the clic studyepaper.kek.jp/ipac10/talks/frxcmh01_talk.pdf · j.p.delahaye clic @ ipac10 (28/05/10)...

54
J.P.Delahaye CLIC @ IPAC10 (28/05/10) 1 Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) IHEP (China) INFN / LNF (Italy) Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France) Jefferson Lab (USA) John Adams Institute/Oxford (UK) Polytech. University of Catalonia (Spain) PSI (Switzerland) RAL (UK) RRCAT / Indore (India) SLAC (USA) Thrace University (Greece) Tsinghua University (China) University of Oslo (Norway) Uppsala University (Sweden) UCSC SCIPP (USA) Aarhus University (Denmark) Ankara University (Turkey) Argonne National Laboratory (USA) Athens University (Greece) BINP (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) ETHZurich (Switzerland) Gazi Universities (Turkey) John Adams Institute/RHUL (UK) JINR (Russia) Karlsruhe University (Germany) KEK (Japan) LAL / Orsay (France) LAPP / ESIA (France) NCP (Pakistan) North-West. Univ. Illinois (USA) Patras University (Greece) Towards CLIC feasibility J.P.Delahaye for the CLIC collaboration CLIC multi-lateral Collaboration 38 volunteer Institutes from 19 Countries

Upload: others

Post on 28-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 1

Helsinki Institute of Physics (Finland)

IAP (Russia)

IAP NASU (Ukraine)

IHEP (China)

INFN / LNF (Italy)

Instituto de Fisica Corpuscular (Spain)

IRFU / Saclay (France)

Jefferson Lab (USA)

John Adams Institute/Oxford (UK)

Polytech. University of Catalonia (Spain)

PSI (Switzerland)

RAL (UK)

RRCAT / Indore (India)

SLAC (USA)

Thrace University (Greece)

Tsinghua University (China)

University of Oslo (Norway)

Uppsala University (Sweden)

UCSC SCIPP (USA)

Aarhus University (Denmark)

Ankara University (Turkey)

Argonne National Laboratory (USA)

Athens University (Greece)

BINP (Russia)

CERN

CIEMAT (Spain)

Cockcroft Institute (UK)

ETHZurich (Switzerland)

Gazi Universities (Turkey)

John Adams Institute/RHUL (UK)

JINR (Russia)

Karlsruhe University (Germany)

KEK (Japan)

LAL / Orsay (France)

LAPP / ESIA (France)

NCP (Pakistan)

North-West. Univ. Illinois (USA)

Patras University (Greece)

Towards CLIC feasibilityJ.P.Delahaye for the CLIC collaboration

CLIC multi-lateral Collaboration

38 volunteer Institutes from 19 Countries

Page 2: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 2

Helsinki Institute of Physics (Finland)

IAP (Russia)

IAP NASU (Ukraine)

IHEP (China)

INFN / LNF (Italy)

Instituto de Fisica Corpuscular (Spain)

IRFU / Saclay (France)

Jefferson Lab (USA)

John Adams Institute/Oxford (UK)

Polytech. University of Catalonia (Spain)

PSI (Switzerland)

RAL (UK)

RRCAT / Indore (India)

SLAC (USA)

Thrace University (Greece)

Tsinghua University (China)

University of Oslo (Norway)

Uppsala University (Sweden)

UCSC SCIPP (USA)

Aarhus University (Denmark)

Ankara University (Turkey)

Argonne National Laboratory (USA)

Athens University (Greece)

BINP (Russia)

CERN

CIEMAT (Spain)

Cockcroft Institute (UK)

ETHZurich (Switzerland)

Gazi Universities (Turkey)

John Adams Institute/RHUL (UK)

JINR (Russia)

Karlsruhe University (Germany)

KEK (Japan)

LAL / Orsay (France)

LAPP / ESIA (France)

NCP (Pakistan)

North-West. Univ. Illinois (USA)

Patras University (Greece)

Towards CLIC feasibilityJ.P.Delahaye for the CLIC collaboration

CLIC multi-lateral Collaboration

38 volunteer Institutes from 19 Countries

Reminder of CLIC objectives and scheme

CLIC feasibility issues

R&D program, status and plans

Preparation of Conceptual Design Report

Outlook to the future

Conclusion

Page 3: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3

Objective: explore possible extension of e+/e- linear

colliders into the Multi-TeV colliding beam energy range by

developing most appropriate technology : ECM energy range complementary to LHC =>ECM = 0.5- 3 TeV

L > few 1034 cm-2 with acceptable background & energy spread

Affordable cost and power consumption

Physics motivation: Consensus supported by ICFA of Lepton Collider

(precision) favored facility to complement the LHC

(discovery) in future

"Physics at the CLIC Multi-TeV Linear Collider:http://clicphysics.web.cern.ch/CLICphysics/

Present goals:R&D addressing Feasibility Issues

Conceptual Design (Accelerator & Detector) with preliminary

performance & cost estimations

THE COMPACT LINEAR

COLLIDER (CLIC) STUDY

http://clic-study.web.cern.ch/CLIC-Study

Page 4: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 4

HEP Electron/Positron Colliders

LEP/CERN

SLC/SLAC

ILC CLIC

1.E+30

1.E+31

1.E+32

1.E+33

1.E+34

1.E+35

0 1 2 3 4

Energy (TeV)

Lu

min

os

ity

(c

m-2

se

c-1

)

Page 5: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 5

HEP Electron/Positron Colliders

LEP/CERN

SLC/SLAC

ILC CLIC

1.E+30

1.E+31

1.E+32

1.E+33

1.E+34

1.E+35

0 1 2 3 4

Energy (TeV)

Lu

min

os

ity

(c

m-2

se

c-1

)

Page 6: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 6

HEP Electron/Positron Colliders

LEP/CERN

SLC/SLAC

ILC CLIC

1.E+30

1.E+31

1.E+32

1.E+33

1.E+34

1.E+35

0 1 2 3 4

Energy (TeV)

Lu

min

os

ity

(c

m-2

se

c-1

)

Page 7: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 7

HEP Electron/Positron Colliders

LEP/CERN

SLC/SLAC

ILC CLIC

1.E+30

1.E+31

1.E+32

1.E+33

1.E+34

1.E+35

0 1 2 3 4

Energy (TeV)

Lu

min

os

ity

(c

m-2

se

c-1

)

Page 8: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 8

HEP Electron/Positron Colliders

LEP/CERN

SLC/SLAC

ILC CLIC

1.E+30

1.E+31

1.E+32

1.E+33

1.E+34

1.E+35

0 1 2 3 4

Energy (TeV)

Lu

min

os

ity

(c

m-2

se

c-1

)

Page 9: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 9

HEP Electron/Positron Colliders

LEP/CERN

SLC/SLAC

ILC CLIC

1.E+30

1.E+31

1.E+32

1.E+33

1.E+34

1.E+35

0 1 2 3 4

Energy (TeV)

Lu

min

os

ity

(c

m-2

se

c-1

)

Page 10: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 10

HEP Electron/Positron Colliders

LEP/CERN

SLC/SLAC

ILC CLIC

1.E+30

1.E+31

1.E+32

1.E+33

1.E+34

1.E+35

0 1 2 3 4

Energy (TeV)

Lu

min

os

ity

(c

m-2

se

c-1

)

CLIC/SLC energy = 20

CLIC/SLC luminosity = 104

Page 11: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 11

Multi-TeV Linear Colliders challenges

Luminosity

• Beam acceleration: MW of beam power with high gradient and high efficiency

• Generation of ultra-low emittances: micron rad-m in H, nano rad-m in V

• Preservation of low emittances in strong wake field environmentAlignment (micron range)Stability (nano-meter range)

• Small beam sizes at Interaction Point: Focusing to nm beam sizesStability to sub nano-meter

Energy reach

e+ e-

source

damping ring

main linac

beam delivery

• Accelerating structures: large accelerating fields with low breakdown rate

• RF power source: high peak power with high efficiency

Page 12: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 12

CLIC: specific featuresCLIC TUNNEL

CROSS-SECTION

QUAD

QUAD

POWER EXTRACTION

STRUCTURE

BPM

ACCELERATING

STRUCTURES

Drive beam - 95 A, 300 ns

from 2.4 GeV to 240 MeV

Main beam – 1 A, 200 ns

from 9 GeV to 1.5 TeV

12 GHz – 140 MW

4.5 m diameter

• Novel Two-Beam Acceleration Scheme• Cost effective, reliable, efficient

• Single tunnel, no active power components

• Modular, staged energy upgrade

• High acceleration gradient: > 100 MV/m • “Compact” collider: total length < 50 km at 3 teV

• Normal conducting acceleration structures at

high RF frequency (12 GHz)

Page 13: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 13

CLIC layout 3 TeV

Drive Beam

Generation Complex

Main Beam

Generation Complex

Main & Drive Beam generation

complexes not to scale

Page 14: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 14

CLIC main parameters

Centre-of-mass energy 500 GeV 3 TeV

Total (Peak 1%) luminosity 2.3(1.4)·1034 5.9(2.0)·1034

Total site length (km) 13.0 48.3

Loaded accel. gradient (MV/m) 80 100

Main linac RF frequency (GHz) 12

Beam power/beam (MW) 4.9 14

Bunch charge (109 e+/-) 6.8 3.72

Bunch separation (ns) 0.5

Beam pulse duration (ns) 177 156

Repetition rate (Hz) 50

Hor./vert. norm. emitt (10-6/10-9) 4.8/25 0.66/20

Hor./vert. IP beam size (nm) 202 / 2.3 40 / 1

Hadronic events/crossing at IP 0.19 2.7

Coherent pairs at IP 100 3.8 108

Wall plug to beam transfer eff 7.5% 6.8%

Total power consumption (MW) 129.4 415

Page 15: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 15

CLIC critical issues

R&D strategy and schedule

Critical issues classified in three categories: Risk registerhttps://edms.cern.ch/nav/CERN-0000060014/AB-003093

• CLIC design and technology feasibilityFully addressed by specific R&D with results in Conceptual

Design Report (CDR) including preliminary Performance &

Cost by 2011

• Performance and/or Cost Both being addressed now by specific R&D to be completed

with results in Technical Design Report (TDR) including

consolidated Performance & Cost tentatively by 2016

Page 16: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 16

10 CLIC Feasibility Issues

• Two Beam Acceleration:• Drive beam generation

• Beam Driven RF power generation

• Two Beam Module

• RF Structures:• Accelerating Structures (CAS)

• Power Production Structures (PETS)

• Ultra low beam emittance and beam sizes• Emittance generation & preservation during acceleration and focusing

• Alignment and stabilisation

• Detector• Adaptation to short interval between bunches

• Adaptation to large background at high beam collision energy

• Operation and Machine Protection System (MPS)

Page 17: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 17

CLIC feasibility issues

Page 18: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 18

Drive Beam GenerationBeam

Intensity &

Frequency

multiplication

X 24

62.5 GeV- 880m

Page 19: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 19

150 MeV e-linac

PULSE COMPRESSIONFREQUENCY MULTIPLICATION

CLEX (CLIC Experimental Area)TWO BEAM TEST STAND

PROBE BEAMTest Beam Line

3.5 A - 1.4 ms

28 A - 140 ns

30 GHz test stand

Delay Loop

Combiner RingD FFD

DF

F

D F D

D F D

F

F

D

D F D

D F D

DF DF DF DF DF DF DF DF DF

D F D

F DF D

D FFFDD

DF

F

DDFF

FF

D F DD F D

D F DD F D

F

F

D

F

F

D

F

F

D

D F DD F D

D F DD F D

DF DF DF DF DF DF DF DF DF DFDF DF DF DF DF DF DF DF DF DF DF DF DF DF DF DF

D F DD F D

F DF DF DF D

total length about 140 m

magnetic chicane

Photo injector tests,laser Infrastructure from LEP

Addressing all major CLIC technology

key issues in CLIC Test Facility (CTF3)Demonstrate Drive Beam generation(fully loaded acceleration, beam intensity and bunch frequency multiplication x8)

Demonstrate RF Power Production and test Power Structures

Demonstrate Two Beam Acceleration and test Accelerating Structures

Page 20: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 20

DRIVE BEAM

LINAC

CLEXCLIC Experimental

Area

DELAY

LOOPCOMBINER

RING

CTF3 completed, operating 10 months/year, under

commissioning:Drive Beam Generation demonstrated

Fully loaded acceleration

RF to beam transfer:

95.3 % measured

Page 21: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 21

DRIVE BEAM

LINAC

CLEXCLIC Experimental

Area

DELAY

LOOPCOMBINER

RING4 A – 1.2 ms

120 Mev @ 1.5 GHz

10 m

RF pulse at output

RF pulse at structure input

1.5 µs beam pulse

CTF3 completed, operating 10 months/year, under

commissioning:Drive Beam Generation demonstrated

Fully loaded acceleration

RF to beam transfer:

95.3 % measured

Page 22: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 22

DRIVE BEAM

LINAC

CLEXCLIC Experimental

Area

DELAY

LOOPCOMBINER

RING4 A – 1.2 ms

120 Mev @ 1.5 GHz

10 m

RF pulse at output

RF pulse at structure input

1.5 µs beam pulse

CTF3 completed, operating 10 months/year, under

commissioning:Drive Beam Generation demonstrated

Fully loaded acceleration

RF to beam transfer:

95.3 % measured

7 A @ 3 GHz

Page 23: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 23

DRIVE BEAM

LINAC

CLEXCLIC Experimental

Area

DELAY

LOOPCOMBINER

RING4 A – 1.2 ms

120 Mev @ 1.5 GHz

10 m

RF pulse at output

RF pulse at structure input

1.5 µs beam pulse

28 A @ 12 GHz

CTF3 completed, operating 10 months/year, under

commissioning:Drive Beam Generation demonstrated

Fully loaded acceleration

RF to beam transfer:

95.3 % measured

7 A @ 3 GHz

Page 24: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 24

DRIVE BEAM

LINAC

CLEXCLIC Experimental

Area

DELAY

LOOPCOMBINER

RING4 A – 1.2 ms

120 Mev @ 1.5 GHz

10 m

RF pulse at output

RF pulse at structure input

1.5 µs beam pulse

28 A @ 12 GHz

CTF3 completed, operating 10 months/year, under

commissioning:Drive Beam Generation demonstrated

Fully loaded acceleration

RF to beam transfer:

95.3 % measured

7 A @ 3 GHz

Page 25: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 25

DRIVE BEAM

LINAC

CLEXCLIC Experimental

Area

DELAY

LOOPCOMBINER

RING4 A – 1.2 ms

120 Mev @ 1.5 GHz

10 m

RF pulse at output

RF pulse at structure input

1.5 µs beam pulse

28 A @ 12 GHz

CTF3 completed, operating 10 months/year, under

commissioning:Drive Beam Generation demonstrated

Fully loaded acceleration

RF to beam transfer:

95.3 % measured

7 A @ 3 GHz

Beam intensity multiplication * 8

Beam frequency multiplication * 8

Page 26: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 26

Drive Beam Generation Feasibility

Drive beam generation feasibility demonstrated

• Intensity stability still to be improved

• Timing stability to be addressed (XFEL collab)

Page 27: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 27

Installation completed

except for PETS in TBL

D FFD

DF

F

D F D

D F D

F

F

D

D F D

D F D

DF DF DF DF DF DF DF DF DF

D F D

F DF D

D FFFDD

DF

F

DDFF

FF

D F DD F D

D F DD F D

F

F

D

F

F

D

F

F

D

D F DD F D

D F DD F D

DF DF DF DF DF DF DF DF DF DFDF DF DF DF DF DF DF DF DF DF DF DF DF DF DF DF

D F DD F D

F DF DF DF D

42.5 m

8 m

2

m

D FFD

DF

F

D F DDUMP

D F D

F

F

D

ITB

1.85m

CALIFES Probe beam injector

LIL-ACSLIL-ACSLIL-ACSD F D

D F D

DFDUMP

0.75

1.4m

1

DUMP

22.4 mTBL

2.5m

Transport path

DUMP

DUMP 22 m

2.0m

DF DF DF DF DF DF DF DF

3.0m3.0m6 m

D F D

F DF D

16.5 mTBTS

16 m

TL2’

42.5 m42.5 m

8 m

8 m

2

m

2

m

D FFFDD

DF

F

DDFF

FF

D F DD F DDUMP

D F DD F D

F

F

D

F

F

D

F

F

D

ITB

1.85m1.85m

CALIFES Probe beam injector

LIL-ACSLIL-ACSLIL-ACSLIL-ACSLIL-ACSLIL-ACSD F DD F D

D F DD F D

DF DFDUMP

0.75

1.4m1.4m

11

DUMP

22.4 m22.4 mTBL

2.5m2.5m

Transport path

DUMP

DUMP 22 m22 m

2.0m2.0m

DF DF DF DF DF DF DF DFDF DF DF DF DF DF DF DF DF DF DF DF DF DF DF DF

3.0m3.0m3.0m3.0m6 m6 m

D F DD F D

F DF DF DF D

16.5 m16.5 mTBTS

16 m16 m

TL2’

Test Beam Line TBL

Two Beam Test Stand Probe Beam

Drive and probe beams

in CLEX from June 2008

CTF3/CLEX (CLIC Experimental Area)

Test beam line (TBL) to study RF

power production (1.5 TW at 12

GHz) and drive beam decelerator

dynamics, stability & losses

- Two Beam Test Stand to study

probe beam acceleration with high

fields at high frequency and the

feasibility of Two Beam modules

Page 28: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 28

Power Production Structure (PETS )

design, built @ CERN, power tests @ CTF3, SLAC

Drive beam driven @ CTF3

Klystron driven @ SLAC

CLIC target

266 ns(240 ns CLIC target)CLIC target

CLIC targetCLIC target

Page 29: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 29

Power Production Structure (PETS )

design, built @ CERN, power tests @ CTF3, SLAC

Drive beam driven @ CTF3

Klystron driven @ SLAC

CLIC target

266 ns(240 ns CLIC target)CLIC target

CLIC targetCLIC target

CLIC

target

Page 30: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 30

Test Beam Line (TBL)

• High energy-spread beam transport

decelerate to 60 % beam energy

• Drive Beam stability

• Stability of RF power extraction

total power in 16 PETS: 1.5 GW

• Alignment procedures

PETS design

42.5 m

8 m

2

m

D FFD

DF

F

D F DDUMP

D F D

F

F

D

ITB

1.85m

CALIFES Probe beam injector

LIL-ACSLIL-ACSLIL-ACSD F D

D F D

DFDUMP

0.75

1.4m

1

DUMP

22.4 mTBL

2.5m

Transport path

DUMP

DUMP 22 m

2.0m

DF DF DF DF DF DF DF DF

3.0m3.0m6 m

D F D

F DF D

16.5 mTBTS

16 m

TL2’

42.5 m42.5 m

8 m

8 m

2

m

2

m

D FFFDD

DF

F

DDFF

FF

D F DD F DDUMP

D F DD F D

F

F

D

F

F

D

F

F

D

ITB

1.85m1.85m

CALIFES Probe beam injector

LIL-ACSLIL-ACSLIL-ACSLIL-ACSLIL-ACSLIL-ACSD F DD F D

D F DD F D

DF DFDUMP

0.75

1.4m1.4m

11

DUMP

22.4 m22.4 mTBL

2.5m2.5m

Transport path

DUMP

DUMP 22 m22 m

2.0m2.0m

DF DF DF DF DF DF DF DFDF DF DF DF DF DF DF DF DF DF DF DF DF DF DF DF

3.0m3.0m3.0m3.0m6 m6 m

D F DD F D

F DF DF DF D

16.5 m16.5 mTBTS

16 m16 m

TL2’

2 standard cells, 16 total

5 MV/m deceleration (35 A)

135 MV output Power

Page 31: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 31

Fire in CTF3 Klystron Gallery (04/03/10)

Cleaning overall gallery six months delay…..

Modulator in Gallery

Faraday Cage MDK13

Pulse Forming Networkin Faraday Cage

Pulse Forming Networkafter fire

13 = bad luck?

Page 32: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 32

Beam driven RF Power Generation Feasibility

• RF power generation by single PETS feasibility

demonstrated except for breakdown rate.

• ON/OFF mechanism being built, still to be tested

• Efficient RF power extraction in multiple stages being

addressed in TBL under construction for tests with beam

• Tests delayed to 2011 by CTF3 modulator fire

Page 33: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 33

Accelerating Structure performance

A shining example of successful collaboration: CERN-KEK-SLAC

• RF design @ CERN

Fabricated @ tested at

SLAC and KEK

• 3 structures no damping:

Exceeded 100 MV/m at

nominal breakdown rate

• 2 structures with damping

slots: Exceeded 100 MV/m

at larger breakdown rate

• Low statistics, high reprod.

• Nominal structure (TD24)

with reduced RF pulse

heating under tests

80 85 90 95 100 105 110 115 12010

-7

10-6

10-5

10-4

10-3

Average unloaded gradient (MV/m)

Bre

ak

do

wn

pro

ba

bilit

y /(m

)

T18 [1] 230 ns, 1400 h

T18 [2] KEK 252 ns

T18 [3] 230 ns, 200 h

TD18 [1] 230 ns, 1000 h

TD18 [2] KEK 252 ns

CLIC goal

CLIC goal: 100 MV/m loaded with BR<3 10-7/m

without

damping

with

damping

Page 34: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 34

Probe Beam Generation

in CTF3/CLEX (Califes)Klystron and BOC

Photo Injector

Accelerating sections RF deflector for diagnostics

waveguide RF distribution

Page 35: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 35

Two Beam Test Stand (TBTS)

in CTF3/CLEX

All hardware installed!

Beam in both lines up to end !

Commissioning with beam: PETS 2009, Two Beam Acceleration 2010

Page 36: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 36

Two Beam Module tests in CTF3/CLEX

36G. Riddone

Test module representing all module types & integrating all various components: RF structures, quadrupoles, instrumentation, alignment, stabilization, vacuum, etc

Tests without beam in 2010-11, with beam in CTF3/CLEX in 2012-13

Page 37: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 37

Ultra low Beam Emittance Generation

• Key parameter to achieve high

luminosity with limited beam (and

wall plug) power

• CLIC requirements close to new

generation synchrotron light

sources (Operation- Projects)

• CLIC 500 GeV similar as ILC

and demonstrated in ATF/KEK

(normalized emittance)

• CLIC 3 TeV similar as

PEPX/SLAC project.

• Close collaboration with

ATF/KEK (small emittances) and

CESRTA/Cornell (electron clouds)

Page 38: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 38

Extreme importance of Test FacilitiesATF/KEK: ultra low emittance

CLIC Damping Ring

CESR-TA/Cornell:Electron cloud

e+

e-

Page 39: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 39

CERN/ANKA SC

wiggler

BINP SC

wiggler

BINP PM

wiggler

Parameters BINPCERN/

Karlsruhe

Bpeak [T] 2.5 2.8

λW [mm] 50 40

Beam aperture full gap [mm] 13 13

Conductor type NbTi NbSn3

Operating temperature [K] 4.2 4.2

CLIC

design

Energy [GeV] 2.86

Circumference [m] 493.05

Number of arc cells 100

Number of wigglers 76

RF voltage [MV] 6.5

Damping time x / s [ms] 1.87 / 0.94

IBS growth factor 2.0

Hor. Norm. Emittance [nm.rad] 480

Ver. Norm. Emittance [nm.rad] 4.7

Bunch length [mm] 1.4

Longitudinal emittance [eVm] 3700

CLIC DR based

on SC Wigglers

Page 40: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 40

Quadrupole Magnets Horizontal Vertical

Linac (2600 quads) 14nm 1.5 nm

Final Focus (2quads) 4 nm 0.5 nm

Beam emittance preservation

Beam Dynamics, alignment and stability

Emittance blow-up from Damping Ring to BDS limited:

• in Horizontal to 30% from 500 nrad

• in Vertical to 300% from 5 nrad

Alignment procedure based on:• Actif pre-alignment of beam line components: 15 µm

• Beam-based alignment (3 µm) using BPMs with good resolution (100nm)

• Alignment of accelerating structures to the beam using wake-monitors

• Tuning based on luminosity/beam size measurement with 2% resolution

Beam stability by quadrupole stabilisation:0.2nm beam-beam stability@IP• quadrupole passive and active stabilisation

• beam feedback (pulse to pulse) and Intrabeam feedback

Page 41: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 41

Active Pre-Alignment

In CTF2 facility, components maintained aligned in closed loop w.r.t.stretched wire within ± 5 microns, thanks to sensors and micro movers,

Page 42: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 42

Active Pre-Alignment

In CTF2 facility, components maintained aligned in closed loop w.r.t.stretched wire within ± 5 microns, thanks to sensors and micro movers,

Improved pre-alignment (3 microns) for Two-Beam Module Integration Alignment reference (20km) by overlapping (200m) stretched wires

Validation &Integration inTwo Beam ModuleTest Stand

Girders and quadrupoles positions measured with Wire Positioning System (WPS) and independently pre-aligned by movers in respect with Wires

Page 43: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 43

Vibration test stand

Nanometer Stabilisation

CLIC small quadrupole stabilizedto nanometer level by active

damping of natural floor vibration

Page 44: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 44

Test Stands (2 methods) with (future)

real quadrupole prototype (400 kg)

Active stabilisation &

nano-alignment by

Hexapole:

Passive & Active Isolation

Main linac Quad.

specification

1nm

1nm

Main linac Quad.

specification

[Nm RMS]

[Hz]

10

0.1

100

101

Page 45: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 45

Nanometer beam sizes in KEK ATF2

Final Focus System Diagnosticb mat-ching Extraction line

Page 46: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 46

Nanometer beam sizes in KEK ATF2

Final Focus System Diagnosticb mat-ching Extraction line

Improved performances to address CLIC issues:

small(er) beam sizes and high(er) chromaticities

R.M.S. Beam Sizes at Collision

in Linear Colliders

ATF2

FFTB

ATF2

Ultra-Low

ILC

500 GeV

CLIC

500 GeV

CLIC

3 TeV

1

10

100

10 100 1000

Horizontal Beam Size (nm)

Ve

rtic

al

Be

am

Siz

e (

nm

)

Page 47: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 47

Machine Detector Interface

Intratrain

feedback

kicker

• FD sub-nm jitter tolerance

• Supports decoupled from detector

& compatible with push-pull mode

• Active feedbacks FD stabilization

• Intra-train feedback (150 nanosec) Tunnel part

Hybrid permanent magnet QD0

Page 48: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 48

Machine Detector Interface

Intratrain

feedback

kicker

• FD sub-nm jitter tolerance

• Supports decoupled from detector

& compatible with push-pull mode

• Active feedbacks FD stabilization

• Intra-train feedback (150 nanosec) Tunnel part

Hybrid permanent magnet QD0

Mechanical

feedback

Beam

feedback

Feed forward

CLIC

target

Page 49: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 4949

Detectors in

Push-pull mode

Close collaboration with ILC taking advantage

of advanced ILC detector concepts

Adapted to CLIC technology: Time stamping (0.5 ns between bunches)

Multi-TeV operation (beam-beam background)

49http://www.cern.ch/lcd Lucie Linssen,

15/1/2010

CLIC_Si

D

Length: 6.9m

CLIC_IL

D

Length: 7.1m (not to Scale)

Height:

6.9 mHeight:

7.0 m

Page 50: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 50

R&D on CLIC feasibility issue:

Operation & Machine Protection System

Taking advantage of LHC experience !

Great synergy with ILC main beam (11MW @ 500GeV)

Common reflection on reliability & availability

Concept based on passive & Real Time protection,

Beam Interlock System & next Cycle Permit.

Page 51: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 51

CLIC Tentative Schedule

Conceptual

Design Report

(CDR)

Technical

Design Report

(TDR) ?

CLIC CDR and

CLIC TDP proposal

@ CERN Council

Project submission?

European Strategy

for Particle Physics

@ CERN Council

Page 52: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 52

Extremely fruitful

CLIC /ILC Collaboration• ILC for a TeV LC based on SC RF technology & CLIC

extending LC into Multi-TeV range complementary.

• Common working groups on technical subjects with

strong synergy between CLIC & ILC• making the best use of the available resources

• developing common knowledge of both designs and

technologies on status, advantages, issues and prospects

• preparing together by the Linear Collider Community

made up of CLIC & ILC experts:• proposal(s) best adapted to the future HEP requirements

Joint CLIC & ILC workshop (October 18-22 @ CERN)

(IWLC10: Linear Collider Accelerator and Detectors)

Page 53: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 53

Conclusion• Novel CLIC technology to extend Linear Colliders into the Multi-TeV beam colliding energy range with promising performances and challenging parameters

• R&D on feasibility issues and concept of 3 TeV multi-TeV Linear collider in a Conceptual Design Report (CDR) by mid 2011

• Ambitious Test Facilities: CTF3, ATF1,2, CESR-TA…

• Exploration to determine LC capabilities & limitations in multi-TeV range

• Technical design phase (five to six years):• engineering design optimization, technological risks & cost mitigation

• Linear collider energy, luminosity and appropriate technology to be defined as the best trade-off following:

• Physics requirements when better known from LHC/Tevatron results

• Design performances, technology risk, power consumption and cost

Warm thanks to outstanding contributions of CLIC collaboration

in the past, present and …. future

Close CLIC / ILC collaboration extremely beneficial for Linear Colliders in preparation for best possible future HEP facility as

requested by Physics and complementary to LHC

Page 54: The CLIC studyepaper.kek.jp/IPAC10/talks/frxcmh01_talk.pdf · J.P.Delahaye CLIC @ IPAC10 (28/05/10) 3 Objective: explore possible extension of e+/e-linear colliders into the Multi-TeV

J.P.Delahaye CLIC @ IPAC10 (28/05/10) 54

35 CLIC related contributions to IPAC10