharicles. The area of enzyme-

catalyzed formation of glycosyl linkages is developing rapidly: a nunrber of successful

syntheses of oligosaccharides and polysaccharides have recently been reported. The final

section illustrates unsolved problems and targets in the enzyme-catalyzed synthesis of

carbohydrates. Although the success of enzymology in providing practical catah'sts for the

synthesis of carbohydrates will build on advances in biochemistry, a discussion of the

fundamental biology of carbohydrates is beyond the scope of this review.

Dtzgnr* os Cctclgsfs; Auxitiaty Technolqg.

A perception remains in the community of sy'nthetic organic chemists that most

enzTlmes are highly specific for their natural substrates, and that this substrate specificitv

precludes their general use in synthesis. The use of enzymes is further hampered by

concerns regarding their cost, stabi l i ty, and requirements for expensive cofactors.

Previous developments in applied enzymology have successfully addressed many of these

problems.

Many en4nnes accept a wide range of substrates. Although the rates of reaction of

unnatural substrates may be slorver than that of the natural srrbstrate. the substrate

specif ici ty of many enzymes is broad enough to al lorv a ruide ran{e of compounds to be

uti l ized as substrates at an acceptable rate. Arrron{ €'n;4\ 'r}rcs shou' in{ broad sr:bstrate

spec i f ic i ty are the esLerases and l ipases. '1 i ) chr - r . r ro tn-1ts in . '16 l ; r t ' ta tc dehvdrogenase,47,48

acy lase I ,a9 and rabbi t nrusc le f ruc tosc 1 .6 r l r l thos l t i l r t t ' . r lc lo l11ss. l>o. l>1 Many enzymes are

suf f ic ient ly inexpens ive that they can l te r rscd in iar { r ' ( i r i r tnr i t ies . in order to ach ieve an

acceptable rate of reaction with e\ren a slor ' , ' l_r '-reactinq srrbstratr ' . The development of

techniques such as enzyme immobi l iza t ion,52- l>4 and conru inrnent in ho l low f iber

reactorsSS and with membranes (membrane enclosercl rnzrrnatic catalysis, MEEC)56 al lows

the recovery and reuse of enzymes, thereb-v reducinq thcir cost as catalysts.

Immobil izat ion can also enhance the stabi l i tv of t ' r ' rzvrnes.52 ' fhe deactivation of enzymes

on oxidation by 02 can often be avoided throtrrgh i l rr . usc of inert atmospheres and thiol-

containing reducing agents. 57-59

Several groups of enzymes require adcled col irctors. In many cases, these cofactors

are too expensive to use stoichiometrical ly. artr l this l imitat ion init ial ly hampered the use

of enzy.rnes in slmthesis. This problem has non' been solved for ATP, the nicotinamide

cofactors, and certain others, through the dcveloprnent of regenerating systems. rvhic l-r

al lows the use of catalyt ic amounts of cofactor. This f ield has been reviewed.60'6I

Page 5: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

\

2. MONOSACCHARIDDS.

Two tlpes of enzwn e-cataJyzed reactlons have been used ln preparlngmonosaccharldes: carbon-carbon bond formlng reactlons and reactlons that alterfunctlonal goups. Aldolases are a class of enzSnnes that catalSze the stereospeclflcconstrucUon of carbon-carbon bonds ln monosaccharid,es.62'63 Th"e flrst part of thls sectiondlscusses the demonstrated use of aldolases (partlcularly the most well-e>cplored. ald.olase,fructose 1,6-dlphosphate aldolase from rabblt muscle) ln sSmthesls. The second. partdescrlbes other classes of enzynes that alter functlonal groups of monosaccharides.Throughout thls revlew, sugars are of the D-conflguratlon unless otherwlse noted.

Aldolases

Aldolases were flrst recogntzed near the beglnnlng of thls century as an ubiqultousclass of enzyrnes that catalyze the lnterconverslon of hexoses and thelr three-calboncomponents. Thelr actir,'lty was flrst descrlbeC by Meyerhof and cou'orkers. and wasoriglna[y named zyrnohexase.64 It ls nclrv known that aldolases operate on a much wlderrange of substrates than hexoses, and a varlety of erzymes has been descrlbed, that adcl aone-, two- or ttrree-carbon fragment stereospeciflcally to an aldehyde via an aldolcondensation.

All organlsms possess aldol.ase enzyrnes, and two distinct gpoup-s have beenrecognlzed.65 T\pe I aldolases, found predomlnanfly in higher plants and anlmals, requireno metal cofactor, and catalyze the aldol conderrsation through a Schiff base intermed.iate.These errzJrmes are inactivated by borohydrtde in the presence of substrate, and areunaffected by EDTA. Class II aldolases are found prlmarlly ln bacterla and fungi, and areZn2+ dependent enz5rmes. These errzyrnes are not affectecl by borohydrlde, but arelnactlvated by EDTA.

To date, the aldolases have been the most useful enzyrnes for the formatlon ofmonosaccharldes, although only a small number of the known aldolases have beene>plolted synthetlcalll'. 'Ihe most useful of these enzymes are descrlbecl below.

Fructose 7,6-dlphosphate aldolase.

Fructose 1,G-dtphosphate aldolase from rabbtt muscLe (FDp ald.clase, tr.C. 4.L.Z.lg,also commonly known as rabblt rnuscle aldolase, RAMA) catalyzes the equillbrtumcondensation of dthydroxyacetone phosphate (DFfAP) wtttr D-glyceraldeiryde-3-phosphate(G-3-P) to form D-fructose 1,G-dlphosphate (FDll.so The equlllbrium constant for thlsreactlon ls K = 104 M-l ln favor of the formatlon of FDP (Scheme l, R = CHOHCH2OPi).

The stereospeclficity of the reactlon ls absolute; the conftguration of the vlclnal d.iols at C-3and C-4 is alu'ays D-threo. There is sigitlficant discrimlnation (-2O:l) between theantipodes of the natural substrate, G-3-P; a few examples wlth unnatural

Page 6: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

-5370 F - . . l . - f o o r t

t , ' r 1 r i

R A M A

HI

o4eot l

t o - ^ . ,

o ti \

H H

-|-_

Scheme 1 .

substrates also demonstrate some l imited diastereoselectivi ty.50 In the context of orqanic

svnthesis, however, RAMA does not exhibit useful diasteroselectivi ty with respect to C-5.

Substrate $rr;ifrci$.RAMA accepts a wide range of aldehydes in place of i ts natural substrate, G-3-P.

al lowing the slmthesis of carbohydrates sr- lch as nitrogen-containing sugars,5I

deoxysugars,66-68 fluorosugars,68 and eight- ancl nine-carbon sugars.69 More than 75

aldehydes have been identified as substrates based on en4,'rnatic assay. Table I lists aldol

adducts which have been iso la ted and character ized.50 '51 '66-93 In genera l , unh indered

aliphatic, a-heteroatom-substi tuted, and dif ferential ly protected alkoxy aldehydes are

substrates: severely hindered al iphatic aldehydes such as pivaldehvde do not react with

RAMA, nor do cx,B-unsaturated a ldehydes or con lpot rnds that can e l inr inate to form cr ,B-

unsaturated a ldehydes. Arornat ic a ldehvc lcs are c i thcr poor s t rbst ra tes or : r re unreact ive. A

rate enhancement has been obsen 'ec l 1-or sr rbst r -a tcs p l tosphon ' la t i ' r l a t the termina l

hydroxy l re la t ive to the non-phosphon. la tcc l spcc ics .5 t ) ' l - l r is

c l ' l i ' t ' t has been noted for

t r ioses (g lycera ldehyde) . te t roses (erv throsc) . pcr - r toscs l r r r l hcrost 's . and the ra te

enhancement on phosphory la t ion is on the ordcr o f 2- ro lO, l i r lc l . T l - re e f fec t has been

attr ibuted to an interaction of phosphate rvith sontc posrt ivclr- chl ir{cd group at the acUve

site.

The requi rement for the nuc leophi l ic c ' r tn t l ton( 'n t ( l ) l l r \ l ) ) is nruch more s t r ingent

than for the e lect rophi l ic component . Severa l DI I . \1 , r rna l t ter rcs have been tested as

subst ra tes for RAMA (Table 2) ; so far invcst iq l t io r rs lnvc c l r :uronst ra ted that on ly 1 ,3-

d ihydroxy-2-butanone-3-phosprhate and 1. - l r l ih r r l roxr ' -3-butanone- l -phosphonate are

substrates.4B

Pl:eparotion of DIIAP.

DFIAP i tse l f may be generated bv thrc 'c 'procedures: ( l ) in s i tu f rom fnrc tose i .6-

d iphospha te w i t h t he enzyme t r i osephospha te i so rne rase ( t r .C . 5 .3 .1 .1 ) . 66 (2 ) f r o rn t he

d imer o f d ihydroxyacetone by chemica l phospl - rory la t ion rv i th POCI3.83 ( i l ) or l ror r r

d ihydroxyacetone by en4mrat ic phosphon ' l l t ion t rs ing A- fP and { lvccr -o l k rnasc ( i t .C.

2.7 .1 .30) , w i th rn s i tu regenerat ion o f thc A ' l 'P t rs in€ phosphoenolpvnrv l i te (F ' t rP) or acety l

phophate as the u l t imate phosphate donor .94 The ln s l t r r {enerat ion o f I ) l IAP f rom FDP is

the most convenient o f the abot 'e methods. br - r t in sonte ins tances. par t ic r r lar lv when the

Page 7: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

f.-t'-

C)

l<

I-oI

" 'a)

I

r

I

r

I-\--)

IO.1

L

r o oN @

(O f'.

aabS^J^J)-J- 1 r r o { r 3 1 =

s-a: 5{" 5{:"6{:5 { : 5 ( r s',1"': 5,,,{"':r ),,,6 r ),,'5 5J,,,6 .- >6"1 "1 "J "1

PRo-o-

o- o-o o) )

oJ o{;>5 ;>6o { r o - ( r- )" 'o r Foo', ,( - c-( r

ro )^o\ \ooT r l

r

i^)

1 -Fo

I \ r) ' , ,o

a.)

o_

n

\ , , ,1

)^

b\

J1 - L r

f o r1 r c

)" 'o r\ o

)

J

)?

I

I

b)\

) , , ,

(n

)1 r

FoJ \ -

) '"o-(\ I/ . . ,o

t\I

O

I

a

XI

a

a

Xtr

Fl

cl-r

I

t1

E)

ro)\ r) *o\on

r oo rr oo rr o

T

I

T

I

r oO -

r o-Ir)

= oo rr oo r

-

I

rf . \

a

X

O

I

N

0.

LO

a

I

C

a

a

li

!!I

J

A".f

I

a

L

htr.,l

a

a

r<a<

FI

J

a

L

-F

I

L

gEJ

@r dt .

t-A A

I I v w

vtt-

if..N

A

@

[email protected]

oI Too

O O

-Bq.)

r{

t-

E1

a

0)

ai

fi

N

-(

OI

l<

fr(

(t)

o

t<

(,)

r<

Page 8: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

f-

C)

t<

Ebbb38) ) ) \ \ )o{- o<r oar o{r o<r oa-F o T F O T t s O T F O T F O T F O6< 6<1 6<1 6<1 5<r -<) fo )"o fo P )"?b 5 5 b t !5I IO C )

I I I - - I I

o { o { o { r o { r o { - o { - o {) ) >o ),,o /-o r*o ),,?/ / ( , _ r , , ( ( * .b b 3 5 b o b6I f r f r

O O

"ir "ir "i= "ir "iE "i= "iEFo r fo r lo r fo r fo 5 { " E { "b"4"1 "1 "1 FoFoJ-ooEE-o

- r - I f -

o{ o{ o{ o{ o{^ o{^F)))FotsoOHRII?

:E coF

) ): a - - 1 rrFc - f oo{ o{

) )' \

"1

o{

(L

o\)t

o={ r'r FO6<r

FOJ - t

o,, , ( r- ) " O+ toa

\/

oo-

+a

d

L

(u

tr

t<

Q

_+.J

r-{

Page 9: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

( ) l ' ca rboh) d ru tcs

\--

@@@f..

L<

Io

o

E)

1 rro

1 -

C"oIo

'i

"1"o

o { o

G- T!

o { r o {

roA\ \ o

nJT" )

o

n

)

:lt4

t<

t!1

(u

t-

I

o

)

?

r oo rr oO < - l

zI

r oo r

r oo r

I V

o --t-

11Io r_c.0-

a]Io -

-F

I - I

o { o { o { r

F* >r >6i ' o r ' (- o L L

1.'t

o- o-oo) )

c= { - ca r cr / - J r / - - r0101o

A(\ )o{

I)

fO

(J

-r^)

a_

1.f

b)\

r

n

)

A

il-s

fi

$@

@-rO@rO

@"

@@

rO

o{t )='\! ( )

?

I

- )

0n

N

g

-^J-

\

I

v - -\ 4

Fo

-d

l-

Page 10: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

s37 4 E. J. TooxE t , t u l

reaction does not go to completion, the presence of excess FDP complicates the isolat i

Table 2. Relative Rates of DFIAP Analogues RtCOR2 rvith G-3-P

in RAMA-Catalyzed Aldol Condensations.o

\ r re lR2R1

HOCH2HOCH2HOCH2HOCH2HOCH2HgcN3CH2AcNHCH2HO(CH3)CHCICH2BrCH2ICH2

CH2OP1CH(CHS)OPiCH2CH2PO3H2CH2S03HCH2OHCH2OP1CH2OPlCH2OP1CH2OP1CH2OP1CH2OP1CH2OPl

looioto< o . l< o . l< o . l< o . l< o . l< o . looo

a Relat ive veloci t ies were n ' leasured in 0.2 M tr iethanolaminebuffer (pH 7.0, 25 "C) contitining 50 mN{ substrate.

of products . The use of pure preparat ions o l - l ) l l r \ t ' ( ra t l ' rer than r r r - r eqt r i l ib r ium mix ture o f

DF{AP and G-3-P der ivcd t ronr I rDP) a lso l -ar .ors t i t ( ' t i r r -nra t ion o l 1 t i 'oc lu t . ts . The svnthet ic

r o u t e b a s e d o n c h e m i c a l p h o s p h o n ' l a t i o r t o l ' t i t t , c l r i r r r l l r ) \ \ i l ( , ( , t ( ) n ( ' r l i n r e ' r q i v e s t h e h i g h e s t

pu r i t y DF IAP (950 /o ) , a l t hough the r cq t r i r ec l t ' r . - h l s t ( ' l ) \ : - r ' , t ' l h r ' l l i ' . ' t ' s t ove ra l l chem ica l

y ie ld (34o/o) . Enzymat ic phosphon ' la t ion o l c l i i rv r l r ( \ \ ' . r ( ( ' : ) i r ( ' { r \ ' ( ' s I ) lL . \ t ' } o f s l ight ly lower

pur i ty (87o/o) , but the procedure reqt r i rcs on lv on( ' : t r l ) . . tn( l q lvcs a sat is factory chemica l

yield (830/0).

Both arsenate and vanadate form kinc't icl l lv l . i l rr l t ' ( 'srers rr, i th a variety of alcohols in

aqueous so lu t ion. Th is phenomenon has l tc t 'n r r : r , r l lo uvo ic l the use of phosphates as

subst ra tes for a var ie ty o f enzyr - res, inc l i rc l ins l thr )s l )hoketo lase,95 G-3-P dehydrogenase,96

glucose-6-phosphate dehydrogenase.9T anr l l i - \ \1A. { rs A t rans ient subst ra te-

arsenate/vanadate ester probably lorrns. tbl lon'ccl bv an en4lrne-catalyzed reaction. This

methodology avoids the often dif f ictr l t pr( ' l ) i tnttron of phosphate substrates. This strategy

has been used slmthetical ly in a l i l \N{;\-catal-\ 'zed system, using a mkture of

dihydroxyacetone and inorganic 2ps6'11111g.t is The toxicity of arsenate l i rr t i ts the

at t ract iveness of th is method. Arsenl i tc cou ld not be rep laced ur th inorganic vanadate.68

The phosphate group of a ldo l ar lc l r rc ts fz lc i l i ta tes the i r pur i f ic : r t ion bv ion-exchange

chromatography or by precipitat ion as thc barirrrn or si lver salts. i i i ther enzrymatic (using

ac id or a lka l ine phosphatase, t r .C. 3 .1 .3 .2 anc l 3 .1 .3 .1 respcct ivc l - r ' ) or chemica l methods

allow cleavage of this group.So

Page 11: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

I : n z r r t t e - e . r t . r . r z c t i . \ l t I h f \ l \ t r l ' c t r r h o h ) d r a t e : \ l l - i

Enzgme char ac teristics.

Se','eral characteristics of RAMA make this en4rme useful for forming carbon-carbon

bonds. Commercial preparations of the en4lrne are inexpensive ($O.O4/U) and have a

reasonable specific acUvity (60 U/mg of protein). RAMA requires no metal ions or

cofactors. is stable in the presence of o>rygen and added organic cosolvents, and is not

inhibited to a significant extent by the natural product, FDP. The en4rme has been used

both in soluble and immobilized forms. as well as enclosed within a dialvsis membrane.So

Examples oJ the Use oJ RA/rA, in Sgnthesis.

Many biologically-acUve monosaccharides contain vicinal diols having the

stereochemistry generated by RAMA. For example, 3-deo><y-D-arabtno-heptulosonic acid 7-

phosphate (DAHP) is an important intermediate in the bioqmthesis of aromatic amino

acids in plants (the shikimate pathway). This compound has been prodr:ced in a combinedchemical and enzlrmatic synthesis from racemic N-acefvl-aspartate p-semialdehyde and

dihydroxyacetone phosphate (scheme 2).84 The four-step synthesis proceeds in an overall

OHI

,oa( +o

O NHAc

i l IH' ., co2Me

RAMA

6N HCI-+

100 "c

corMe

co2HllteoH+gx (oac) r poAcOH

co2HPO

1. Sodlum glyorylateA l 3 '

2. lonExchangeChromatography

Scheme 2.

yield of 13olo (37o/o for the enzymatic step). 'Ihe key step generates the required,

enantiomerically pure, threo stereochemistry by using RAMA as a catalyst. In view of the

broad range of substrates tolerated by RAMA, this method should be applicable to the

production of analogues of DAHP.

Page 12: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

s376 E. J . T rx l r r , ( i u l

RAMA has been used to prepare other useful compounds on a preparative scale.RAMA-catalyzed addition of DFIAP to lactaldehyde generated 6-deo>ryfructose. Thiscompound was then converted chemically to Furaneol.gg a caramel flavor component(Scheme 3).oz RAMA has also been utilized by two groups to prepare nitrogen-containing

ot l

H o _ [ l _ o p r +

Ht - ,

x3c- . \o

RAMA >

l -OH

D- or L-

o o Hi l :to-A,4^*.

: :OH OH

II t. ease or FtI| 2 . | + tPdIY

o o,o--,,(-o, + ,k*,

ro "LouoII

t

H 2 l P d - C-.-+

Scheme 3.

sugar analogues (Scheme 4).1OO,lot The products of t1.e en4n1e-catalyzed reaction wereconverted to deox5mojirimycin and deoxymannojirimycin, both potent glycosidaseinhibitors.lO2

Deoxymannoj i r imycin

Scheme 4.

"'";]-"'

OH

NH

Page 13: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

\I5317

N-Aretglneuraminic acid aldolasr,.

N-Acefvlneuraminic acid aldolase (NeuAc aldolase, E.C. 4.1.3.3) catalyzes the

reversible aldol condensation of pyruvate and lV-acetylmannosamine (ManNAc) to form N-

acetvlneuraminic acid (NeuAc, N-acetyl-5-amino-3,5-dideoxy-D-glgcero-D-galacto-2-

nonuloplranosonic acid).103-lO8 In uiuo the en4rme has a catabolic function and the

equil ibrium for this reaction is near unity (scheme 5), although the presence of excess

prruvate shifts this equilibrium to favor the aldol product. NeuAc and other derivatives of

neuraminic acid are termed sialic acids, These compounds, found at the termini of

ot l+

"r./-"o,excess

<Fl"'''E:l coz.

NeuAcA ldo lase

S c h e r r r e 5 .

mammal ian g lycoconjugates,p lay an impor tant ro le in b iochemica l recogni t ron. l09- l l2 The

production of analogues of NeuAc is of interest to synthetic and medicinal chemists. The

synthesis of Ner.rAc i tself is only of moderate interest because, although many chemical

syntheses of NeuAc exist (see leading references in ref. iOB), most commercial suppliers

isolate NeuAc from natural sources (eg. fron cow's milk in the Snow Brand process). The

enzymatic approach has not been fully explored but it may be a practical alternative to the

chemical synthesis of certain sial ic acids, and a good route to isotopical ly labeled materials.

Laboratory-scale reactions catalyzed by NeuAc aldolase routinely produce multi-gram

quanUties of pure Neru\c.56,108,113-116 Although the specif ici ty for pyruvate appears to be

absolute, en4..rnatic assays suggest that NeuAc aldolase accepts a range of substrates in

p lace of ManNAc. l04 ' Io5,113-r2r ' r42 Severa l gro l lps have taken advantage of th is observat ion

to synthesize and isolate derivatives of NeuAc (Table 3). General observations from these

syntheses and from assay results suggest that NeuAc aldolase wil l be quite useful in

synthesis: strbst i tut ion at C-2 and C-6 in ManNAc is readi ly tolerated. and the enzyme

exhibits only a sl ight preference for defined stereochemistry at other centers. One report

describes the isolat ion of a rnixture of derivatives of KDO and 4-epi-KDO from NeuAc

aldolase-catalyzed condensation of Ara and p'rrtrvate (see Scheme 6 for t l ' re structure of

KDO).142

In addi t ion to i ts acceptance of unnatura l subst ra tes, severa l o ther character is t ics

make NeuAc aldolase a usefr-r l catalyst for synthesis. The clonin{ o1-the en2ryrnel23 ls5

reduced i ts cost . Techniques of genet ic engineer ing of fer the potent ia l to produce in large

quanti ty new proteins with improved stabi l i ty or ' ,vi th altereci substrate specif ici ty.

Although the optimal pH for activity of Ner-rAc aldoiase is near pL1 7.5 at 37 oC, the emryme

is acl ive between pLl 7 ut 'r6 9. lOB ' l 'he

protein is stablc in the presence of oxygen, and does

Page 14: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

-s37u E. -1. TrxrxE ct u l .

not require added s612s16r-s.1o8 One drawback is that an excess of pyruvate (the less

expensive reagent) must be used in slmthetic reactions to shift the equilibrium towards

the formation of product; approxirnately seven equivalents of py'n:vate are needed to attain-9Oo/o conversion of ManNAc to NeuAc at equi l ibr ium. I t may be possible to avoid the need

for an excess of pyruvate by coupling the synthesis of NeuAc to a ntore thermodlmamically

favored process.

An advantage of the enzy'rnatic route compared with chemical routes is that

purification of NeuAc or its derivatives may be avoided. For example, an unpurified solution

of NeuAc generated enzymatically from an unpurified solution of ManNAc was used in the

enzymatic synthesis of cyt idine 5'-monophospho-NeuAc (CMP-NeuAc, see Scheme 17).

The unpurified preparation of ManNAc was derived from base- catalyzed epimerizaUon of

the much less expensive start ing material, 61"56s.loB

Table 3. Sialic acids synthesized by condensation oI'pyruvate with analogues of ManNAc in the presenceof NeuAc aldolase. Other products have been reported based on erzvmatic assav but notcharacterized.

R 2 OH

kelR. | 1-n, cooHHo

f oirR 1

R3R1 R2 R4 Reference

CH2N3CH2OCH3CH2OAcCH2OCOCHOHCH3CH2OAcCH2OHCH2OHCH2OHCH2OHCH2OHHHCH2OHCH2OHCH2OH

NHAcNHAcNHAcNHAcNHCOCI I2OI IHOHN3Nl lCOCl l2O l lNHCOCI I2OCOCI 13OHHHN I I A cOH

I i O H

Ir oHF{ OHli oHH O HH O HH O H

I] OLIH O HH O HH OI]OH OHOII OF{Ll OCII3H H

t2Ll r 9115 , r . 19 . 120I I 9r r 9\19. t22. r42tt9, 122, t421 J 9

1 1 9I I t )r t 9 . r22 . r42t42 a

1,12 a

1 r 9r42

a Characterized as the peracetylated methyl ester; cliastereon:eric purity not proven.

Page 15: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

E nz1'me-cataly 'zed svnthesis o l ' carbohy'dra tes

\nthetasr,.KDO synthetase (E.C. 4.1.2.16) synthesizes KDO-8-P (3-deoxy-D- manno-2-

octulosonate-8-phosphate) from arabinose 5-phosphate (Ara-S-P) and PFP.r24 KDO

synthetase is not commercially available but has been isolated from E. colt and used in the

synthesis of KDO-8-P (scheme 6, 63% from Ara-S-P, 38 mmol).r25 KDO-8-P and its

biologically activated form, CMP-KDO. are key intermediates in the slmthesis of the

lipopolysaccharide (LPS) regicn of Gram-negative bacteria. Inhibitors of LPS biosynthesis

are targets in the design of antimicrobial pharmaceuticals. 126-128 Although the substrate

specificity of the enryrne has not been examined , en'4lrne-catalyzed syntheses may also

allow the preparation of analogucs of I{DO-B-P.

In the syrethesis of KDO-8-P or,rt l ined in Scheme 6, arabinose 5-phosphate was

generated from arabinose b_r' hexokinase-catalyzed phosphorylation of arabinose. The fact

that arabinose is not a natl lral substrate for hexokinase rvas not a l imiting factor because

large quantit ies of inexpensive hexokinase coLrld be trsed. confined witJrin a dialysis

membrane (MEEC).56

-5 r79

O P

A"o,Pi

O P

A coz

SCheme 6 . S r l t hes iso f KDO 3 I ' . i = l t exok in t r se ; 2=p) ' ruva tek inase ; 3=KDOsyn the tase .

DAIIP Sgntheto.x.

DAHP slmthetase (tr.C. 1.1.2.15\ procluces DAIIP (3-deoxy-D-arabinoheptulsonic acid

7-phosphate) from D-erythrose 4-pirosptrate. The enzlmle was used by Frost to synthesize

DAHP (scheme 7) as an intermediatc in the chemical synthesis of its phosphonate

Ernalogue, 3-deoxy-D-arabtno-hepttrlosonic acid 7-phosphonate (DAH phosphonate), a

potential inhibitor of the shikirnate pathu'av.129

ATP

o

"rA"o,

A D P

Page 16: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

r\f l

ATP ADP

r l o H o + {\ . / t :'ii-*-AAa

' ; " [

E . J . T t x l r L t ' t t t l

X"o"-

oH l*

D - Fruclosc - 6 - pho:phatr

OH

D - Erylhrocr - 4 - phosphate

ou

O A H P

SChemeT. l= hexoldnase: 2- pyn:vateklnase: 3= transketolase: 4= DAHpsynthetase

Alternatiu e Stereochemical Corfi,gur atiorrs.

A potential limitation with the use of aldolases for the synthesis of monosaccharides

is that the stereochemistry at C-3 and C-4 is fixed. In the case of RAMA this

stereochemistry is always D-threo. There are, however, methods of installing this

stereochemistry at other centers. One technique, referred to as inversion, makes use of a

mono-protected dialdehydg.l3o This technique is shown in Scheme 8 for the synthesis of

L-xylose. After the RAMA-catalyzed aldol reaction, the resulting ketone is reduced

stereospecifically' i ldth polyol dehydrogenase (E.C. 1.1.1.14). The remaining aldehyde is

then deprotected, to yield a new aldose. The stereochernistr:y at C-3 and C-4 is now

controlled by the stereochemistry of the aldehyde substrate.

1. Acld Phosphatase

2. Polyol DehydrogenaseOH

2-Deoxy-L-ldose

oo-AA,

i o o oI I l l l R A M A\oAAx * Ho-..,A'-oP, ->

l o o H o("#"'i o o H o H o c H o H(u;i'", H,o _,i4&",

OH

Scheme 8 .

A second strateg,r to control stereochemistry is to use an aldolase other than RAMA.

A large number of aldolases have been isolated and characterized.50'62'63'65' I l3' l3l - l50

These enz1lnes and the reactions they catahze are shown in Table 4. Several

stereochemical series are available through the use of the appropriate enrrv.me. Linrited

explorations of substrate specificity have been made in certain cases. and their use in

synthetic organic chemistry has now been reported.15l Work in this field has been

hindered by an inavailability of the enzl'rnes. Modern techniques in molecular biology

should, however, alleviate this problem during the next several years. A bacterial FDP-

aldolase has nowbeen cloned and overexpressed in E' a6l1l51 Man'y' of the enT rnes shorvll

Page 17: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

Enzyme-catalyzed svn t hesi s ot ' carbohvdrates

in Table 4 are from microbiological sources. which will facilitate straightforward cloningand overexpression.

Tr q.nsk e tol as e /Tr o,nso,ldol a.s e.

Transketolase (E.C.2.2.1.1. D-sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphate glycoaldehyde-transferase) has been used to extend stereospecifically the chainof a variety of aldoses by two carbon units.

In the pentose pathway. the enzrrne catahzes the reversible transfer of ahydroxyketo group from a ketose phosphate to an aldose phosphate.l52,l53The cofactorthiamin pyrophosphate (TPP) is associated '*ith the en:nrne and activates the ketone(Scheme 9). Most donors of the -COCH2OH group (x.r ' lu lose 5-phosphate. sedoheptulose 7-phosphate. fn:ctose 6-phosphate. L-enthrose) have a threo arranqenrent of hydroxyl

538 l

oll

o F o+

l-oHOH R'

Trarskatohse FOl-oH

+ HoR

O H

o

O H

Scheme g.

groups at C-3 and C-4; hydroqpyruvate is an excepuon. rSa 6 range of aidehydes (such asD-glyceraldehyde 3-phosphate, D-ribose S-phosphate, D-erythrose 4-phosphate,glycoaldehyde) are known as acceptors. Transketolase has been used in slmthesis with itsnatural substrates (see leading references in ref. 155) and has been used to prepare 14c-labeled intermediates of the pentose pathway.l56

Although the substrate specificity of transketolase has not been thoroughly explored,it appears to be a promising catalyst for use in synthesis. Ilvdroxypy,nrvate can replace theketose, providing a reactive hydroxyketo group after spontaneous decarboxylation ofhydroxypymvate; TPP is not required. The hydroxyketo group is transferred to theacceptor aldehyde in an irreversible reaction (Scheme 1O). This method has allowed thes1'nthesis of the sSmthesis of a number of monosaccharides on scales of - 2 - S mmol withyields ranging from 24 - 81o/o (Table 5).155,157 Transketolase is commercially available andhas been immobiliz.6. 158

F:" +coz'

OH

o

OH

f=o Transketolasel - J n - n O

A -coz

Scherne lO.

Page 18: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

E. .1. Trxrxp. t , t u l .

0-

I\ rFO-r- Io,, ' (\

d

f.-

-a\

( T

FO/, ' . \ :c

), , ,o

)J

o-o

Ia)

\/

, t t \ I

ro1 r

\ . . , 2/ , J

, r , (

\

d

o( rtsoo<

Ir-\v

-rI

n J ^\ r l v

I

I I I I0a-o f f f) ) ) )6pao{ o=1 o< o< o< c<. o<) ) \ ) " - q < - >j j joopF

d . d o - t u

@

;LOrY.laY.)

r

Io

o

I

I

It - \

(L

o( \\ I \ I

- )'o - )"'oo"'( :c o" '( r

) " 'Q FOo< o<

\ \f /

o o( L O -

b0a<

2 . -' 1 N

.X -

q , YE r , !r e

a 9v ;o t d

: +

-

1

c n

ol c6/ , \ j _

()a

C!

G

==T_

'r. -v l l

= :- v

' ! . ix . *

a

A

; av f i

\ 9 0

U

v ) ^

o N af<

* . :f,

t san ' ;Jl ' \

^ i

c ) L l I Y :t h V ) -

e < : +- *o > i , ip < : YH N / / - \

t'- l{ /- El

I

( -ro/

)5 )-oa olI I

o/\ I

rooa:E

O

L

e

k

F

k

r'.1

z

N

tIJ

-s-l8l

A

oN

d

O

q)

Fa

(')

+)

di

()

d

aa(g

<il

14\

Page 19: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

q)t<

r - Io A O O. T ' \ J \ \ +

^ ( ) ) _ ) p;'/, 6< o,,,(o - ) ) )o{ o{ o{ o{

o- o- o* o-oooo

IN

O lO N

J - \ r oo r F o r P

O"'( O.lr ' (\ \) )o< o<LJ \J

N N

\, \J

Oc!

arl--o

?

E1a ^

€ qi N9 r>.{.X -c ) v

E r.'i

9H

N d

Io

:

a=

q')- , ^_)a

T : E F E :X G ^ i i a i -V \ . 4L

Bh+h+Ei o l i o r i i -+ a r Y q r Y E l' - , \ f i r \

I v l t l v l l l ^ -

h H ? a l ? 0 . , t r e !- Y c \ a o C 6 += \ v v . R . i f r :

{ 6 E * 6 i i € d4 = Y € Y ; 5 - i\ i ! N ( ! N c d H e

> , :X A

)\\r- , i' =^ A

Al ri

t-

t ^

ie{Y'oi

>+XA

O YE r,'r

r O

A A

v ;

I

) rrrJ /"'Jv 1

I I

c) (f)

I TO C )o< o<O O

c! c-pp

o c ) o oI I I IO O O Oo< o< o< o<O O O ( )

C { N N N

o o o o

Ia\

1I

I

o<oN

u lN

v a l

( 5 - A>6F6Fo< oa o=1I I I

oI

o<N-

O

L

N

t!

()El

q.)

z

-'{J

s

ld

Page 20: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

;

d(

a

l-!-l

.r{

t<

a

d

t<

aL

r<

'r

.1

iJl

E. J. Trx lxE t , t u l

< f s

(oI T Too( )

\ . J - \ J -

_,$ FO Jv ) r r rQJ.- f -)- f2 , , . ( f t r r\ \

O C )N C V

oo

s

:EIo:Eo r

\oI

Iz

z1-a<><z z\-/

I I J -

o.',( :E oFO

(\:E

o(\

6,,,4- fo1

lo={

o-o

Io

r

I )Q , r r (

I

"1o*P

q)€nl vX J ( 6v d

h I q r N: : H A :. 1 $ ( d

E ! b< 'E * Zc-'X X t r , io o 6 s 1(u^ q) LY P Y 6 O

- > Uc o ' l c o ; A : 6

| - d 6 ) t a

. ) . ^ - i : : ; t C

i l : " 1 I - = =+i ++ i = ) . :N L \ N , i : ^ ? :n r - i A Y i ' i " l : 2 a; 8 1 : 3 i . i : : .

- : =E- E H E 2 = - . = - - =

B-( F,( i : : - - :6 0 E o

5€ f i ; s! =i i7

-z-a<.

r i \-(, z

)<z z\_,/

N

rI

*v

a /r o- /r ^JT i 7r' i_b-o{ o{ o={_ zJ \O O I O O

A l C J / \ N c !

o o v o o

b t'-d s

@$ c a

o-EP - )( r o " ' ( r)-O FOo< o<T T

I

\I

E: E )o, , , (

ro1-

o ( r )I T/ \ / \v vo< o<a\ a\v vn n

IO,,

Q=

'.)

I<

L

a<

tr

trl

z

N

5 -184

_+J

\$

O

r-

Page 21: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

T---F . t t z r n t c - e r t t . t i r z e d : l t r t h c ' s i s t l l ' c a r b o h l ' d r a t e s

Products slntheslzed usinq transketolase according to Scheme

Product ReferenceSubstrate

r,oato

OHHo:r\u

oOHt . ,

H.ctnn\J

O Heo:r\H

r\V

O H O Hl l ,

to#rtO H O H O

'o#o'OH OH OH

o

Hoi&*OH

oHoHo:,\,lL,or

OH

C H OI l l A , ,

t,ca\-'"O t

o roI l l n , rruv^r/'v.\J-

CHO H O H O

r55

r55

r 5 7

r56

OH OH O H O H O156

OH OH OH

h.vgmes uxful in the sgntheti c Manipulatton of Monosaccharides that are not Aldolarc.

Other en lTpes in addi t ion to a ldo lases are usefu l cata l - r 's ts lor t i re const ruct ion and

manipu laUon of n lonosacchar ides.

Kincses. phosphorylated slrQ.ars are important as chen-rical lr ' -a<'t ivated intermediates in

many biochemical pathrvavs. As srrch. these corr lpourlds are Ot' tct ' t intermediates or targets

in synthetic procedures In biochenrical svstenrs, the kinasc's catalvze the transfer of

phosphate groups to and fronr nucleosicle tr ipl-rospl-rates ancl strgars. The fol lowing

examples i l lustrate the use of kinases in the surthesis of phosphorylated monosaccharides'

Much of the ut i l i ty of the kinases in organic synthesis is based on the observation

that these enzymes of ten accept unnatura l surbst ra tes. Hexok inase (E.C. 2 '7 ' l ' l ) , for

,,o#r*O H O H O

Page 22: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

,5386 E. J. Trx lxt . c t e l

example, accepts other sugars in place of glucose.r59 This breaclth of specificity allows thdmult i-gram synthesis of Ara-S-P, the precursor to KDO-8-P (Scheme 6 above).125 Acetate

k inase (E.C. 2 .7 .2 .1) and pvruvate k inase (E.C. 2 .7 .1 .40) are key components o f cofactor

recycl ing systems.6l $rruvate kinase also accepts other nucleoside diphosphates in

addit ion to adenosine 5'-diphosphate (ADP) at synthetical ly usefrr l rates. al lowing, for

example, the generat ion o f cy t id ine 5 ' - t r iphosphate (Cfp) (Scherne l3) . i60 ' l6 l s ; i6 ine 5 ' -

t r iphosphate (UTP),161 and r ibav i r in 5 ' - t r iphosphate l62 f rom the corresponding

monophosphate and PEP, us ing adeny la te k inase (E.C. 2 .7 .4 .3) . The nuc leos ide

monophosphate k inases (E.C. 2 .7 .4 .4) and nuc leos ide d iphosphate k inases (E.C. 2 .7 .4 .61,

although expensive and relat ively unstable,62 have been used to generate nucleoside

t r iphosphates.16 l '163 '164 Glycero l k inase (E.C. 2 .7 . i r3O) is usefu l for the product ion o f

DFIAP for use in reactions catalyzed by aldolase as r,vell as for the synthesis of a number of

unnatural phosphorylated analogues of glycerol.94. 165

Oxidoreductcses. The class of oxidoreductase enz1nr-res is generally less important in the

slmthesis of carbohydrates than for the instal lat ion of cr i t ical stereocenters in theproduction of chiral bui lding blocks, such as R- or S-butet-r. 6r116s.166 The uti l i ty of only a

few enzrymes in this class has been explored in the context of carbohydrate synthesis.

Po l yo l dehyd rogenase ( t r .C . 1 .1 .1 .1 :1 ) i s r c l a t i ve l v non -s l t cc i f i c anc l r r r av l t c r ' , ' i de l y use fu l i n

s l m t h e s i s f o r t h e s t e r e o s p c c i l c o x i r l a l i o r r l r r r r l r - r ' r l r r < ' l i o l l o l ' l i t t f ) n ( , s l { i 7 - l ( i l l G - 1 2 ( . t o s e o x i c l a s e( 8 . C . 1 . 1 . 3 . 9 ) s u f f e r s f r o r n s c \ - c r r ' | ) r - o 6 1 1 r r I i n l t r l r r l r n , i n i l l r , t . r r , , r

c a t a l y s t f o r s y n t h " s i 5 . l 7 0 T h c r c l r r c , . ] t o ' , , . r , ' , ( . r ' . \ , . : ' r , - 1 r . . : 1 . _ r r ' -

\ ( ' i I ) l ' ( r r . ' t ' c l t t l be a usefu l

: r , ) ' , ' t ' J - ( ' ( ) r r r c i n h i b i t i o n o f

r t > r ' ( l t O l n s t a l l r e q u i r e d

stereochemist r ies in mor- rosacchar ic lc I ) r - ( . ( i t r>1 : - : .

Isomercses/Epimercses. Glucose isonrc : rast ls ust , i : ) r ' { , ( lu ( ' f , r r r i l l ions o f k i l lograms of

h igh f ructose corn syrup {HFCS) annt ra l l r ' .17.1 l ) r r r l r , i> l r t . t ,n r rscc l on ly to a l imi ted extent in

organic synthes is . The enzyme has bccn ust ' r l t , r r ' . l t l ih 'zc the isomer izat ion o f products

f rom condensat ions cata lyzed by ak lo last ' . , , r r t r l lo I ) t - ( ) ( luce analogues of f ruc tose f rom

analogues of g lucose in the sy 'n thes is o f c l i : . r t r l t r t r i r lcs .174. r75 UDp-Galactose ep imerase

cata lyzes the ep imer izat ion o f UDP-e l r rco: t , ro L I )P-ea lactose, and is o f use in the synthes is

of iV-acety l lac tosamine (see Schenre l t i ) . i : r ,

Hgdrolgt ic enzgmes. The enzy'rnatic s_r-nthesis of carbohydrates ger-reral lv avoids the need

for protect ion and deprotect ion c l - rcnr is tn ' . Never the less. enzynre-cata lvzed methods for

t he se lec t i ve hyd ro l ys i s and t r anscs t c r i l - i ca t i on o f ca rbohyd ra tes ex i s t . t 77 , r79 -18 '

Page 23: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

5 3 8 7

3. Oligosaccharides.

Introduction.

Oliqosaccharides and polysaccharides are important classes of biologically occurring

structures.1-5 Oligosaccharides containing fewer than -2O sugars are the subject of this

secuon. and polysaccharides of the following section.

In mammalian systems, eight monosaccharides activated in the form of nucleoside

mono- and diphosphate sugars are the building blocks for most oligosaccharides: UDP-Glc,

UDP-GIcUA, UDP-GlcNAc, UDP-Gal, UDP-GalNAc, GDP-Man, GDP-Fuc, and CMP-\,JsrAs.2'184 These are the intermediates of the Leloir pathway. A much larger number of

sugars (eg. >rylose, arabinose) and oligosaccharides are present in microorganisms, plants

and insects: we wil l not discuss these substances. although biosyntheses involving them

usually follow the same principles as those in manrnralian biochemistry. Other

monosaccharides are found in mamn'ralian svstcnts br-rt ihese sugars (for example iduronic

acid and N- and O-sulfated or acvlated sugars). found nrarnlv in polrrncrs. do not occur as

nucleoside phosphates, but resul t f rom postpoh'merizat ior-r r r rodi f ic : r t ion of other sugars.5

In utuo, oligosaccharides are usuallv covalentlv attached to l ipids or prote'rns during and

after biosnthesis.

The three major classes of glycolipids are glycosphingolipids, glycoglyccrolipids, and

the dolichol-bound intermediates formed during the synthesis of N-linked glycoproteins.

Of these, glycosphingolipids predominate in mammalian systems.lThere are two important classes of glycoproteins, differing from each other in their

attachment to the peptide chain: O-linked glycoproteins usually contain an O-glycosidic

linkage between GalNAc and serine (Ser) or threonine (Thr); l{-linked glycoproteins

contain N-glycosidic linkages between GlcNAc and the amide moiety of asparagine (Asn).

The basic biosynthetic routes to tl-rese trvo classes of glycoproteins differ, although

the init ial formation of the bond between protein an.d sugar is cotranslational in each. The

synthesis of O-linked glycoproteins involves the step.,vise addition of activated sugars(usually starting with GalNAc) directly to a protein, to a serine or threonine residue(Scheme 1l) . The synthesis of l / - l inked glycoproteins is more involved. l83'184

Protein-Ser/Thr -+ Protein-Ser/Thr-GalNAc -+ -) O-linked glycoproteins

Schem.e I l .

First, an oligosaccharide of conrposition DoIPP(GlcNAc)ZMangGlca is built in a stepwise

manner onto dolichol phosphate (DolP), a polyisoprenoid l ipid. This entire

oligosaccharide is transferred to Asn, at a site characterized by the sequence Asn-X-

Ser(Thr), where X is not Pro or Asp. Removal (trimming) of the glucose residues and most

of the mannose by several glycosidases leaves the inner core exposed (peptide-Asn-

t

Page 24: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

5-388 L . J . l ' t x r r r L ' t t t l

GlcNAc-GlcNAc-(Man)3). Elaboration of this core bv transfer of sugars from nucleoside

mono- ancl diphosphate sugars provides mature Sl1,'coproteins (Scheme l2).185 A similar

syntheUc strategy involving the assembly of a lipid-bound intermediate is also important in

the biosynthesis of bacterial cell walls.2

Dol-P -+ DoIPP-GlcNAc -r DoIPP-GlcNAcGlcNAc(Man)9(Glc)g --)

Protein-Asn-GlcNAcGlcNAc(Man)g(Glc)g -+ Protein-Asn-GlcNAcGIcNAc(Man)3

-+ -+ IV-linked glycoproteins

Scheme 12.

There are two groups of en4rmes used for synthesizing oligosaccharides tn utuo, and

both use prior activation of the sugar monomer by phosphorylation. The largest group, the

en4rmes of the kloir pathway, transfer sugars activated as sugar nucleoside phosphates to

the growing oligosaccharide sh2in.2,186 Non-L,eloir pathway errryrrres transfer

carbohydrate units activated as sugar phosphates, but rrot as sugar nucleoside phosphates.2

There are two strategies available for enzym e-catalyzed tn uitro slmthesis of

oligosaccharides. The first uses the glycosyl transferases (EC 2.4.). which are used in uiuo

to elaborate oligo- and polysaccharides. The second strateqrr uses the glvcosidases, or

glycosyl hydrolases (EC 3.2.) . In ufuo. these enz\-nres have a catabol ic f t rnct ion. and cleave

glycosidic l inkages to form mono- or oligosaccharicle's Ti'rcv can be rrsed svnthetically to

form glycosidic l inkages. however, in the presence ol 'u str i t l i i r le nrrc leophi le other than

water.

Glglaosyl Tfansftarc.

I*lair Prrtluso;g C,lgcql Ttwnsfrarc.

Birchqrtica I Sgmthesis.

Three fundamental steps constitute the l-eloir pathway: activation, transfer, and

modificatisn.2-4,r87 These steps represent biological solutions to the problems also faced

by chemists: chemical activation of sugars. stereospecific and regioselective formation of

glycosidic l inkages, and elaboration of products,

In the first steps of the Leloir pathu'ay for all sugars except NeuAc and its

derivatives, a sugar (glucose, galactose or mannose) is transformed itrto a sugar-l-

phosphate (sugar- l -P) by a k inase (E.C. 2.7.) . This sugar- l -P reacts wi th a nucleoside

triphosphate (NTP) in an enzyrne-c atalyzed reaction (scheme l3) and forms a chemically

activated nucleoside diphosphate sugar, UDP-Glc, UDP-GicNAc, UDP-Gal, or GDP-Man

(Scherne 14, from ref. 2, p. I29). These enzyrnes are known as py'rophosphorylases, or

nucleoside transferases (8.C. 2.7 .)

Page 25: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

Scheme 13 .

Subsequent transformations of these key nucleoside diphosphate sugars lead to the

remaining activated sugars (Scheme l4). In some cases, more than one route may lead to

the same sugar nucleotide. For example, UDP-Glc epimerase (8.C. 5.1.3.2) converts UDP-

Glc into UDP-Gat. UDP-Gal is also synthesized directly from galactose.

GaI + Gal- f -P -r UDP-GalI

GIc -+ Glc-6-P --+ Glc- l-P -+ IJDP-Glc --+ UDP-GlcUA --+ UDP-Xvl

JFru-6-P -+ Man-6-P -+ Man-l-P -+ GDP-Man -+ GDP-truc

I+

GlcN-6-P

JGlcNAc-6-P

JGlcNAc- l -P -+ UDP-GlcNAc -r UDP-GalNAc

Scheme 14. Biosynthesis of nucleoside phosphate sugars used in the Leloir pathway in mammaliansystems. Underlined nucleoside phosphate sugars have been prepared on a greater than l-g scale in cell-freeen4lrne -catalyzed reactions.

The activation of sialic acid (NeuAc) is an exception: a nucleoside monophosphate sugarforms directly from NeuAc (Scheme I5).

NeuAc + CTP -+ CMP-NerrAc + PP1

S c h e m e 1 5 .

A second class of enzymes (the glycosyltransferses) catalvze the addition of theactivated sugars in a steprvise fashion to a protein or l ipid, or to the non-reducing end of agrowing oligosaccharide. For glycoproteins, these steps occur in the rough endoplasmic

reUculum and in the Golgi apparatus. A large number of glvcosvl transferases appear to be

necessar1r: each NDP-sugar requires a distinct class of gl 'u.cosvltransferases and each of the

more tlran lO0 glycosyltransferases identified to date appears to catalyze the formation of a

unique glycosidic l inkage. Exact details concerning the specificity of the

glycosyltransferases are not known. It is not clear, for example, what sequence of

carbohydrates is recognized by most of these enzymes.l88

tMan

ManNAc-+ ManNAc-6-P--+ NeuAc-9-P -+ NeuAc -+ CMP-NeuAc+I

Page 26: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

E . . l . T t x ) \ l : ( ' / ( 1 i .

I lodif icaUon of N-l inked glycoproteins occurs in t '"vo steps: specif ic

catalvze the tr imming of sugar residues. then the residual ol igosaccharide

several glycosyl transferases. The synthesis of inhibitors (eg. noj ir imycin,

glycosidases

is elaborated by

castanospermine, swainsonine) of these glycosidases is a goal of several synthetic

programs; tunicamycin represents a useful example of an inhibitor of glycosylaf ion.r89

Chemists have bggun to apply the enzymes of the Leloir pathway to the synthesis of

ol igosaccharides. Two requirements are essential to the success of this approach: the

availability of the sugar nucleoside phosphates at practical costs and the availability of the

glycosyltransferases. The first issue is being resolved for the most cornnton NDP-sugars

(including those important in mammalian biosynthesis). Only a srnal l number of

glycosyltransferases are, however, presently available, and access to these enzyrnes is the

limiting factor in this type of slmthesis.

IVDP-Sugnrs. Aaailahilitg and @rrrv;tion.The flact that only a small number of the known NDP-sugarstgo are used in

mammalian biochemistry simplifies the problems faced by the organic chemist. Methods

based on chemical synthesis19l or on fermentationl92 gxi51 for the preparation of most of

these compounds, although a chemical preparation of CMP-NeuAc remains to be

reportef l .44 Al l of the common NDP-sugars are avai lable from commercial sources, but

most are expensive. I 'his high cost has rn:rde lar{e scale srmtheses of ol igosaccharides

using glycosyl transferases inrpractic 'ai.

Enzyma t i c r ne thods o1 -p rcpa r i r - r { t i - t t ' \D I ' -Su : - l r - : t l r n } t . r r - r ' s t , r ' r , r r i l i r dvan tages

re la t i ve t o chemica l me thods . I r o r exan rp l c . t i t r \D I ) - su l . l r cun i r t ' qcnc ra ted rn s r t u

making i t poss ib le to dr ive thernrodvnant i r .a l l r - , . ln l ' i l , , - r , r . r i , l t ' t c l r r r l r i t r iu (such as the

epimer izat ion o f UDP-Glc to UDP-Gal ) .19.1 l ) l rn l ic . 'u i r r ) > ' . r ,J r : n t : rv be e l iminated a l together

because the byproducts of enzl.rne-catalyzecl nrerhorls ol ' lel t clo not interfere with further

en4ymatic steps. En4rme-catalyzed slmtheses havt prorlrrc'c 'd UDP-GIc,193 UDP-6a1,193 31fl

CMP-NeuAsloS 6n > 1-g sca le . A l l o f the o t i rc r in rporr r rn t \DP-sugars have been made

en4rmatically on an analytical .gs1s.190

Cluractqistics o/ Glgcuqyl trcnsSferoses.

Auqilabilitg and. Stability. Most gl,r'cosvl transferases are difficult to isolate, especially

from mammalian sources, because the proteins are present in low concentrat ions, and are

membrane-bound.lBB'194 From the pcrspective of synthesis, r igorouslv puri f ied

preparations of enzyrnes are not necessary. although the activity of certain enzyrnes, such

as the phosphatases, must be avoided.

Glycosyltransferases are reported to be unstable, l93 althotrgl-r a f-ew en4rmes have

been immobil irs6.l95'196 Qply a snral l number of glycosyltransferases are avai lable from

commercial sources at this t ime. and these preparations are expensive, although many

others have been iso la ted and character ized. lSS' I94 Genet ic engineer ing ( ie . c lon ing or

modification of enzymes) will have a large impact in this area. Already several giycosyl

Page 27: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

T-

qI : l r z i : t : . ' - . 5 r 9 i

t ransferases have been c loned. inc lud ing g lucos-v l - . fucosy l - , and s ia ly l t ransferases. rgT-2o2

Recent advances in c lon ing techniques should speed the c lon ing of o ther g lycosy ltransferaseS.2O l ,202

Specificity. Glycosyltransferases form regio- and stereospecific linkages betweenthe acUvated donor (a nucleoside diphosphate sugar) and an acceptor (a mono_ orol igosaccharide). The point of interest to synthetic chemists is the range of acceptorsand donors t.|at can be used in slmthesis. Research in the biochemical community inunderstanding how the fidelity of oligosaccharide construction is maintain edr72 and indesigning inhibitors of glycoprotein slmthesis2o3 has shou.n that the specificity of theglycosyltransferases is not absolute.

UDP-Gal transferase ( lactose slmthetase) is the best-strrcl ied glycosyl transferase interms of specif ici ty for the acceptor sLrgar, Se', 'cral qrorrps havc clelronstratecl that thisen4 /me t rans fe rs UDP-Ga l t o a u r c l e ranqc o i e r c r cp to r s r r l t s t r a t cs .2o '1 2os .2 i7 The b roadsubst ra te spec i f ic i tv o f the enzvnte has a l lon 'cc i t l ' re prcparat io ; r 2pc l is9 l3 t io l o f rve l l -character ized o l igosacchar ides (see Table 6) Other g lvcosr- l t ransferases. a i though lesswel l -s tud ied than UDP-Gal t ransferase, a lso appear to accept a range of acceptorsubstrates.2O9,2lO

Although the glycosyltransferases are considered to be specific for the NDp-sugars,recent observations suggest that this specificity is not absolute. Several groups, forexample, have transferred analogues of UDP-Gal,2l1 GDp-Man2r2.2r3 and CMp-NeuAcl64.214to acceptor sugars. It is important to realize, ho'"vever, that not all of the en4rmes havebeen purif ied to homogeneity, so i t is unclear whether this apparently loose specif ici ty fordonor and acceptor is real, or whether i t represents activi ty of a mixture of severalenzymes.l94 As more en4rmes becorne avai lable, i t should be possible to evaluate betterthe substrate specificity of the glycosyl transferases and their potential pse in the synthesisof natural and unnatural oligosaccharides.

Examples And Potential Uses.

En4"rne-catalyzed s'v'ntheses, part icularly using the galactosvl- 3nfl si : i l ,vl transferases,have produced a number o f o l igosacchar ides (Table 6) .18. r14.2o4.215-226 Techniques ofdetecting, isolat ing. and characterizing reaction products exist. br-rt t l -re anrount of productthat can be formed is l imited by the avai labi l i ty of the glycosyltransf 'crases. For example,en4lrne-catalyzed preparations of -10 g of ,n{-acetyl lactosamine lgl l (Scheme 16) and -3 gof CMP-NeuActo8 (scheme l7) rverc both straightforward. The acldit ion of NeuAc to N-acetyl lactosamine, however, produced only mg quanti t ies of t f ie tr isaccharide, sialyl IV-acety l lac tosamine (Scheme lB) , becat rse o f l in r i ted ava i lab i l i ty o f the requi reds ia ly l t ransferase. lS ' t0B '195 The techniq t res o f so l id phase synthes is , rve l l demonst ra ted inthe f ield of peptide synthesis, have l teen r-rsed in the syrthesis 9f carbohyclrates.2 rS-22o

Page 28: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

s392 E - l . T r x r r t t , t t t l .

To "

, / \,5.3/o"

TOH NHAc

xo ,L-o I

K, )"" \ ,e.E:..\-/ouDP 1 \' F-kt

ao t)-o1o, \-o,\-/

N H A c

U D P

Pq roH

A"o.'

SCheme 16. Synthests of N-acety l lactosamine. The s lx-en, Tne svsrerr t gener i l tes UDP-Glc andsl fu. 1=galactosyl t ransferasei2= pyruvate k inase; 3 = UDP-slucosc ptrop}rosphon' lase. .1 =phosphog lucomutase : 5= ino rgan icpy rophospha tase ; 6=UDP-gar lac roseep iq tc r2se

| ,L"l' ,('+,l, il:

II-ot^

,/-"',,g/o*

r-OH fOHX O I X O I A c N H

l.,--O 1 tj_l_r|

<I_)*oH _ (j_p*o"H o l H o

AcNH

A C N H O H

<-"i"ffox

co;r-oHt o H

\ a /

o 9 Pi l l

A"o, 4t"o,-

Scheme 17, Synttresis of CMP-NeuAc from GlcNAc,pyruvate; 3) adenylate kinase; 4) pyruvate kinase; 5)

CMP. PEP. and pynn'ate.CMP-NeuAc s\mthetase.

l ) NaOH: 2) NeuAc aldolase.

Page 29: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

NA]

+

O < O O O O O Q N

3

L

z a

ZA-o- \ ,^ : t xr

= : tZ .a r- -l- 'Jf l r u ; +' \ ? A l - r

_ r _ F

+ H F / ) N - ! Y - i _* * A v t s -

l c c e 6 : - r ; , ' :

: ; ; ;9 '8224 = ; FE O O O = | ; . A X t -

kE+ca iq : 'Qa 'p F r r t X 4 A ' + 9 ' l f ' i ' f F

. e i l ==3baZa f i = = j 3 I|R '+ . JJ I i 5 i I { r E . " oh , ' , o<<<X lE l l ' - < j , - , 3 f r\ j rzl \ | i tsi*V 7I i Z

e ! : ; q q q q o q q q d - ? - q6 q q ? 4 " i + 4 4 i . + + ? ? - * - A- - - - ^ = ^ ^ ^ ^ + - G A e G r is . < t s \ . : s < T v s v ) v ) i T^ ^ ^ 4 ' ^ ^ 1 . ^ f t t t i ;

l l l r l l l l l t r l l* - _ - _ _ t ?- l - l - , : . - : ' j - l - l '? - < r i o d c o c i ! . : i - o A ' . Y- - i , i . r ' i ' t , \ t ' / \ f al r l r \ J \ r \ . / v v v v v v v. l t t

6 6 d 6 - - - - . c a - a a - a a - c a - c O - d

i'r. X.6 )

vF x r )

aagEa' . - 1 y f lF H v / ' ( J7 E h t { 5Y , O Y ? J -

e :=aaxffrq5 ; f aE = i .+ ;95=8+ F + IL . = - . : . ' : = ; . 7 . 1 ^ q + O

. 1 1 ^ = ' ' ' 1 Y - g ; Y i i X _ . v \ , ' i i _E F : E \ 6 e ? ^ s 6 q 1 F . . . : ! C - X - o :Eq != :1" :3*s* i r r T T ?. 5 t " , ; _ - N = z = a . ) IE H = Y = ; : I * + S ^ J . , , J * iA: r q=1r22? ]e l l : e :f i i r i<1>22 i ,=3= , .24 2 2 1 ,?iEE 8d--x l l ;X : i I d I i

.J

o

a

t<

U)

!

a

(-)bob0

a

No

--a

-(J

a

a

aX

/-l

11

l-r

c)O

Page 30: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

,5394

M M M ^ T f A

- - - c \ - : 3- - o ) - o lC'l

+

d;

;

$

ct

H H H^ n r \ / \g H v v

ON

coN

9,-I

4( o . v^ , / ( ' 1 . \ ^t Y +

ol co- i- i l

€ =o 1 ' 1z Y

' cO-x

E:Y - : ( a

. . | / 1

- = $s.i$: - ? b ? +

f t 1 f fs? F T Ir u - x ? H l I - : ^ - -p c o : = J ? ? c Y ; o l : : ;E 6* j - 8 oa92 ,y Z < :< : o,9 F 422 a ; F qZ2>"2 ,

s i r 6 j r ; i ; = l i sXP?P t ? i=a E -39 t q?? ; ? f q9qvQre -5 - * f , 3 . oi . T t 6 - (da. F * : - r - i : I H a+*?*Q" . : ; ' t i ' t f 5EEfi$Tj; ) TiTT???:9T=IX EHfl! ; : ? Q = = =E3 4 E* * * ; * q G* * * * ? ? ? 83 *s3 (o . Y9qqt i l N c5-c1 co-c . - c c r e , f i -d - - - i -A i - - a (g A

Q

O, 0 0

fr qr.-

| (-)N XY Y

d zO / \< Y()z

I

x

.:U ]F

=

I

Fl

I']I

x

Page 31: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

\

cnrtA]

;a)f

t)

tr

c.)

8

a

;*=c

A

;;F

8

ti

F

i.?\ ->

v 0 )

F a

x oY . L

; i Q

u 3 FH i =

9 o t< i 5

F ; i *

( ) 5 vP t t T

. q x " 1a 9 H

= m /e x d

t r o aa < <

-7

Q ? i r

+a - , . r )/ X vv v ^ t

t l : / aV ^ r V

o , ; 9l w

q i c !P : - ' f

. : 9L . \ A

O Z Y

ca-

-\Q

-€rocof^$

#*'|.

N , ;S < f

f*(oO o iAr ) ! ,AY Y

+

/ av

co- c.)

-co

E U\./ t^

+E' q )

r 9X oL . ) c= ( !Y r r

I

^ d X

E o , ;F On - ^ G lC \ - / Y Io ; = w 9F - ; ^ C )

E O X r -k : ' ) v x =t ' o q . Y> r . . + + hO t - . 1 i aO O 1 1 * ' 99 - J ? * 95 o U i l aOi l x , x ?

. v 9 V

J-ir

GO

co-

t-i

d^ / - S ' \^ r 1 t =

l w1 . ' rr l

; Y

€34 2: (.?f 1 t \

v

.A

=3

;

c , f rE r . iO - oc t -

v o9 ;r A

o . . 1 6 l : '- H

; - v- t ) -- v _

c O A v6 Y +- -x -

c a i YX Y9 -

, , 4

, t . i :'J. ,( . - )

7 - LH H '

: E = a 9o ! Y^.1. 'i co- Z , (.)

" F ? . 6 - 0 - _ 6 - 9 - G '

+ x f f ; < f f c o - al ( ' . l r . l . ^ ' , 1

) 4 - - l ' -= r r r - r : -

? ( ! d ( d - , . c J o-' f r ' r r ' r r ' r q, f1 =9 Y Y Y I Y I J .

"A co- co- .o- +- - : - r r r r - l F l

F 6 . N 6 i 6 . 3r t t t " ts r : N NY Y Y Y ;

! : 3€ €=l & L & l J r ,0 ) 0 )

J J J Z Zl l l r

c d d d d

z aO f

- i -

* O

. 3 Y

r lt o

O ^

z

9s ^t a "

; . ' Tr v *! - r \! a'l \./( ! Y -7 co-X: r v! ^ r \d a ) YX + r oP l 6

t xv - / \

J a r ( 6 YZEeqo#E i+ *( ) d v ^ r v

. o . 6 + X Ya t r - - l c o -

T f; T +d= i = { 1- ! - - 5 d( d o ( ! o -a a o zi_ i -d- 3

Page 32: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

5396 E . J T t x t \ 1 , r ' 1 r r l .

C M P - N e u A c---_->2,6-sialyll ranstera se

O H

Scheme 18. Synthesis of slalyl N-acetyllactosamlne using 2,6-sialyltransferase

The synthesis of fluorinated carbohydrate analogues is an area of interest in both

chemistry and biochemistr-y.222 Card and Hitz have used sucrose synthetase to transfer

glucose from UDP-glucose to 1-deo>cy-l-f luorofnrctose, to generate l '-deoxy-l '-

f luorosucrose (scheme 19) . r74.r7s

rt

,fl|"' g lucose isomerase+

R--1 ^o r? t uDp-Gtucoser/- t->\ - i r l S u c r o s e s v n t h e t a s e

i t - O H

H O

[-o")-o

,Ki?,"OH

._OHFI (J

N on-I*loir Glgposy ttr ansfaqses.

Oligosaccharides have also been prepared br' :.rr-n-'<'.t--- ' ir routes. Trvo particularly

important examples are sucrose and trehalose ia:r.r ',.r i Si,-, id*e carbohydrate in plants,

fungi and insectsl). Both compounds have been s'-:r 'cr-ssiullv s1'nthesized in cell-free

enryrnattc systems using routes that reverse rhe :oures iollorved for their catabolism in uiuo

(Schemes 2Oa and 2Ob).228 Other examples oi lhrs class are dextran sucrase and sucrose

phosphorylase. In uiuo, these forms of srnthesis are primarily used for the preparation of

carbohydrate polymers, such as the microbia,l levans and dextrans.229'23o Several enz''rnes

of this type have been used syntheUcallr'.

l-ot

,q,OH

ro")-O

,(i|'"OH

Trehaloso PhosPhorylase

Scheme 20a. Svnthesis of t rehalose.

P l

Page 33: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

Sucrose Phosphorylas-e ,dfi;45.,* P i

Scheme 20b. Synthesis of sucrose.

Glgposidases

The glycosidases cleave giycosidic bonds in nature (Scheme 2l). TWo groups ofglvcosidases exist: the exoglycosidases, which cleave terminal glycosidic units, and t].eendoglycosidases, which cleave both terminal and non-terminai glycosidic linkages inoligo- or polysaccharide chains.

H . o , / S u g a r ' o H + R ' ' o H

,zSugar - OR'

N S u s a r - o R , + R , - o H

S c h e m e 2 1 .

In general, the glycosidases show high specificity for both the glycosyl moiety and theglycosidic linkage, but little if any specificity for the aglycon component. For exampledisaccharides, alkyl-, aryl-, thioaltryl-, azido- and fluoroglycosides have all been used assubstrates for p-galactosidase from B. gsli.23r

The mechanism of hydrolysis is presumed to proceed in the same fashion as t].eacid-cata-lyzed cleavage of a glycosidic bond. via a carbocation intermediate. Hydrolysis ofglycosidic l inkages leads to net retention of configuration at the anomeric center. ThisobservaUon suggests one of two possible mechanisms: i) a double displacementmechanism' with an erLzwne-glycoside covalent intermediate, or i i) the binding andstabil ization of a carbocation intermediate in such a fashion that onlv one face is accessibleto an attacking nucieophile. The existence and nature of a covalent intermediate is sti l lthe subject of debate.232.2s3

It has long been recognized that the intermediate in the hydrolytic pathway shownin Scheme 21 can be intercepted by a second nucleophile. Thus. reaction of acarbohydrate in the presence of a nucleophile other than water can result in t]-e formationof a new glycosidic bond: the gi,ycohydrolase can serve as a transglycosidase. Huber andcoworkers demonstrated that during the hydrolysis of lactose (0-Gal-(1-ra)-Glc) by F-galactosidase, approximately 5Oo/o of the lactose molecules were converted to allolactose1p-Gal-(l-+6)-Glc), either by trapping of the intermediate by the newly formed glucose, or

Page 34: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

5 398 E. . l . T tx ) \ t : r ' / r / /

by an internal transfer reaction of undefined natuvg.234 Ilourquelot's group has reported

the preparation of over 40 crystalline glycosides by reactions of this tr,pe.235'236

Glycosidases can be used slmthetically in two modes. The first utilizes a $lycosidase,

the corresponding free monosaccharide, and a nucleophile. This procedure has been

referred to as "direct glycosylat ion", or "reverse hydrolysis" (Schertrc 2I).237 Since the

equilibrium constant for this reaction lies strongly in favor of hvdrrll-r'sis. horvever, high

concentrat ions of both the monosaccharide and alcohol must be trscd. \- ields in these

reactions are generally low.

The second route utilizes a preformed glycoside, which is hydrolvzecl br' :rn

appropriate glycosidase. The intermediate is then trapped by a second nucleophile (other

than water) to yield a new glycoside (Scheme 2l). Several species have been used as the

donor glycoside, including substi tuted aryl glycosides, glycosylf luorides and disaccharides.

This method has been referred to as "transglycosylation." In early works the

transglycosylation ability of a glycosidase was sometimes referred to as a separate actiritr

Transglycosylat ion gives higher yields, and is general ly the method of choice.

The primary advantage of these modes of synthesis compared with the use of the

glycosyl transferases discussed abol,e is that act ivated su,qar nttc'eosides are not required.

Severa l examples o f synthes is us ing g lvcos ic lases have non ' l tc t ' t t r ( ' l ) ( l r ted (Table 7) .238-260

The ma jo r d rawbacks o f t hese s r , r r t hcscs a re l on ' r ' i c ' l r l s . u r r r l t l t t ' l t ) n l l i l l t r l t l o f t r l i x t t t r es o f

products ,

I n t h e f o r m a t i o n o f o l i { g s l t t t ' h . t r i r l t - ' : . t i ' t t ' t - t ' . : i : l " , l l r . l ' , : ' } 1 , ' l :

g r e a t i n r p O r t a n c e . \ i l s s o n h t t s c i t ' n t ( : t - l I ' . 1 : r , : l i . r ' ' ; . t . : ' l l ' : ' : . " . . ' , , , : \ ' 1 . i ( ( ' t ' l ) l ( l r

a f f e c t s t h e r e g i o s p e c i f i c i t v o l t h c I r . t n s l ( . r - l l ' ^ i : l r - ' i . , , , . : . : . t . I r ( l . t i ( ) p \ O 2 P h t o t r

G a l - O - M e g i \ / e S p r e d o m i n a n t h ' t h r ' 1 - 6 l r n k , ' 1 1 y r r , : : l : , ' ' . ' . : . . . , : i t , ' r , i l l t , ' . i c l c l i t i o l l t o p - G a l -

O-Me g ives predominant lv the 1+3 l i r - rk t 'c i 1 t : ' r lu r :

More recent ly , severa l groups hr tve l t t 'q tur t ( ) r i . ' . ,

g lycos idase-cata lyzed t ransfers . Th is e f for t h . ts rnr ' l r : , : ,

and prochiral substrates (refs 255-259.l-alr le 7i . l ' l r t '

: i r * . l i t ' l l t t ' c l i a s t e r e o s e l e c t i v i t y o f

. , i t l , , ' . r r l c i r t i on o f suga rs t o racem ic

. r r i r l r t ion o t ' c r -Gal -O-p-NOZPh to both

racemic g lyc ido l and isopropy l ic lene g lvccro l r r r l . r l , , .z t r l l tv rhc f ) -ga lactos idase f rom E. co l i

is repor ted to proceed in -4Oo/o d iastcrcr ) l l t ( ' r - r ( ' ( ' \ ( t ' i s 2 : r l The t ransfer o f an cr -Glc un i t

f rom mal tose to a racemic mix ture o f t r l lns I .2 t ' rc lo i rex : lned io l was repor ted to $ ive

lO0% diastereomeric excess, using a c'nrr l( , ( 'nrvnrc preparation from AspergtLlus orAzoe.

Enzymes from other sources gave lou't ' r st. l t ' r ' t i f i l i r 's.258 Gais and coworkers found

diastereomeric excesses of 50-969io resr.r l t inq tror.r ' r the transfer of B-Gal from either lactose

or p-Gal-O-Ph to a series of meso diols. cataivzed by p-galactosidase fronr both tr. col i and

Aspergtl lus orAzae2s1 These investigators also noted a dependence o[ diastereonreric

excess on enz1rme source, react ion cr tnc l i t ions (addi t ion o f acetone cosoh 'cnt ) and the

nature of the donating species. Mrrcl ' r u'ork remains to be done or-t the stereospecif ici ty of

g lycos idase-cata lyzed g lycosy l t rans l 'c r . A dependence of d iastercorner ic excess on the

nature of the donating glycoside coul<1 have important mechanist ic ir-rrpl icat ions.

Page 35: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

/

\

g, \J \-/ !,/ r!, \-, \J iJ q/ \J 'Q )

I A I A I A ' A ' A I A I A I A ' A _w w w w w w w v v ! !

N N N N N N N N N N N

ci ?t t - N f - f -q s s $ $ $N N N N N N

()O O O O O O O O O P I

S N N* H E E

X FFFs 5 ??T L C . a . lN N N N E H 2 E E

R ggaa t r ^o oo, F q r q r c r u Z Z Z Z C Q : , $ ' $5>

, - A A A A . \ | | | | f T 1 i ; + ^ 5 o oj - ' \ r v v \ J v O O O O * X O r O Y l . N - dF : - t - ! f f J . - t - ! - : ? ? c o - , r { 6 . a - i ? c i = ' Y Yt , t d o c ! c d c ! d d c d d < . r c . r A d i < j , A I q Z ? " "# g I ? g q I g g ? 6 6 9 :8 ; ' , -Y6 t J l o oP,i-?. i t t t t t t *+Q,o I XFU +? Q++fl??9?9T?T? ?o*i+E50F3,9flee? . 1 ' 1 . l . l . l . | | | | d G S o + A E S l c T ? 1 TO 5 = = 3 3 5 = - - + ' + ' E r - r A e r r r r ) ( ) ;| | | | | | | | | | nX6 '^9E ' t^ - . - *?9??

v - - A ' T i( ! ( ! ( ! ( E ( 5 ( ! 6 J ( ! ( E ( E v v 6 a - . \ J . A . q * c d d d c d

/ : l r a r ^ r l l r l \ r i

Y Y Y Y Y Y g 9 q 9 f f H H EdH H ? q 9 9 9R >l >l >. >l >l >. >a >a >. f \ f \ \-,, \./ f \ :Ti V V i.r ; ; - -v v v V V V V V V V H V V S g

c\.J-

Ot i s E . cE 0 . 0 " t rO S A OSs F 1 >, f ;O k * . A . 6 r y r lAs A 5 d ?J.\ > > , ' l ' l tE - c l - * s :

=5F i $ I Ab r 538q4-ie? g I I : : 5F: ;X-gOuU + ? a + + O O ts :, 5 ; 'n i' O , -c? ^. i'i i;H;9: : F, E ni3=gi+?g+nii?E+ + e a €X=q?I;fgXiei ; c . c , c l z 2 i ?O*== +dgFr . . f ?

i ; i i ? r i ssisnExFgF*;!H:: : ? 3 !5503?fl333Jfro E 6 6 6 E G ? : - : - E : r f r g , 3 F n I ;9Eqq o o o qE ' i 'FF+ ,6EFY"q8d 3 3 A 3 A ca-oQ:a :zc iEg9 , f idS

O(J

(')!.()

tt()x

€oqt()o

+rIcEokA

a

o

a

O

b0bo

a

Na(--a

!l<t-3-

abo

o

Lr

aX

,r1

r-(.a

q)+rcl1..+,o

Iaa

Page 36: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

@ @ @ c C l ' - f ' - N$ s l $ $ s l t i l L ON N N N N N N

A Av a v ar i l $N N

E. J. Trx lNt et u l .

Nrr

O O

:-)-

I

( \I

aar

(J

E,-aNrr{

t4 ,1 H- -o. o- \J$ S l o l SJr ;Ii -' tr.

O () +,C)??9q- - . A 4

'q f "dr ,'qv v | + l v

i a * " a a lv l

,sa6sa*/ \ A A / \ A\ . / l l v l

A AV v v V

t t t t

R R A A A

r \ l a r ^ , \ / r t\-/ \J \-,i L,r v

t t t t l. f r A A A

A - lN N

z 2

Y Y F r .a a A

! v V' t 7 \ mv \J ,-.'

; A *v

+ + +O O

A A Av V \ J

- l i - !6 d )

t \ r t \ l R

Y v vd c o - d -$N

^ar

a \

r d

aN

iF-i l{

0. rJN N

H FT{

e ! H

L J \ J

^ A\ J YH F F

+ i H

+ +a 1

a oA

+) {-J

^{ ^t'\ '\

\ v t v/ t r t

L.) \J \., \./; . ^ ' 5 - -

i l i l l l l l

q

- r - a 6 r

. a . a ' aJ . J . J .

- . =- tTr-

\ - , * ' 3 o Oi l c , i l . E t l- I * { o < H{ o & i l d- ; r r e :#o

F r r : rl ' / t * { * i\ J & ( J S L )

i l [ \

" rt'r ll '-< || ^N | * r . . \ J ^aC& t ^ Y h V =

F H A g V

. - ? + . I . o . - ' =' r . = . l c c ) Q - !- - - F v / - \ - =

u 0 ^ r 6 0 r f l ;

sff .gXsRpi- o - j - - oll : ll '6n ll c.i ll 5r \ .= ( t \- v - A

* - * ) r y r y -B

FarX

ca-+

F;.*a

OoEOk

"9q)

x

sq)qtC)a

+aC)a

!okI

q)+rG'k+.U)oaa

Page 37: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

t

N N N N N - C L O L O L O T O L O ( o Nu ) n u : u : u : l a r o L o l o L o L o L o l o t oN N N N N N N N N N O I N N N

6 /n Fa rr^ /rl.\ r-\ /-\A E g E g E

-Vor o.-,b,,,,1

) )d98q

1 f

s! Ibe: € ; { S S > eREBBE

^< O-I J \

)-

tl

dI

d,\_

T

I

g

xeco-^ I

,y\,:

Fl -1

LH

d 5A AN N . \, + ' i t l Jl l > a > Q-= B B; ,

- 9 ( )

5 f r' B'q qd l * ^ F X X- - -$s*€-?€oG= EO E h x F r r c i qY r) Y \./ Y I I _,t, cn_^ X n r a - l - - a ) =v \ J v \ J \ r - y Q *

- . O

-! -! -! ,'' ." l

TF3;#TT\ r \ r \ - / \ - / v \ . / \ . / / \ 1 \l t l l l l

co- co- cc- cl- c.- c1 c1 \2 \J

s&N

21dc1

o--\$,|

:rs+

# f iV V,A{ s1 t=?.q .qY Y ll( 4

b b xf f l,'\ ^\ J V

* ; 5 Xc fod6 n -+ + +

- \ - o| -{ \

- - AJc€\ \-J/ / J _ /a?

4

q\l,|='q

bf,o6

+

r -

2

l ) l )q q^ . \! c s

T T? +EOco- ce-

( : c i x D:E? .V F ir \ t s t - ( J r + 4

E5= = 2 c g osxe oal .E .qv vi + A ;v r \ ?v V- - F ! F ' : i O + +: X . P l , f : , iE * \ . / \ J V : \ \ - /

+ + + + + ='(1 t- 11 t< a1

x - a - F A - F h f - T T - ' . ^ - - oo??o?o=o\JoG G G : : G E / \ 1 \ooooooo \ , / \ JA , . A A - M A

oC)

Fr

c)

o

CJa

+rouE0t .A.

q)+,dk+ra

!

a

Page 38: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

O) r-coN N

s

N

E. . l . T t ) ( ) \ t : ( ' / ( / /

c c € *l ^ w .

9 .

N l l ' \

@rOcl

*

t1

cl-v

a*I-

v

I

{1

t-

I

xq)c ' , +6

A YY < <

d a( t I

o oX

E t rd 6=h3

t

tq+

rlr 'lL + +

oo++-

xo\1_lL6 .,4-(/ YO L

(.)-

tuC)EOko

l..tog,

q)

Oa

+JI

ol.rI

c)+,6k

o3aa

5402

Page 39: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

\

g5?

'J

q

O U O( a r l . Av \ / -

I r r^ - -$ ( o $f f f

t t l

t l

v vA l t. R , ^ / 4LJ \./ \.J

t l lA A ' A

I>s>\5

f i$> i A

I d I Oq i v tl - - ' . t

/1 ,-{ ) ( )\-/ \-/

IJqt,|

?lfix

+r TL ^u'-f"

( / ^<\-/ rJ

'-r OLO tO rOc l c \ N

rONN

c)9.1

q)O

/ \ r \ r \\J \J \./

g)

Io

# # r 2V Y q+ - G - G -TTT -

v Y Y( ' > l ) l )

0qqd d d+ + +

- T T

A - 5 66 6->{- -H- -H-(-) s (-,) s L/ s

N C I

zz

cc I; i xG G 5

++ a= F

x x ! ! c )7 ; l r . l A qf i .G ' =a +4 + - L l ' \l l a ' l O Y . . ,

.J

- d ; Y

6 6 : :i= e 6 \ - /3 8 B B

+a()a€olr

H

.=o qcn ,:.6 $v a

q t

a h lA

6 aA a ))/

. a f 1 ,l-'' .= Yco- O ca-

-C.

ZA

I

I

x

+

CI

9s1 c tA €

' i l

, ^ . h a AY O . t . 'e o F < t r r

It < d J +

. ' Y I

* x r \ f I9 9 V v

o6k+,o

A

a

Page 40: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

E. J. Ttx l r r L, t t r l .

N

CTsct

\J \J \J

LO rO tON N N

IIJr\.r /'ra fnH

- f n

F

tO

IJ/ n- -Y . -

/ T ! - \I C ) . . o \I ' . r . 1

L r-\ I[ ) f . . f ( ) r l u r f\ /o{

\nrT4

R\5/ nYx

sT

9a ' t

.xr r lY:

=(_)( n t

:

.?(j

!

'{:

8ZTYx+F

,iC)iE.f

,fr -9=\(oz . 'o \t 11 1$ . . . . r ( ) r , . . , , /\ /

a]'-Iv \

/ \v

N

I-\v

I

c)oC!kc)

l+'aotr6k

+JFl

>,{,)oQ

>\-" xL"

o 1o . ) ' : dG l - ;l r + t r' + r

B'* X+3r i rE; n #E Y > ' Y

(,> dt1 LrF | :./! !

X! ' q)N F

o t r oG ' ' > , ;

"95 Fh a ) ;F E {x v vF l

( - r +

( \

c\f

I

I I

l l l l

N

c

7fr.

co-I

cr)

T-rl)

++

- d t 4

? R , 4

\J \J .d

r r OA A

Ft t F

N N ' E

^ ^ : ai l o '

,-r '-r cY Y O( J < - r f i x

r - \ - / t l

oo : 6J .A I

' ?r -

l l - '" a I

.t

N ^ l q ' rt l - r a

, l

O Y O C J/ \ v r l l \ lr - / - v v

r r a I Iv

( - tI m | | V

c o i l c o N B,,i /n ,nt N t l

a l Y /J - - -| . - | |C J ( J O U- *

r X / R r R f \\J l-./ \./ L/

t l l r^ /+, aal a-)

il il il 11

NtY tY * ^./H H

c!

5404

q)C)trc)kq)

fH

c)l\/-

€c)

6C)a

C).|oktu

a

6k

o3

a

Page 41: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

5405

EOJ

Pxx; 0 )

v L i

+J fl

v4 a )

at tJ

aa \

(1 !

- !c

k^ . . I

. F V Y

7 ! 5 r E dwL F = A- J t r- a -b r v

w A . dv a l

_ v = C= = - ( J t rY 2 0 ct = e o * ^ " N ' _ <

a E u O : ^ H E F Ey c p l j l j " E= t s w H F ^ - - - ^- , * - Q : = 5 o , - 1 AH E

" 0 9 v F N c . )

' i - / \ d r l j r = l r. - ! . d

9 t r - . n i i A r . i € :! - \ ' r V - E v Y

= Fl V A L Hlan Y L{= t r ! - . 1? - = =a < ; ' u

[ - n r \ ln e -c a t a I y- zed s.vn t hesi s ol ca rbtl h yc1 ra t e s

TGcl

r.l

r o ( o$ $N N

I

,q"\

r.'t

T

z

C)

.z

a

v v

A l

Y NvF1 ,,r..

I

h lw

x ,'.A ' J

a0J r i4 VY l

^ 2 N P. : q ) A , -! . 1 F s sX o 4 . ac r b o I I

7l 'r t4

x ? : - -v v t l

a \a \ v v: r 5 ) dh - t , , \ l ' \( J ( ! Y Y

A E B B

A

zE

+?

I=d

zq

. r ca-

c j q ;A -: , 7! L t

: r ? c ,) l- b n o ( <xaEo+=+ x + 2 ; , r . ' r

F P . E O ! \ O 7F; E c ; \4 -eI i N s h =A a F a

IIg)

o&

sq)

ctc)a

+JI

€ot<

tsa

q)+r6k+)o

3,a

Page 42: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

5:106 E. J . T tx l r l : c l t r l

4. Polysaccharides.

polysaccharides play important roles as storage, structural. and protective

components in biological systems.1,2,5 From a commercial standpoint. polvsaccharides are

the most widely used group of carbohydrates. Polysaccharides are important both as

commodity chemicals in the food,26r.262 text i le,263 and petroleum263 indr'rstnes. and as

specialty chemicals, primari ly in the medical f ield.26+ Some of the more important

polysaccharides from the point of view of human health are heparin. hvaluronic acid' and

chondroitin sulfate (Figure l). Modification of these and other carbohvdrate polrrners may

lead to important new materials.

roR)-o/ \

N?'rl"NHR'

heparin

NHAc

chondroitin sullate

Figure l. Representative repeating units of important gll 'cosr-i,r::::

stmctures are heterogeneous. For heparrn ' R = -SO;l 'r

R = -SO32- or -H.

; , ' , .sacchandes. The fu i l= -Ac o. -H: for chondroitin sulfate'

Sgrnthesis.

Biosgnthesis and Isolation The biosrnrhesrs ot' loh'saccharides is achieved in one of two

ways. The first uses the Leloir parhu'ar'. described above for oligosaccharides. Extensive

post-polymerization modificauon can. hor',-ever. stronglv influence the structure and

properties of carbohydrate biopolymers. plrrt iculariy in eukaryotic svstems' Modifications

include acetylation, deacetylation, sulfation. epimerization, oxidation' reduction' and

methylation. The system of enzvmes and cothctors needed to accomplish manv of these

transformations are now developed tor s'unthetic applications: one important exception is

the system, based on 3'-phosphoadenosine 5'-phosphosulf 'ate (PAPS). that is involved in

essentially all sulfation reactions. Although in uifro sulfation of poivmeric systems with cell-

Page 43: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

f r ee enzymes has t l ec ' l r . r r - , : : : : . . : : i t : ' : l " l t . u - r l r r - r a l v t i ca l sca le ,265 p repa ra t i ve -sca1e po l_ r ' r ne r

su l f a t i on ren rau - r s i l : r : : : ' . ; - - , - : i . t : r : ' . : : : s r l , . ' ed p rob l cn r .6 l The second rou te t r t i l i zes non - t r l o i r

pathu 'avs. a : rd ls ' . :se j :n ' .he b lcsrnthes is o f severa l impor tant c lasses of po l lmrcrs . i r - rc lud ing

thc cl i ' . r l :ar.s .1:: i ler:ans.2tr In this s,\Tthetic route, sugar monomers are activated as t]-re

: r . , r . - : :h , - ,snhalcs before incorporat ion in to the growing chain . l ,2 '5 ,267(":ni:non methods for the production of polysaccharides by isolat ion from biological

> :: : l rs or bry fermentation suffer several drawbacks. Isolat ion does not al low control of

e: '- . l :e: polrrner molecular rveight or the extent of branching. Isolat ion of polysaccharides

; ,s : c reates an inconvenient dependence on natura l sources. Separat ion o f the des i red

;*;."-: : :er from a variety of extra- and intracel lular (when cel ls must be lysed) products is

i : i :rc ' .r l t . Shear degradation of the polymer n-lay also occr,rr ciuring lysis.

Cell-free Enzgmatic Sgnthesis. The sy'nthesis of modified carbohydrate polymers might

provide materials with more desirable physical and biological prctpcrt ies than their natural

counterparts. One approach to control l ing the characterist ics of polvrners is to control the

genes encoding the enzymes responsible for their production. to regtr l :r te thr. act ivi ty of

these enzyrnes, or to inf luence in uiuo slmthesis in sonre other rvay.2€i8'26s Another

approach is to use ce l l - f ree systems of enzynres. Potato phosphory lase, rvh ich uses Glc- l -P

to slmthesize amylose, has been used slmthetical ly in uttro. Pfannemuller and co-workers

have used this enzyme to prepare maltose ol igomers.2To Whitesides and co-workers

extended this method by preparing Glc-1-P in situ frorn sucrose, using sucrose

phosphory lase (E.C.2.4 .1 .7) (Scheme 22) .27r Pfannemul ler and co l leagues have a lso

produced an extensive family of l inear, star- and comb- shaped polymers carrying amylose

chains us ing potato phosphory lase ( t r .C . 2 .1 .1 .1) (Schcnre 23) .272 '273 Other impor tant ce l l -

free enzymatic systems include thosc r,rsccl in t i re con.rmercial preparation of cyclodextr ins

from s1srgh.274

In spite of the progress that has been nracle. scveral dif f icult ies l imit the use of cel l-

free enzymes for the synthesis of polysaccharicles. The major problem is the complexity of

many polysaccharide-slmthesizing systems. The large number of enz'vrnes in' , .olvcd in

synthes is (and in post -po lymer izat ion modi f icat ion, when i t occurs) , the necd for pr inrers ,

and, in the case of g l l rcoprote ins. the inyo l . " 'ement o f pro te in- or do l icho l -bot r r tc l

in termediates a l l cont r ibr - r tc to th is prob lem. Iso la t ion, pur i f ica t ion. anc l s tab i l iza t ion o f the

required enzymes is often cl i f f icult . Many enzynres lose activi ty rvhen thc_r' are no longer

membrane-associated. Like the glycosyl transferases, the concentrat ictr-r ol 'many of these

enzymes in cel ls is low. This problem is espccial ly signif icar-rt u' i th cnz\nnes isolated from

eukaryotic sources. I t is unl ikely that cel l- free enzlmratic svnthesis r ' , i l l provide better

routes to most natural polysaccharides than do fermentation and isolat ion. The use of

genetic engineering, both using classical genet. ics and recorlbinant DNA technoloEr, is now

being used to prepare modi f ied carbohydrate po lynrers .2Ti>

Page 44: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

E. J. TrxrNr. et a l .

M a l l o h e p l a o s e.-_------.>

P P h

G l c - 1 - P-----------t>

P o t a t o p h o s p h o r y l a s e ( G l c ) . . ,

ol{

S P h

\\

P J

I/

e €

Scheme 22. SPh = sucrose phosphoryiase;PPh = potato phosphorylase

S l a ' p o l y m e r

l-oH]*o Ho-'l -o-

,/on \'J!\o-\lVLo'

oH Ho

( G l c ) ;

fnr-cH2-cH-.r,1 Grc.r 'P

- fgr-cH2-cH-.r,+I tof l " tcf l "

-

I n. , Potato phospher) rase

[ . ,c,J1^. , lc td;n. , I , . , . ,

Comb Po lYmer

Sc l ' r cn rc 23 .

Several leloir-pathway systems have bcen isolated, and hyaluronic acid,276-278

.h11in,279 and chitosan2So have al l been svnthesized on small {pmol) scale using cel l- free

enzyme preparations. To date, the focr-rs of this work has been the eh-rcidtt t ion of

biochemical pathways, and only natural polrrrers have been slmthesized. The use of these

systems to generate novel pol lmrers is an area of current interest.

(G lc )n* ,

Page 45: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

I : r , , ' , i : t a - ' . i t . r l r zcd \ \ I r t he s i \ o f ' ca rboh t ' d r t t t es

5. Prospects, Targets, and Unsolved Problems

Assessment. Enz-lrnes will be a useful class of catalysts in the synthesis of

monosaccharides. activated monosaccharides, oligosaccharides and polysaccharides. The

aldolases presentJy appear to be the most useful group of catalysts for the preparation of

monosaccharides: other enzymes (kinases, lipases, oxidoreductases) catalyze specific

funcuonal group transformations of monosaccharides but are less general in applicability

than the aldolases.

Enzymes of the Leloir pathway have already been used successfully to prepare certain

cliqosaccharides by formation of glycosidic l inkages. The eight nucleoside phosphate sugars

required to synthesZe the large majority of mammalian oligosaccharides wil l soon be

available by practical synthetic routes. Diff iculties in obtaining the required glycosyl

transferases currently l imit the scope and scale of sy'ntheses in this area.

The use of cell-free enzymes for the synthesis of polysaccharides is just beginning to

be explored. The lack of the necessary glycosyl transferases, and the requirement, in some

systems, for enzymes for post-polymerization modification, are both unresolved problems.

Methods for producing or modifying selected polysaccharides having high value may prove

practical; these methods wil l draw upon results in the area of oligosaccharide slmthesis.

This section sketches a few of the specific areas in which enzyrne-based carbohydrate

synthesis has potential. While this list of potential targets for slmthesis is by no means

complete, it illustrates the range of targets to which this synthetic methodology might be

appl ied.

Rwarch Chemicq.ls cnd Biochemiccls; Synthefic Interrnedi<rtes.

Biochemicals. Compounds such as nucleoside phosphatc sugars. glycoproteins, glycolipids

(eg. gangl iosides) are important as mater ia ls lor st t rd ie s ol- i r iochcr l ical systems and as

intermediates for the s lmthesis of other biochernicals. Nlocl i l - icc l . 1 ' luorcscent- label led, or

radioactively-ta6ged biochemical intermediates are also usel'ul as ir-rhibitors or tracers. The

stereochemical demands posed by the synthesis of these u'atcr-soltrble materials challenge

the methods of organic sl.nthesis. Enzyme-catalyzed reactions provide routes to many

simple biochemical interniediates and may be the method of choice for the synthesis of

more complex structures. These reactions are particularly trseful in s1'ntheses requiring a

high degree of stereoselect iv i ty.

Chemicals. Naturally-occurring sugars are already u'idelv trsed in organic slmthesis,

primarily as sources of chiral centers. The capacity of aldolases to generate large numbers

of rare and unnatural sugars and of sugar-l ike nrolecules offers a roltte to many new chiral

synthons .28r'282

Page 46: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

Glgcolipids and Glgcoproteins. The identi l - icat ion an'1 r;rt 'Jr; .u-i t t ton cf compounds that

enhance the response of the immune svstcrn is i t kcv l . r r - r - r I , ,1 l t i t t t l ted icn l

research. r49,283,2B4 Bacterial sources have proriciccl ; .r l rr : ,- , ' nun' i l t tr ot ' qlvcoconju$ates that

f r - rncuon as immunomoduls fo1s.285 Two of the nrost ln t ( ' r ( '5 i rn- ( l i . ]5scs o f such compounds

are muramyl d ipept ide (MDP) and t rehalose d iesters . or c t . r rc i l ' ; . i t ' l r , r L I ' - r . - r r re 2) .

Immunomodulators are of great value as adjuvants ir-r vact 'rr . tr t i t l r l ipr ' \ luranrvl

dipeptide has been used in this capacity since the beginning of the cct ' t t t tn' . Oriqinal lv used

as awhole cel l preparation (Freund's adjuvant), MDPwas shor' '"rr in I97-1 to be the

minimum active structure from mycobacterial cel ls.286 Certain'u'accine and anti-r iral

therapies use MDP to activate macrophages, increase levels of antibodies against specit ic

antigens, and induce a delayed hypersensit ivi ty reaction.287 MDP also st imulates non-

specif ic resistance to bacterial infes1i6n288 and to oncogenic animal vir lr5s5.289

Unfortunately, native MDP displays a variety of deleterious effects in utuo, including

pyrogenicity, thrombocytolysis, and sensitization to .tr6o1ex1n.29o As a result, the slrrthesis

of analogues of MDP is of interest in efforts to maximize the value of this class of biologicallv

active compounds. To date, these studies have focussed primari ly on the modif icat ion of the

peptide moiety.2go Improved methods for the s-r, 'nthesis of both unnatural monosaccharides

and glycoproteins may al lor,v the preparution of a varictv of new contpounds with variat ion in

the sugar moiety.

Trehalose d iesters shorv in tn t t r r - rost inru lant . l tn t r l r l r t ' tc r ia l . l ln l ipnr i ts i t ic , and ant i tumor

act iv i ty (F igure 2) .29o The preparat io t - t o t ' ' t .d r l ' i tc i t . t ' l ' t l r rs t ' t l t ' r i ' . t i 'es has concent ra ted

on a l tera t ions o f the acy l s ide cha ins. in par t c lue to thc sr .n th t ' t ic c l i f f i cu l ty in modi fy ing the

trehalose moiety.2go The development of tcchniqucs lrr ist ' r l on ( 'nzvrl tes for the formation of

the unusual glycosidic bond of trehalose should al lon' t 'or the prcparation of new analogues

of t reha lose, based on the preparat ion o f nove l d is l tcc i rar ic l t cores.

5 4 t 0

Immurwmd.ulators.

I I I l o \ i . I L t l

Figure 2.

cH"t -

(CHz)n (\

H C -

^d

?n' ?t'{cnr). (}z)"

H C - C H

lo \on

Iol o H

) /fl-o"

H o l'-J4HO

o coNH"H i l |t -^ruAAcorx

l l : Ho cHr

T r e h a l o s e D i e s t e r

n = 3 0 - 9 0

M u r a m y l D i p e p t i d e

Page 47: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

-

\ \ n thes is o1Cil rbr)h \ d rr te\

Bacterial Endotoxin/Lipid A.292,293 The outer membrane of Gram-negative organisms

contains s;a:t: : ' rca; ir arrtounts of an amphiphi l ic l ipopolysaccharide (LPS, or bacterial

r.ndi: . , \ : : t l i : rs biopolgner is responsibie for many of the toxic effects due to Gram-

:'...--:::i 'r traclena infection, including fever, hypotension, coa$ulation abnormalities and

::i:: n Laboratory animal5.29a LPS consists of three segments: lipid A, an acylated

::saccharide of F-GlcN-(1-+6)-GlcN; a core polysaccharide region; and an anti$enic outer

poil'saccharide (Figures 3 and 4). These components show considerable species

Antigenic Chain Core Polysaccharide

Cg - Crs Acyl Chain It/bnosaccharide

F igu re 3 .

variation. Lipid A aione causes many of the physiological effects of bacterial .tt6o1etqin.295 It

is a potent stimulator of tumor necrosis factor,296 and also stimulates the formation of

anubodies, which cross-react with a wide range of other Gram-negative fivg1s6a.297 Lipid

A stimulates the immune system, causing the differentiation of B-lymphocytes and the

reiease of secondary mediators by macrophages. such as prostaglandin5.29a The slmthesis

of modif ied endotoxin structures is clearly an area of great interest in the search for non-

protein immunomodulators and adjuvants. To date, the study of modif ied bacterial LPS has

rel ied on the isolat ion of incomplete endotoxin structures. often from mutant strains'298 or

by total chemical sfnthesis.299 Enzrymes shor-rld prove useful in the synthesis of components

and analogues of LPS.

Polgsaccharides. A number of polysaccharides (for example dextran. heparin, hyaluronic

acid, Figure I, Section 4) have well defined places in medicinal chemistry, and a number of

others have shown biological act ivi ty.30O,3O1 Heparin is a highly heterogeneous structure.

with a number of apparently dist inct biological act ivi t ies due to dif ferent sequences. The

pentasaccharide shown in Figure 5 has been shown to be a minimum sequence required for

binding to anti thrombin l l l . ls3.3o2

Page 48: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

<,1 I ' )

E. J. Tcxtxr , c t u l

While cell-free s5rnthesis of polysaccharides is not presently feasible on a large scale,

the preparaUon of useful quantities of oligosaccharides may well be possible. These

oligosaccharide sequences would be valuable in defining relationships between biological

activity and structure, and might constitute useful drug candidates by themselves.

c-Ga-l-( l -+6) Hep-(l --+Z P - P - N E t KDO.P-NEt

l r

o-GlcNAc-(l-+2)-c-Glc-(r-+2)-c-Gal-(1-r3)-a-Glc-(l --+3)-0-Hep-( I -r3)-3-Hep-( 1--+5)-KDO--+KDO--+LlptdA

p-clc-(1-+a)

I[ -+ ) -0-GlcUA-( 1 -r3) -o-FucNAc- ( I -+3) -o-GlcNAc- ( I --+6) - G a]- 0- ( t -, ]

Figure 4. Representatlve urrlts of bacterlal endotodn.polysacchartde of Salmonelln 3 = Repeatlngphosphate; Hep: heptose).

I = Llpld A from fulmonella mlnnesota- 2 = CoreGanUgenlc polysaccharide of E. coli O32 (P:

Figure 5.

gH20so3-)-o

, / \'e.€t"

Page 49: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

\ \ n thes is o f ca rbohvdra tes 541 -l

Drug delivery.

Carbohydrates have already proved useful in three areas of drug delivery: ln

solubilizauon of hydrophobic drugs, as biodegradable polymers for controlled drug release,

and for specific organ targeung.2gl,3o3 Improved enzymatic methods for synthesis of

carbohydrates and derivatives will provide more flexible methods for preparing drug-

carbohydrate conJugates, and for generating new carbohydrates'

Solubilization of large, hydrophobic molecules, such as steroids, through glycosylation

has long been recognized as one mechanism of deto:dflcatlon tn uiuo.38 Thts same prlnciple

is used to solubilize drugs that mtght otherwtse have to be used as suspenslons. In uiuo,

glycosidases remove the glycosyl unit, unmasking the drug. Increased availability of glycosyl

transferases should, in combination with techniques for preparing nucleoside mono- and

diphosphate sugars, be especially helpful in synthesizing drug-sugar conJugates'

polymeric drug detivery systems have been used clinically.3o4 The primary advantage

of polysaccharides as delivery vehicles is the biocompatibility of both the initial polymer and

its degradation products. Furthermore, an effective mechanism for decomposiuon, the

glycosidase enzyrne system, exists in uiuo. The hydrophilic surfaces presented to serum by

polysaccharides may be less thrombogenic than synthetic polymers.

It may be possible to exploit the fact that carbohydrates are often important in

biological recognition to design strategies for specific organ targeting. For example, the use

of mannosylated proteins in conJunction with muramyl dipeptide (uide supra) allows

specific delivery of MDp to macrophages. The glycoprotein conjugate binds to the mannose

receptors on the surface of macrophage cells, and is subsequently endocytosed'

Glgcosid otrre ond Glgcosgl TvansJer,cse Inhibitors.

A range of analogues and derivatives of carbohydrates are proving interesting in

studying the biosynthesis and modification of oligosaccharides: deoxtmo-jirimycin'

swainsonine, and castanospermine inhibit trimming of the N-linked oligosaccharides of

giycoproteins; tunicamycin and streptovirudin also inhibit $lycosylation in the I-eloir

pathway:3ob,3oo acarbose inhibits amylase.3oT These inhibitor systems have attracted

substantjal interest for two reasons. First, they provide a way of explorin$ cell-surface

oligosaccharide chemistry, a topic of central interest in differentiation and development, as

well as other areas. Second, most are relatively easily understood as transiuon state

analogues, and there is a good chance that the design of other, new Sugar analogues to

inhibit other glycosidase and glycosyl transferases can be accomplished'

The syntheses of these types of structures are not straightforward using classical

synthetic methods. Enzymatic methods have already proved very useful in syntheses of

deoq^ojirimycin and related materials, and will probably prove widely applicable to other

preparations in this series.

Page 50: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

{ - 1 l +

Glg copr otein Remodeling.

E. .1. Trx l r I : c t u l

A number of the proteins of interest as human pharmaceuticals (tissue plasminogenactivator, Juvenile human growth hormone, CD4) are glycoproteins. There is substanUalinterest in developing synthetic methods that will permit modification of oligosaccharidestructures on these glycoproteins by removing and adding sugar units ('remodeling") andin making new types of protein-oligosaccharide conJugates.3oS'3o9 The motivation for theseefforts is the hope that modification of the sugar components of naturally-occurring orunnatural glycoproteins might increase serum lifetime, increase solubility, decreaseantigenicity, and promote uptake by target cells and tissues.

Enz}rmes are plausible catalysts for manipulating the oligosaccharide content andstructure of glycoproteins. The delicacy and polyfunctional character of proteins, and therequirement for high selectivity in their modification, indicate that classical syntheticmethods will be of limited use. The maJor problems in the widespread use of enzlrmes inglycoprotein remodeling and generation are that many of the glycosyl transferases that areplausible candidates for this area are not available, and the uncertainty in whether glycosyl

transferases that act during synthesis rn uiuo (probably on unfolded or partially foldedprotein) will be active at the surface of a completely folded protein.

Biocomp atibte llIateria.ls.

The carbohydrate portions of glycoproteins and gl_r.colipids are a nta-jor constituent ofthe exterior surface of mammalian cells. A number of functions have been suggested forthese oligosaccharide moieties, ranging from highl,v structrrre-spccific roles in cellularrecognition to rather general roles in cellular protecilon. r\t least two general mechanismshave been suggested for the hypothesized activities in the latter category, both based onanalogy with phenomena known to be important in colloid chemistry. First, the presenceof NeuAc as the terminal constituent of manv cell-surface oligosaccharides gives the cellsome aspect of a negatively charged particle, and may thus prevent too-intimate cell-cellcontact. Second, the presence of highly solvated. conformationally mobile oligosaccharidechains on the cell surface may provide steric protection for the cell surfaces.

The recogniUon that oligosaccharides on cell surfaces play an important role in theirinteraction with cells and other constituents of biological systems has lead to the suggestionthat the ability to prepare surface-immobilized sugars and oligosaccharides might lead tonew strategies for controlling biocompatibility. A variety of mono- and oligosaccharides,from glucose to heparin, have been attached to surfaces using classical chemical couplingmethods. The enzyme-based slmthetic methods discussed here should also be applicable tocertain types of synthetic reacUons at interfaces (using of course, soluble enzymes). Thereis, however, an important uncertainty concerning the character of steric interactions

Page 51: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

-s.t L\

betu'een the enzrrne and the surface: is a potential substrate for an en4lrne-catalyzed

transl'-:::.tucn accessible to the enz,l[ne if it is tmmobilized close to a surface?

Otha Ogpnrnities.

The pace of development of carbohydrate-derived pharmaceutical agents has, inqe neral. been slower than that of more conventional classes of materials. The difficuliles insrnthesis and analysis of carbohydrates have undoubtedly contributed to this slow pace, butat least three areas of biologr and medicinal ehemistry have redirected attention tocarbohydrates. First, interfering with the assembly of bacterial cell walls remains one of themost successful strategies for the development of antimicrobials. As bacterial resistance topenams and cephams becomes more widespread, there is increasing interest in interferingwith the biosynthesis of the characteristic carbohydrate components of the cell wall,

especially KDO, heptulose, lipid A and related materials. Interest in cell-wall constituentsis also heightened by their relevance to vaccines and as leads toward non-proteinimmunomodulatlng compounds. Second, cell-surface carbohydrates are central todifferentiation and development, and may be relevant to abnormal states of differentiation,such as those charactenzing some malignancies. Third, the broad interest in diagnosticshas finally begun to generate interest in carbohydrates as markers of human health. In

addition, there are a number of other possible applications of carbohydrates, for example as

dietary consUtuents, in antivirals, as components of liposomes, which warrant attention.

Enzymatic methods of synthesis, by rendering carbohydrates more accessible, will

contribute to invesUgations of all of these areas.

Acknowledgements. This work was supported by the NaUonal InsUtutes of Health, Grant

GM 30367. ESS acknowledges a fellowship from DuPont. A number of individuals provided

very helpful comments concerning this review, especially Ole Hindsgual (Alberta), Bryan

Jones (Toronto), James Paulson (UCI-A), Subramaniam Sabesan (DuPont), and Chi-Huey

Wong (Texas A&M).

Page 52: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

AcPAMPADPAra-5-PAsnATPCMPCMP-NeuAcCDPCTPDAI{PDFIAPDolFDPGalCalNAcGhGlcNAcG-3-PGMPGDPGDP-FucCDP-ManGTPHepKDO-8-PLPSManManNAcMDPMEECNeuAcNDPNTPPP1PEPPPiProRAMASerThrUMPLIDPUDP-GalUDP-GalNAcUDP-GlcUDP-GlcNAcUDP-GlcUAUDP-XylUTP

[ : . - l T rx r : t

Abbrevlatlons

acetyl phcsphateadenoslne 5' -monoph osphateadenosfre 5' -dlphosphaie

arablnose 5'-phosphateasparagtneadenoslne 5'-trlphosphatecytldlne 5'-monophosphatecytfdIre 5'-monophospho-N-acetylneuranrinic acldcytldlre S'-dlphosphatecytidrne 5'-trtphosphate3- deory-D - ar abtnoheptulosonlc ac td 7 - p h osp hat edlhydruyacetone phosphat.edollcholfructose 1, 6-dlphosphategalactoseN-acetylgalactosamtneglucoseN-acetylglucosamlneglyceraldehyde- 3-phospha teguanoslne 5' -monophosphateguanostne 5'-dlphosphateguanoslne 5' -dtphosphofucoseguanoslne 5' - dtphosphomannosamtneguanoslne 5'-trlphosphateheptulose3 - deory-D -manno- 2 - octulosonlc actd 8-phosphateItpopolysaccharldemannoseN-acetylmannosamlnemuramyl dlpeptldemembrane-enclosed catalvslsN- acetylneuramlnlc actdnucleoslde dlphosphatenucleoslde trtphosphatephosphatetnorganlc phosphatephosphoenolpyruvatelnorganlc pyrophosphateprol tnerabblt muscle FDP aldolaseserlnethreonlneurldlne 5' -monophosphate

urldtne 5' -dlphosphate

urldlne 5' -dlphosphogalactose

urldlne 5' -dlphospho- N- ac etylgalactosamineurldlne 5' -dlphosphoglucose

uridtne 5' -dlphospho-N- acetylglucosamlneurldlne 5'-dlphosphoglucuronic acidurtdine 5'-dtphosphoryloseurldlne 5' -trlphosphate

Page 53: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

References

1()3

-

Kerrr.recr - I '*:::c. C A arnctoe Carbottydrates: Ellis Horwood Ltd.: West Sussex. 1983.Sha:r :. '. C.:rrdcr Wttl*ates; Addtson-Wesley: Readtng, MA' 1975.i j : : , - - r : - V I t tF.r r t* ' . . Eds. TheClgcxongugates,Vol l ' / I ;Academlc: NewYork. 1977- i978.i:r-:r:r X L. Ed- TE ClUreqlugates, VoIIII - IV; Academic: New York' 1982..ts;gnf C O . ?A Tfc @sacchottdes, VolI - III: Academlc: New York, l9B2-f 985.tatdr D E Hrerrdsay: The Ctlrmtca| Reochons oJ Liulttg Cells; Academlc: New York, 1977.

h5.lt CtETt Sa. Reu. 1984, 13, 15.t-it h. A; Grynktewlcz, G. In The TotalSgnthests oJ Natural Proclucts: ApSimon, J., Ed.:Wley-

E.re.:rE€: l iavYork, 1984;Vol.6, p 141.trc'.nqv. G. J.; Klmura, M.; Oh, T.;Wlliams, J. M. J. Carbohgdr. Chern 1982' 40' l.Zaqski. A: Banaszek, A.; Grynlciewicz, G. Adu. Carbhgdn Chem. Btrchem. 1984, 3, 125.

Schrntdt. R R Angetl. Chem InL Ed EngL f986, 25,212.Knrz. H. Angeus. Cherru lnL M- EngL L987, 26,294.Paulsen, H. Angeu. Chem lnL Ed DtgL L982, 21, 155.Lernieux, R U. Ch€trl Soc. Reu. 1978, 7,423.Ogawa, T.; Yamamoto, H.: Nukada, H.; Kitajima, T.; Sugimoto, M. Pure AppL Chern. 1984, 56,779.For a collectlon of recent papers on glycoprbteins and glycolipids, see: Carbohyd Res. L987, 164.Schauer, R Adu. Carbotrydr. Chem. Biochem 1982, 40, l3LSabesan, S.; Faulson, J. C. J. An:" Ctenu Soc. 1986, IO8, 2068.The Lectins: Properties, Filnctions and Applicatrons in Btologl1 and Medictne: Liener, I. E.; Sharon, N.;Goldstetn, I. J., Eds.; Academic: New York, 1986.Feid. T. Nature 1985. 314.53.Paulson, J. E. In Tle Receptors; Cohn, P. M., Ed.; Academic: New York. t9B5; Vol. 2, p 131.Sairam, M. R In The Receptors; Cohn, P. M., Ed.;Academic: New York. 1985: Vol. 2, p 3O7Kanfer, J. N.; Hakomori, S. Handbook of LipidResearch Plenum: New York, 1983; Vol. 3.Montreuil, J.ln Comprehensiue Biochemistry; Neuberger, A.; Van Deenen. L. L. M., Eds.; Elsevier:Amsterdam, 1982;Vol. IgB part II, p l.Hakomori, S. Ann. Reu. Biochem. 1981, 50,733.Feizi, T.; Childs" R A. Brochern J. 1987,245, l.Rademacher, T. W.; Parekh, R. B.; Dwek, R A. Ann. Rg.;. Bioctem. 1988, 57,785.Sariola, H.;Aufderhetde, E.; Bernhard, H.; Henke-Fahle, S.; Dippold, W.; Ekblom,P. CzU 1988, 54,235.NoJiri, H.; Kltagawa, S.: Nakamura, M.; Kirito, K.; Enomoto, Y.: Saito, M. J. Btol. Chem. 1988, 263,7443.Seyfrled, T. N. Derrlopmental Biologg 1987, 123,286.Usuld, S.; Lyu, S.-C.; Sweeley, C. C. J. BiDL Chent 1988, 263,6847.Hakomori, S. Cancer Res. 1985, 45,2405.Kornfeld, R.; Kornfeid, S. In The Biochemistry oJGlycoproteins and Proteoglgcans; LenmaraW. J., Ed.;Plenum: NewYork, f98O; p f .Neufeld, E. F.; Ashwell, G. lnThe Biochemrsfryl oJClllcoprotens anci Proteoglgcans; l,enmarz,W. J., Ed.;Plenum: NewYork, t98O: p 266.Roseman, S. In Cell Membranes: Biochemtstry, Cell Biologg and Patlnlo-qy; Weissmann, G.; Claiborne,R Eds.; Hospital Practice: NewYork, 1975; p 55.Ashwell, G.; Harford, J. Ann. Reu. Biochem. 1982, 51, 531.Berger, E. G.: Greber, U. F.; Mosbach, K. FEBS IEtL 1986, 203, &.See: Enzgmatic Bases oJDetoxicatrrcn; Jakoby, W. B. Ed.;Acadenric: New York, l98O: Vol. II,.Jones. J. B. Tetrahedron 1986, 42,3351.Ervgmes inOrgantc Synthesls (CibaFoundaLion Symposium -l.l l i ; Porter. R.; Clark. S., Eds.; Pitman:lnndon, 1985.Akiyama, A.; Bednarski, M. D.; Kim, M.-J.; Simon, E. S.;Waldmann. H.: Whitesides, C. M. CHEMTECH1S€|,627.Whitesides, G. M.;wong, C.-H. Aldrictrctem. Acta 1983 16,27.Nilsson, K. G. L TIBTECH 1988. 6,256.Shibaev, V. N. Prqg. Khim. UgleuorJou f985, 149 (Abstract: CA: 1O8:l l284Ie)./J,ryses: Borgstdm, B.; Broclsnan, H. L., Eds.; Elsevier: Amsterdarnr. 1984.Joires, J. B.; Beck, J. F. in Technrques in Chemlstry: Jones, J. B.: Sih. C. .T.; Perlman, D., Eds.;Wiley-Interscience: New Ycrk, 1976; p 107.Kim, M.-J.; Whitesides, G. M. J. Am. Clrcm. Soc. 1988, 110, 2959.Simon, E. S.; Plante, R.: Whitesides. G. M. AppI. Biochem. Biotechnol. 1989. in press.Chenault, H. K.; Dahmer. J.: Whitesides, G. M. J. Am. Clrcm. Soc., in press.Bednarski, M. D.; Simon, E. S.; Bischofberger, N.; Fessner, W.-D.: Kim, M.-J.; kes, W.; Saito, T.;Waldmann. I{,: Whitesides, G. M. J. Am. Chem- Soc'. 1989, 1 1 1, 627 .Durnvachter, J. R;Wong, C.-H. J. Org. Chern 1988, 53,4175.For a collectton of papers see: Methods EnzgmoL. 1976, X'N.Chibata, l. Immobillzed En4lmes - Reseo.rch and Dettelopment: Halsted: New York, 1978.For a collection of papel's see: Metho,ls Ertzgmol 1987, 136.l,ee, E. K. In EncAiloped.iaoJPltgsicalsctence andTechnolqty: Academic: New York, 1987; Vol. 8, p 20.

20.2 l22.23.24.

25.26.27.28.29.30.3 1 .32..33.

34.

35.

36.37.38.39.q.

4 1 .

42.43.44.45.46.

47.48.4950.

5 1 .52.5.3.v.55.

Page 54: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

56.57.58.59.60.6 1 .

62.63.

&.65.

66.67.68.

5 4 1 8 E. . l . Trx lxt : <, t u l .

Bednarsld, M. D.; Chenault, H. K.; Simon, E. S.;Whitesides, G. M. J. Ant Ctent Soc. 1987, 109,1283.Jocelyn, P. C. Methods hugmoL 1987. 143, 246.Trotta, P. P.: Ptnkus, L. M.: Meister, A. J. BiDl. Chent tg74. 249, tgllc.Costa, M.; Pecct, L.; Pensa, B.; Cannella, C. B{octrem Biopfuls. Res. Commun. L977, 78, 596.Chenault, H. K.; Whitesides, G. M. AppI. Bixtem. Btotech. 1987, 14, I47.Chenault, H. K.; Slmon, E. S.;Whitesides, G. M. In BiatechnoL arrclCenetic Eng. Reu.: Russell, G.Intercept Ltd.: Wimbome, Dorset, 1988; Vol. 6, Chapter 6.Whttesldes, G, M.;Wong, C.-H. Angetu. Chem, tnL. Ed Engl. f985, 24, 6L7.Wong,C.-H. In Erugmes asCata.lgsts tnOrganic Synthesrs: Schneider, 1\{. P., Ed.;Reidel: Dordrecht,1986, p. 199.Meyerhof, O.; lnhmann, K. Biochem Z. L934, 27i,89.Horecker, L.: Tsolas, O.; l.at, C. Y. In The Erugmes, Boyer, P. D. Ed.;Academic: New York, 1972:Yol. VII, p2r3 .Wong, C.-H.:Whltesides, G. M. J.Org.Chem 1983, 44, 3199.Wong, C.-H.: Mazenod. F. P.: Whitesides, G. M. J. Org. Ctern 1983. 48,3493.Durnvachter, J. R.; Drueckhammer, D. G.; Nozakl, K.; Sweers, H. M.; Wong, C.-H. J. Am- Chem- Soc. f986,108,78T2.

69. Bednarski, M. D.; Waldmann. H. J.: Whitesides. G. M. Tetrahedron LetL 1986. 27.5807.70. Jones, J. K. N.; Sephton, H. H. CarL J. CherL 1960, 38,753.TL Hough, L.:Jones, J. K. N. J. CfrenL Soc. 19b2, 4042.72. Jones, J. K. N.: Matheson, N. K. CarL J. Cherru 1959, 37, t7&.73. Hough, L.;Jones, J. K. N. J. CfEm. Soc. 1959, 342.74. Haustveit, G. Carbhgdr. Res. 1976, 47, t64.75. Franke, F. P.; Kapuscinski, M.; Macl,eod, J. K.; Will iams, J.F. Corbolrydr. Res.1984, 125, 177.76. Mehler, A H.; Cusic, M. E., Jr. Science t962. tSS. t lol.77. Gorin, P. A J.; Hough, L.;Jones, J. K. N. J. Chern Soc. 19b3, 2t4O.79. Gorin, p. A J.: Hough, L.:Jones, J. K. N. J. ctrcrn soc. r9sb, 3g43.79. Jones, J. K. N.: Kelly, R B. CarL J. Chem 1956, 34,95.BO. Kapuscinsl i i , M.: Franke, F. P. ; F lanigan, I . ; Macl-eod, J. K;Wi l l iams, ,J F Carbohr l r : l r . Res. fg85, .140.

65.8 1 .82.83.84.85 .86.87 .88.89.90.9 1 .92.93.94.95.96.97 .98.99.100.1 0 i .ro2.

Bal ly, C. ; I ruthardt , F. Helu. Chun. Acta 197O. S:1.732.Horecker. B. L. ; Smrniot is , P. Z, J. An. ( ) l rcn-r . Soc. 1952. 7.1 .212?,Effenberger, F.; Straub. A. Tetraheclron lru. 1987, ,28, t6-+)Turner, N. J. : \ \ t r i tes ides, G. I { . J . Am. Circm. Scr. I989. l i t .62. lHuang. P. C. : Nlr l ler . O. \ ' J . BioI . C\rct t .1958. 330, 805.Hough, L.; Jones, J. K. N. J. Clwrn. Scc. f952. a6tr.Byrne. W. L.: l,ardy, H. A. Biochim. B{ophgs. Acta 1954, 14. 495.Gorin, P. A J.;Jones. J. K. N. J. CfLenL Soc. 1953. 1537.I^ardy, H. A.; Wiebelhaus, V. D.; Mann, K. M. J. BioL Ctent fgsO. 187.325.Lehninger, A L.; Sice, J. J. Am. ChenL Soc. 1955, 77,5543.Ballou, C. E.; Fischer, H. O. L.; MacDonald, D. L. J. Ant Chem. Soc. 1955. 77. 5962.Charalampous, F. C. J. BiaL Chem.1954, 211.249.Gorin, P. A J.; Hough, L.;Jones, J. K. N. J. Chent Soc. f9b3, 2t4O.Crans, D. C.; Whitesides, G. M. J. Am Cherru Soc. 1988, t07,7otg.Goldberg, M.: Fessenden,J. M.; Racker.E. MethodsEnzumol. f966. g.5 lS.DeMaster, E. G.; Mitchell, R A. Bulchem. LSZB 12. 3616.Nour-Eldeen, A. F.; Craig, M. M.; Gresser, M. J. J. BtoL. Chem. f 98b, 260.6836.I^agunas, R: Sols, A. FEBS. Intt. L96,8, t,32.Furaneol is a registered trademark of Firnrenich Inc. Geneva, Switzerland.Pederson, R L.; Kim, M.-J.; Wong, C.-H. Tetrahedronl-ett. 1988, 29, 4645.Ziegler, T.; Straub, A.; EffenbergJr, F. Angeu. Chem. Int. EcL Engl. 1988 , 27, Z16.Truscheit, E.; Frommer, W.; Junge, B.; Muller. L.; Schmidt, D. D.; Wingender, W. Angew. Chem Int. H..EngL 1981,20.744.

tO3. Comb, D. G.; Roseman, S. J. Biol. Chent 1960. 2SS.2S2g.IO4. Brunetti, P.; Jourdian, G. W.; Roseman, S. J. Biol. Clrcrn. t962. 237.2442.1O5. DeVries, G. H.; Binkley, S. B. Arch. Biochem. BiophrTs. LgZ2, 151,234.106. Uchida, Y.; Tsukada, Y.; Sugimori, T. Bicrchem.. 1984. 96. SO7.LO7. Uchida, Y.;Tsukada. Y.; Sugimori. T. Agrlc. BtoL Clrcm. t98b, 49. I8t.lo8. Simon. E. S. ; Bednarski , M. D. ;whi tesides. G. M. J. Arn. chem. soc. 1988. t lo .7tsg.1O9. Schauer, R TIBS 1985, 10,357.1tO. Corfield, A. P.; Schauer, R. In StaltcAcids: Schauer, R. Ed.: Springer-Verlag: Newyork, lgB2; p 195.111. McGuire, E. J. In BtologicalRoles oJSialtcAcirt Rosenberg, A.; Schengrund, C.-L., Eds.; plenum: New

York, 1976; Chapter4.lI2. Gottschalk, A. The Chemistry ond Biologu o/Sralic Acids and. Re1ated Substances; Cambridge

University: Cambridge, England, 1960.I13. Aug€, C.; Dar,'id, S.; Gautheron, C. Tetrahedron Lett. t984. 25, 4663.114. David, S.; AuEle, C. Pure AppL Chem. 1987. 59. 15Ot.

Page 55: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

1 1 5 .1 1 6 .t t 7 ,

Klm, l\{ -J Hr::.e "a' J " 9c'r. H. M ; \,l'ong, C.-H, J. Am. Chem. Soc. 1988, -l .l O, 6481.Suttar: \: -b' C " 5.cra- R L. J. Blol. Chem. 1971, 246,8IO.Slla::-- .-.

-A&,l: l'ltr-Fatz. F.; Do Amaral, C. F. Hoppe-Seglers Z. Phgstol. Chem. L97L.352.

I ' la---sa !i. D rU'rt C. F.; Blohm, M. Hoppe-Segler's Z, Phystol. Chem. 1969, 35O,798.. {-ae C.- H, 3-. Grutbcron, C.; Malleron, A.; Cavaye, B. Nerr. J. Chem.. 1988, 12,733.

- . -r{t C- hri" S.: Gauthcron, C.; Velrleres, A. Tetrahedron Lett. 1986, 26,2439.: - i-- R. bc. U.; lksper, D.; Smtth, T. L.; Grasmuk, H.; Unger, F. M. Btochem- Btophgs. Res.

h. ln.96, 1282.lr' |{A C.. Gautheron, C. J. Chem. Soc. Chem. Commun.1987, 859.llf Gr. Y. Shlmosaka, M.; Murata, K.; Tsudaka, Y.; Klmura, A. Appl. Mlcrobtol. Blotech. 1986, 24,386.ita Rll '. P. H. J. Bacterlol. 198O, 141,635.ltt Fcrlnarskl, M. D.; Crans, D. C.; DlCosmio, R.; Simon. E. S.;Steln, P. D.; Whltesldes, G. M.; Schnelder, M.

Teeahedron Lett. 1988, 29, 427.126. Hammond, S. M.; Claesson, A.; Jansson, A. M.; Larsson, L.-G.; Prlng,B. G.;Town, C. M.; Ekstrom, B.

Nature 1987, 327,73O.127. Luthman, K.; Orbe, M.; Wa$und, T.; Claesson, A. J. Org. Chem. 1987, b2, TTTZ.128. Danlshefslry, S. J.; DeNlnno, M. P. Angew. Chem. Int. Ed. Engl. 1987, 26, 15.129. Relmer, L. M.; Conley, D. L.; Pompllano, D. L.; Flost, J. W. J. Am. Chem. Soc. 1986, I08, 8O1O.l30. Borysenko, C.; Straub, J.; Spaltensteln, A.; Whltesldes, G. M., unpubllshed results.l3i. Seriannl, A. S.; Cadman, E.; Plerce, J.; Hayes, M. L.; Barker, R. Methods Enzgmol.1982, 89, 83.132. Rose, I. A. J. Am. Chem. Soc. 1968, 80, 5835.133. Ghalambor, M. A.; Heath, E. C. J. BtoL Chem. 1962, 237,2422.134. Chlu, T. H.;Felngold, D. S. Btochem.1969,8, 98.135. Charalampous, G. C. Methods Enzgmol. 1962, 5,283.136. Comb, D. G.; Roseman, S. J. Biol. Chem. 1960. 235,2529.137. Ghalambor, M. A.; Heath, F. C. J. Btol, Chem. 1966, 241,3222.138. Wood, W. A; lnThe Enzgmes; Boyer, P. D. Ed.;Academlc: NewYork, 197O; Vol. MI, p 281.139. Dahms, A. S. Bbchem. Btophgs. Res. Commun. 1974,60, 1439.l4O. Hlft, H.; Mahler, H. R. J. BtoI. Chem. 1962, 198. 9Ol.141. Welssbach, A.; Hurwltz, J. J. BtoI. Chem. 1969, 234,7O5.142. Au#, C.; Bouxom, B.; Cava]€, B.; Gautheron, C. Tetahedron Letf. 1.989, SO,22tZ.143. Hoffee, P.; Rosen, O. M.; Horecker, B.L. Methods Enzgmol 1966, g, 545.144. Malldn, L. L; Greenberg, D. M. Btochtm. Btophgs. Acta 1964, 85, II7.145. Greenberg, D.M. Methods Enzgmol 19612,5, 931.146. Mathls, J. B.; Brown, G. M. J. BtoI. Chem. 1970, 245,3015.147. Heath, E. C.; HurMtz, J.; Horecker, B. L.; Glnsberg, A- J. BtoL Chem.1968, 231, IOO9.148. Racker, E. Methods Enzymol. 1962, 5,276.149. Faucl, A. S.; Rosenberg, S. A.; Sherwin, S. A.; Dinarello, C. A. Longo, D. L.; Lane, H. C. Ann.Intern. Med.

1987 . 106 .42 t .15O. Whistler, R. L.; Bushway, A A.; Slngh, P. P. Adu. Carbohgdr. Chem. Btochem. 1976, 32,235.151. von der Osten, C. H.; Slnskey, A. J.; Barbas, C. F.; Pederson, R. L.; Wang, Y.-F.; Wong, C.-H. J. Am- Chem.

Soc., 1989 , 1 1 1 , 3924.I52. Racker, E.lnThe Enzgmes; Boler, p. D.; Lardy, H.; MyrbAch, K., Eds.; Academlc: NewYork; l96l; Vol. 5, p

397.153. Thunberg, L.;Backstrom, G.; Llndahl, U. Carbohgdr. Res. f 982, lOO, 393.154. Kochetov, G. A- Methods Enzgmol. 1982, 90,2O9.155. Bolte, J.; Demuynck, C.; Samakl, H. Tetrahedron Lett, 1987, 28,5525.156. Arora, K. K.; Macleoad, J, K.; Wtll lams, J. F. J. Labelled Comfi. Radlopharm. 1987, 24,2O5.157. Mocall, A.; Aldtnuccl, D.; Paolettt, F. Carbohgdr. Res. 1986, 143,288.158. Kochetov, G. A.; Solov'era, O. N. Blokhlmlga (Moscow) 1977,42, 1872 (Abstract: CA87:196453p).159. Dlxon, M.; Webb, E. C. Enzgmes; Academlc: NewYork, 1979; p 258..160. Slmon, E. S.; Bednarskl, M. D.; Whltesldes, G. M. Tetrahedron Lett. 1988. 29. 1123.161. Simon, E. S.; Grabowskl, S.; Whitesldes, G. M. unpubltshed results.162. Kim, M.-J.; Whltesldes, c. M. Appl. Btochem. Btotech. 1987, t6, 95.163. Selp, J. E,.; Fager, S. K.; Grosz, R.; Gavagan, J. E.; DiCosmlo, R.; Anton, D. L. Enzgme Mtcrob. Technol.

1989, submitted for publlcatton.164. Aug€, C.; Gautheron, C. Tetrahedron L€tt. 1988, 29,789.165. Crans, D. C.; Whltesldes, c. M. J. Am. Chem. Soc. 1986, 1O7,7OO8.166. Chenault, H. K.; Klm, M.-J.; Aklyama, A.; Miyazawa, T.; Slmon, E.; Whltesldes, G. M. J. Org. Chem.

1987 ,52 ,2608 .167. Dhawale, M. R.; Szarek, W. A.; Hay, G. W.; Kroplnskl, A. M. B. Carbohgdr. Res. 1986, 155,262.168. Chambers, R. P.;Walle, E. M.; Barlcos, W. H.; Cohen, W.ln Enzgme Englneertng; Pp, E. K. ;Weetall, H. H.,

Eds.; Plenum: New York, 1978; Vol. 3, p 263.169. Maret, W.; Auld, D. S. Biochemlstry 1988, 27, 1622.l7O. Root, L. R.; Durnvachter, J. R.; Wong, C.-H. J. Am. Chem. Soc. 1986, 1O7,2557.l7l. Lee, L. G.; Whltesides, G. M. J. Org. Chem. 1986, 51,25.

Page 56: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

r72

1 7 3

i / a

r 8 l .r82.

For example, see: Joziasse, D. H.: Schiphosrt, W. E. C. M.; Van den EiJnden' D' H':Van Kuik' J' A:Van

Halbeek, i-t.; Vltegenthart, J. F. G. J' BtoL Chern 1987, 262' 2025'

Commercial Biotecfutologg: An Internationcrl Analysls; OTA-BA-218: US Congress OfIIce of Technologr

Assessment: Washington, 1984; p 199.Card, P. J.:Hltz,W. D.: Ripp, K. G. J. Anu ChenL Soc. 1986' IO8' i58'

E . J . T<x rxE e t u l .

Palcic, M. M.; Srivastava, O. P.: Hindsgaut, o. carfuhudr. Res. L9a7, 159, 315

Berliner. L. J.: Robinson, R. D. Birchem. 1982, 21' 6340,

i 75. Card, P. J.; Hitz, W. D. J. Atn Chem Soc. 1984. 106' 5348.

:76. Wong, c.-H.; Haynie, S. H.; Whitesides, G. M. J. Org. Chern 1982, 47.5416.

rn Kllbanov, A. M. CHEMTECH 1986' 354.178. Fronza, G.: Fuganti, C.: Grasselll, P,; Sewrv'i ' S. Tetra}edron lctt, 1986, 27' 4363.

lZg. Kloosterman, M.: Vtosmuller, E. W. J.: Schoemaker, H. E.: Merler. E. M. Tetrahedron Lett'

l8O. Sweers, H. M.;Wong, C.-H. J' Am Chem- Soc. 1986' 108' &2Lniva, S.; Choptneau] J.; Kieboom, A. P. G.; Klibanov, A. M. J. Ant- Chem- Soc' 198a' 110' 584'

Berger, E. G.lBuddecke, E.; Kamerltng, J- P.: Kobata, A.; Paulson, J. C.; Miegenthart. J. F' G' Experlentio

1S2,38, 1r29.I83. Hubbard, S. C. Ann. Reu. Bioctern 1981' 50' 555.184. Kornfeld, R: Kornfeld, S. Ann' Reu. Biochem. 1985. 54,631'

l8S. Kornfeld, S. In The Glycoco4jugctes; Horowitz, M. L, Ed.; Academic: New York. 1982, Vol' III, p 3'

186. Irloir, L. F. Science 1971, 172, 1299'lg7. Schachter, H.: Roseman, S. In The Biochemisfry oJ Glgcoproteins andProteoglgcons; Lennarz. W' J'

Plenum: New York, 1980, P. 85.188. Sadler, J. E.: Beyer, T. A.:bppenheirner, C. L.: Paulson, J. C.; Prieels' J'-P': Rearick' J' I '; Hil l ' R L'

Methds EnzymoL 1982, 83, 458.189. Fellows, L.E. Cfem. EtrlL L987,842.f gO. Girrsburg, y.ln Aduattces in Ervgiologu; Nord, F. F., Ed.: Wiley Interscience: New York' 1964; Vol' 26' p

35.f gt. Kochetkov, N. K.; Shibaev, V. N. In Ad.u. Carbohgclr. Chem. Biclr;hern'; Tipson, R. S.: Horton, D' Eds:

Academic: New York, 1973: Vol 28,3O7.Lg2. Tochikura, T.;Kawai, H.,; Kawaguchi, K.;Mugibayhashi, Y.; Ogata, K. Ferment.Tectvtol.Todag, Prrc'

IVth Int. Ferment. Symp., L972, 463.lg3. Wong. C.-H.; Hayniel S. L.; 'ul, 'fritesides, G. M. J. Org. Chem.1982, 47,5416'

194. Beyer, T. A.; sadler, J. E.: Rearick, J. I.; Paulson,J. c.: Hill. R. L. In Aduances inErugmol; Meister. A"

Ed.;Wi ley Interscience: New York, l98l ; Vol 52. p 23.195. Thiem, J.: Treder, W. Angeu-t. Chent Int. Ed- Engl. 1986' 25, 1096'

f 96. Demers, A. G.;Wong, S. S. J. AppI. Btochem. 1985, 7. 122lg7. Creeger, E. S.: Rothfield. L. I. Methods Ervgmol. 1982' 83. 326'

198. Creefer, E. S.: Rothfield. L. l. J. BiaL Chem. 1979' 254.801. a^6- oco aan.2E

1987, 28.2989.

Weinstein, J.: ke, E. U.; McEntee, K.; tai, P-H., Paulson. J. C. J. BioL CfLenL' 1987, 262' 17735'

Paulson, J. c.;weinstein, J.: UJita, E. L.; Riggs, K. J.; tai. P.'L Birchem- soc. Tlcns. 1987. -15' 618'

2OL. Ernst, L. K.; Ra1an, V. p.; Iarsei. R D.: nufflivl M.; torve, J. B. J. Btot. Chem.1989. 264' 3436.

2m. RaJan, V. P.; drsen, R D.;AJmera, S.; Ernst, L. K.; Lowe, J. B' J. BioL Chem' 1989' 264' ln press'

2O3. Sc"hwarz, R. T.; Datema, R. Adu. Carbohydr. Chem. Biochem., 1982, 40,287.

199,2c0.

204.205.206. Andree, P.: Berliner, L. J. Biochim. Biophys. Acta, L978, 544' 489'

207.208.209.2ro.2 t t .2 t2 .2I3. Shibaw, V. N. R-rreAppL Chem. 1978' 50, r42r.214. Gross. H. J.: Bunsch, e.; Paulson, J. C.: Brossmer, R. Eur. J. Bicr,hent 1987, 168' 595'

215. Nunez, H. A.; Barker, R BiochemtshU 1980' 19' 489.2L6. Deya, e.: A;aya, u.i lgarashi, S.;efriko, K. Yulcr. Ngtrggo Kenkgu. Hokoku 1986, 25 (Abstract: CA 106:

r r5628k).217. Aug€, C.; David, S.: Mathieu. C.. Gautheron, C. TetrahedronlatL L984. 25' 1467 '

218. 7*iavr. U: Herchman, M. Carbohgdr, Res 1984, 128' 160'

2tg. 7r ,havi . u: sadeh, S. ;Herchman, M. carLnhydr. Res 1983, 124.23.

22O. Zlr-havr. U: Herchman, M. Carbohydr. Res 1984. 133' 339'

221. Aug€, C.; Mathieu, C.; Merienne, C. Carbohlld Res. 1986, 151' 147 '

222. Kloosterman, M., Ph.D. thesis, Leiden.223. Rosevear, P. R; Nunez, H. A.; Barker, R Biochemistry 1982, 21, 142I.

2 2 4 . W e i s e s m a n n , S . ; D e r z e l , K . : S c h i l l i n g . G . : G r o s s . G . C . n O o r g a n i c C h e m ' 1 9 8 8 ' 1 6 ' 2 9 'iZS. Hindsgaul, O.: Tahir, S. H.; Srivastaia, O. P. Carbohydr. Res 1988' 173,263.

226. Tahir,-S. H.: Hindsgaul' O. Can. J. Chem.1986' 64,l77l'

227. Penglis, A. A. E' Adu. Corbohgdr. Chem. Blocltem' 1981' 38' 195'

228. Haynie, S. L., whitesides, G. M. appl. Btotech. Biochem. 1989, submitted for publication'

I^ambrjght, D. G.: ke, T. X.;WorE, S. S. Brochem 1985' 24.91O'

eiyer, T. e.; Sudt.r, J. E.; Rearicl, J. I.; Paulson, J. C.; Hill, R L. Adu. DnzgmoL 1981. 52,23'paicic, M. M.; Venot, A. P.: Ratcliffe, R M.: Hindsgaul, O. C,arbohgdr. Res 1949, I89' in press'

Srivastava, O. P.: Hindsgaul, O.; Shoreibah, M.; iierce, M. Carbohgdr. {es. 1988' 179' 137 '

Morin, M. J.; Porter, C. W.; Petrie, C. R: Kory'tnyk, W.; Bernacl'd, R J. Biochem' Pharm' 1983' 32' 553'

McDowell. W.; Grier, T. J.; Rasmussen, .1. n:-Schwarz, R. T. BircferrL J. 1987, 248,523-

Page 57: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

\

229. Dedonder. R .\lri; . i !-. it-z;-ri f965. l l];. 51.lJ23p. Walker. G j .:. .-.:r-"c:rr".o- i lei '16a-'o,f Chemstll oJ Carbol-ulclrates II: \ lanrters' D J Ed :

Park : f l , r . : - : : . : : 13 i6 . p 75

23I . \\-.i..:.:.:.^. i- \r 'c,L R tn Ttr Er,41mes.3rdEd..t Bo1'er, P. D. Ed.,Academic Press: \e\4'\ 'ork.r _ _ .

_ h i

:'-r-l I Fi ,- 3 X.-phls. \l J.Am ChenL Soc. 1986' 10€.'1317''*-:--6. S G : 9rcct. l. P. J. Arn- Cttent- Soc. 1988' -l10' 8551'

. -: :r.+,G R. E. Kurz. G.: Wa]lerrfels, K. Brbchent L976, f 5, 1994.- i: Urq*t.E. ,tnn- Chirru 19f3' 29,145.- € Urqrtot . E. J. Phn-flL Chem- 1914' lO' 361.

* Joha'-sson. ei HeaUys, L.; Larsson, P.-O.: Mosbach, K.; Gunnarsson, A.; Svensson' S. BiotechnoL I2tt.

rs .8 421.:F Hedbls. L.: tarsson, P.-O.; Mosbach, K.: Svensson, S. Biochent Biopttgs. Res. bmmun. 1984, 123,8'

:gt tarsson, P.-O.; Hedbys, L.: Svensson, S.; Mosbach, K. Methods ErugmoL 1987' 136,23O.

l-t : Fujimoto, H.; AJtsaka , K. BiatectutoL I-etL 1988, 10' lO7 ')12 Ezure, Y. Agr'tc. BioL Chem- 1985, 49,2159.2i3 okada' G': Hehre' E' J' &rfufurdr' Res' 1973' 26'2N'2{{ Treder, W.; Thiem, J.; Schlingmann, M. Tetrahedron Lett. 1986, 27,5ffi5.215. Kitahata, S.; Okada, S.; Fukui, T. Agric. BtoL Ctrem- 1978' 42' 2369.216. Chiba, S.: Okada: S. Kitahata, S.; Shimomura, T. Agric. BioI. Cherru 1975, 39' 2353.

217. Nilsson, K. G. I. C,orbohydr. Res. 1987, 167,95.218. Ooi, Y.; Hashimoto, T.; Mitsuo, N.; Satoh, T. Tetrahedron l-ett. 1984. 25.2241'249. Nilsson, K. G. I. Carbohgdr. Res. 1988, lB0, 53.2fi. Kusama, S.; Kusaka|e, t.; Nakamura, Y.: Eda, S.; Murakami, K. Agric. BioI. Chem. 1986, 50,2M5.

251. Tanaka, T.: Ol, S. Agnc. BioL Chem. 1985, 49,1267.252. Ooi. Y.: Hasimoto. T.: Mitsuo, N.; Satoh, T. Chem. Pharm. Bull. 1985, ff. 1808.

253. Suyama, K.;Adachi, S.;Toba, T.; Sohma, T.; Hwang, C.-J.: Itoh, T. Agric. BtoL Chem- 1986, 50. 2069'

254. van Eikeren, P.;White, W. A.; Chipman, D. M. J' Org. Ctwm' 1973' 38' 1831.255. Gais. H.J.: Zeissler, A.: Maidonis, P. Tetrahedronlctters 1988, 29,5743.256. Boos, W. MethodsErugmoL 1982, 89, 59.257. Bjorkling, F.: Godtfredsen. S. E. Teffahedron 1988, 44,2957'258. Itano. n.' Yamasaki, K.; Kihara, C.; Tanaka, O. Carbohydr. Res. f 98O' 87,27.259. Ooi. Y.: Mitsuo, N.: Satoh, T. Chem. Pharm. Bull. 1985, 33, 5547.2ffi. Mitsuo. N.: Takeichi, H.; Satoh,T.: Chem. Pharm. Bull. 1984' 32' 1i83.26t. Polgsacchandes n Food; Blanshard, J. M. V.; Mitchell, J. R. Eds.; Butterworth: lnndon,1979.

262. eirch, G. G.; Parker. K. J. Sugar: Science ond.Technology;Applied Science: London, 1979.

263. Sandford, P. A.: Baird, J. In The Polgsacchandes:Aspinatt, G. O. Ed.:Academic: NewYork, 1983:Vol' 2'

p 4 r 2 .Polgmers inMedicine; Chiell ini, E.; Giusti, P., Eds.; Plenum: New York, f983'

Creiting, H.; Momburg, M.; Stuhlsatz, H. W. Scand. J. CLin. ktb. Inuest. L972,29 Suppl I23,37.

Monsai, P.; Paul, F.:Auriol, D.:I-opez,A. Ivfethocls Enzgmol. 1987, 136'239'Shibaev, V. N. Adv. Carbohgdr. Chem. Biochern. 1986. 44,277.Botstein. D.; Davis, R. W. ln Molecular Biologyl oJ the Yeast SaceharomUees; Metobolism and Gene

Erqressrrcn. Slrathern, J. N; Jones, E. W.; eroach. J. R. Cold Sprin8 Harbor t aboratory, lgS l; p 607.

269. Carlson, D. M. ts\tre AppL Ctrcm- f 987, 59. 1489.27O. Pfannemuller, B. Staerke 1968, I I, 34i.271. Waldmann. H.: Gygax. D.: Bednarski, M. D.: Shangrarv. W. R.. \\rfritesirles, G. M. C'arLnhgcir. Res' 1986'

157. c4.272. Ziegast, G.; Pfannemuller, B. Carbohgdr. Res. 1987. l60, lB5, rrnd relcrences therein.

273. Ziegast, G.: Pfannemuller, B. Malcromol. Chern., Rapid Cornmttrt. f 984, 5.373274. Horikoshi, K. Proc. Biochent 1979 14,26.275. Jamas, S.: Rha, C. K.; Sinskey, A J. Biotechnol. Bioeng.1986' 2A.769.276. Stoolmiller, A. C.: Dorfman, A. J. BioI. Chem. 1969, 244.236277. Simon, E. S.: Toone, E. J.; Ostroff, G.; Bednarski. M. D.;\\4ritesides. G. M. Methds ErugmoL 1989'

138(2), in press.278. Toone, E. J.: Ostroff, G.:Whitesides, G. M. 1989. unpublished results.2Tg. Gooday, G. W.; Trinci, A. P. J. ln The Eukaryotic M{crobial Cell; Gooday. G. W.; Lloyd, D.; Trinci' A. P. J.'

Eds.; Cambridge University: Cambridge, England, 198O; p 2072BO. Davis, L. L.; Bartnicki-Garcia, S. Biochemistry f984,23, 1065.281. Hanessian, S. The Total Sgnthesrs o.[ Nattrdl Prodtcts. The "Chiron" Approach; Pergamon: New York;

1983.282. Fleet, G. CfEnL Bnt. 1989, 25,287.283. St. Georgiev, V. Ann. Rep. Med Chem. f987, 22' 127.284. Fenichel, R. L.; Chirigos, M. A. Immune Modulation Agenls and their Mechanisms; Marcel Decker: New

York, 1984.285. Stewart-Tull, D. E. S. Prog. Dng. Res. 1988, 32,3O5.

University

I 9 7 2 : V o l

2&.265.2ffi.267.2ffi.

Page 58: TETRAHEDRON REPORT NUMBER 259 - …gmwgroup.harvard.edu/pubs/pdf/268.pdfTETRAHEDRON REPORT NUMBER 259 o ... and may evcntr-r:-rllv nr:rlic it 1;ossiltl(' to rno(iilv tlrc st lectrr

._ t'_

5122 E. . l . l '<xrrr i t ' t u l .

286. Ellouz, F.; Adam, A.: Ciorbaru, R; lrderer, E. Btochent BIophgs. Res. Comm- L974, 59, l3I7 .287. Adam.A.; l rderer,E. Medic inclRes. Reu. 1984,4, 111.288. Chedid, L.: Parant, M.; Parant, F.; Lefrancier, P.; Choay,J.; Lederer,E. Proc.NatI.Acad Sct USA L977.

74,2089.289. Acevedo, H. F.; Raikow, R. B.: Acevedo, H. O.; Delgado, T. F.; Pardo, M. Antrmicrob. Agents Chemother.

rss, 24,589.2W. lrderer, E. J. Med Chem- 1980, 23,819.29I. Murray, G. J. Methds EnzgmoL 1987, 149,25.292. For a collection of articles on bacterial endotoxin see: Bacterial Endotoxin: Chemical, Biolqical and

ClirTicalAspects; Homma, J. Y.; Kanegasaki, S.; Luderitz, O.; Shiba, T.;Westphal, O. Eds.; Verlag Chemie:Weinheim, 1984.

293. Morrison, D. C.; Ryan, J. L. Ann. Reu. Med 1987, 38, 4I7.294. Luderitz, O.; Freudenberg, M. A.: Galanos, C.; trhmann, V.; Rietschel, E. T.: Shaw, D. H. Cur.Top.

Membr. I"ansp. 1982, 17, 79.295. Galanos, C.; Luderltz, O.; Rietschel, E. T.: Westphal, O. /nL Reu. BiocLtern L977, 14,213.296. Beutler, B.: Cerami, A Ann. Reu. Bioctwn- 1988, 57,5O5.297. Galanos, C.: Luderitz, O.:Westphal, O. Eur. J. Bidrcnt 1971, 24, 116.298. Luderitz, O.; Galanos, C.: l,ehmann, V.; Mayer, H.; Rietschel, E. T.:Weckesser, J. Natunr,rissenchqften

L974.65.578.299. Galanos, C.; Irhmann, V.; LuderiIz, O.: Rietschel, E. T.; westphal, O.; Brade, H.; Brade, L.; Freudenberg, M.

A.; Hansen-Hagge, T.; Luderitz, T.; Mckenz-ie, G.; Schade, U.; Strittmatter, W.; Tanamoto, K.-I.;Tahrlnger, U.: Imoto, M.: Yoshimura, H.; Yamamoto, M.: Shimamoto. T., Kusumoto, S.; Shiba, T. Ew. J.BircfEnL 1984, 140.22I.

3OO. Fransson, L.-A. TIBS 1987. 12.406.3Ot. Casu, B. Adu. Carbohgdr. C\ETTL Birchem. f 985, 43,51.3O2. Lindahl, U.;ThunberS, T.; Backstrom. G.; Riesenfeld, J.: Nordling, K.: Bjork, l. J. BioL Chem.19a4,259,

r2368.3O3. Bodor, N.; Kaminski, J. J. Ann. Rep.Itted Chern 1987, 22,3O3.3O4. Kim, S. W.; Petersen. R. V. : Fei jen. J. In Dnro Desicn: Ar i€ns. E. J. . t rd. ;Academic: NewYork, l98O;Vol . X,

Chap te r 6 .3O5. Elbein. A. D. Ann. Rerr . Bioci rern. 1987. 5t i 1!17306. Schwarz. R T.: Datenret. R. TIBS 1984. 9 323 O 7 . T r u s c h e i t , E . . F r o n r n e r . \ \ r . : J r - u r q e . R . : \ 1 i r l l t , r . l - , S t i r r : t r r l l . l ) l ) . \ \ ' r r r q t ' r r r 1 t ' r . \ \ ' 1 1 r t r 7 c u , . C h . e r n . I r : t . E d

EngL 1981. 20.714.3O8. Conradt , H. S. ; Egge. H. ; Peter-Katal in ic. .J : i ie iser . \ \ ' . , Sik losl . T, St i r . rpcr . i { . / . Bio l . Chern. . L987,262,

14600.3 O 9 . L i t t l e , S . P . ; B a n g , N . U . ; H a r m s . C . S . ; M a r k s , C . A ; N l a t t l e r . L . E . R i r c t r c r n . 1 9 8 4 , 2 3 . 6 1 9 1 .310. Abe,J.- I . ; Mizowal<i , N. : Hizukur i . S. : Koizumi. K. : Utanrura. T. Carbolwclr . Res. 1986, 154,81.