theoretical physics - lund university - lavi nethome.thep.lu.se/~bijnens/talks/odense08.pdfsymmetry...

135
EFFECTIVE FIELD THEORY: INTRODUCTION AND APPLICATIONS Johan Bijnens Lund University [email protected] http://www.thep.lu.se/bijnens Various ChPT: http://www.thep.lu.se/bijnens/chpt.html lavi net Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.1/103

Upload: others

Post on 19-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • EFFECTIVE FIELD THEORY:

    INTRODUCTION AND APPLICATIONS

    Johan Bijnens

    Lund University

    [email protected]://www.thep.lu.se/∼bijnens

    Various ChPT: http://www.thep.lu.se/∼bijnens/chpt.html

    lavinet

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.1/103

  • Overview

    What is effective field theory?

    Introduction to ChPT including possible problems

    Results for two-flavour ChPT

    Results for three flavour ChPT

    Partial quenching and ChPT

    η → 3πSome comments about Higgs sector and ChPT

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.2/103

  • Wikipedia

    http://en.wikipedia.org/wiki/Effective_field_theory

    In physics, an effective field theory is an approximate theory(usually a quantum field theory) that contains theappropriate degrees of freedom to describe physicalphenomena occurring at a chosen length scale, but ignoresthe substructure and the degrees of freedom at shorterdistances (or, equivalently, higher energies).

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.3/103

  • Wikipedia

    http://en.wikipedia.org/wiki/Chiral_perturbation_theory

    Chiral perturbation theory (ChPT) is an effective field theoryconstructed with a Lagrangian consistent with the(approximate) chiral symmetry of quantumchromodynamics (QCD), as well as the other symmetries ofparity and charge conjugation. ChPT is a theory whichallows one to study the low-energy dynamics of QCD. AsQCD becomes non-perturbative at low energy, it isimpossible to use perturbative methods to extractinformation from the partition function of QCD. Lattice QCDis one alternative method that has proved successful inextracting non-perturbative information.

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.4/103

  • Effective Field Theory

    Main Ideas:

    Use right degrees of freedom : essence of (most)physics

    If mass-gap in the excitation spectrum: neglect degreesof freedom above the gap.

    Examples:

    Solid state physics: conductors: neglectthe empty bands above the partially filledoneAtomic physics: Blue sky: neglect atomicstructure

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.5/103

  • Power Counting

    ➠ gap in the spectrum =⇒ separation of scales➠ with the lower degrees of freedom, build the mostgeneral effective Lagrangian

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.6/103

  • Power Counting

    ➠ gap in the spectrum =⇒ separation of scales➠ with the lower degrees of freedom, build the mostgeneral effective Lagrangian

    ➠ ∞# parameters➠ Where did my predictivity go ?

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.6/103

  • Power Counting

    ➠ gap in the spectrum =⇒ separation of scales➠ with the lower degrees of freedom, build the mostgeneral effective Lagrangian

    ➠ ∞# parameters➠ Where did my predictivity go ?

    =⇒ Need some ordering principle: power counting

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.6/103

  • Power Counting

    ➠ gap in the spectrum =⇒ separation of scales➠ with the lower degrees of freedom, build the mostgeneral effective Lagrangian

    ➠ ∞# parameters➠ Where did my predictivity go ?

    =⇒ Need some ordering principle: power counting➠ Taylor series expansion does not work (convergenceradius is zero)➠ Continuum of excitation states need to be taken intoaccount

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.6/103

  • Why is the sky blue ?

    System: Photons of visible light and neutral atomsLength scales: a few 1000 Å versus 1 ÅAtomic excitations suppressed by ≈ 10−3

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.7/103

  • Why is the sky blue ?

    System: Photons of visible light and neutral atomsLength scales: a few 1000 Å versus 1 ÅAtomic excitations suppressed by ≈ 10−3

    LA = Φ†v∂tΦv + . . . LγA = GF 2µνΦ†vΦv + . . .Units with h/ = c = 1: G energy dimension −3:

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.7/103

  • Why is the sky blue ?

    System: Photons of visible light and neutral atomsLength scales: a few 1000 Å versus 1 ÅAtomic excitations suppressed by ≈ 10−3

    LA = Φ†v∂tΦv + . . . LγA = GF 2µνΦ†vΦv + . . .Units with h/ = c = 1: G energy dimension −3:

    σ ≈ G2E4γ

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.7/103

  • Why is the sky blue ?

    System: Photons of visible light and neutral atomsLength scales: a few 1000 Å versus 1 ÅAtomic excitations suppressed by ≈ 10−3

    LA = Φ†v∂tΦv + . . . LγA = GF 2µνΦ†vΦv + . . .Units with h/ = c = 1: G energy dimension −3:

    σ ≈ G2E4γ

    blue light scatters a lot more than red{

    =⇒ red sunsets=⇒ blue sky

    Higher orders suppressed by 1 Å/λγ.

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.7/103

  • Why Field Theory ?

    ➠ Only known way to combine QM and special relativity➠ Off-shell effects: there as new free parameters

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.8/103

  • Why Field Theory ?

    ➠ Only known way to combine QM and special relativity➠ Off-shell effects: there as new free parameters

    Drawbacks• Many parameters (but finite number at any order)any model has few parameters but model-space is large

    • expansion: it might not converge or only badly

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.8/103

  • Why Field Theory ?

    ➠ Only known way to combine QM and special relativity➠ Off-shell effects: there as new free parameters

    Drawbacks• Many parameters (but finite number at any order)any model has few parameters but model-space is large

    • expansion: it might not converge or only badly

    Advantages• Calculations are (relatively) simple• It is general: model-independent• Theory =⇒ errors can be estimated• Systematic: ALL effects at a given order can be included• Even if no convergence: classification of models oftenuseful

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.8/103

  • Examples of EFT

    Fermi theory of the weak interaction

    Chiral Perturbation Theory: hadronic physics

    NRQCD

    SCET

    General relativity as an EFT

    2,3,4 nucleon systems from EFT point of view

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.9/103

  • references

    A. Manohar, Effective Field Theories (Schladminglectures), hep-ph/9606222

    I. Rothstein, Lectures on Effective Field Theories (TASIlectures), hep-ph/0308266

    G. Ecker, Effective field theories, Encyclopedia ofMathematical Physics, hep-ph/0507056

    D.B. Kaplan, Five lectures on effective field theory,nucl-th/0510023

    A. Pich, Les Houches Lectures, hep-ph/9806303

    S. Scherer, Introduction to chiral perturbation theory,hep-ph/0210398

    J. Donoghue, Introduction to the Effective Field TheoryDescription of Gravity, gr-qc/9512024

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.10/103

  • School

    PSI Zuoz Summer School on Particle PhysicsEffective Theories in Particle Physics, July 16 - 22, 2006

    http://ltpth.web.psi.ch/zuoz_school/previous_summerschools/zuoz2006/index.html

    R. Barbieri: Effective Theories for Physics beyond the Standard Model

    M. Beneke: Concept of Effective Theories, Heavy Quark Effective Theory andSoft-Collinear Effective Theory

    G. Colangelo: Chiral Perturbation Theory

    U. Langenegger: B Physics and Quarkonia

    H. Leutwyler: Historical and Other Remarks on Effective Theories

    A. Manohar: Nonrelativistic QCD

    L. Simons: Pion-Nucleon Interaction

    M. Sozzi: Kaon Physics

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.11/103

  • Chiral Perturbation Theory

    Exploring the consequences of the chiral symmetry of QCDand its spontaneous breaking using effective field theorytechniques

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.12/103

  • Chiral Perturbation Theory

    Exploring the consequences of the chiral symmetry of QCDand its spontaneous breaking using effective field theorytechniques

    Derivation from QCD:H. Leutwyler, On The Foundations Of Chiral Perturbation Theory,Ann. Phys. 235 (1994) 165 [hep-ph/9311274]

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.12/103

  • The mass gap: Goldstone Modes

    UNBROKEN: V (φ)

    Only massive modesaround lowest energystate (=vacuum)

    BROKEN: V (φ)

    Need to pick a vacuum〈φ〉 6= 0: Breaks symmetryNo parity doubletsMassless mode along bottom

    For more complicated symmetries: need to describe thebottom mathematically: G → H =⇒ G/H (explain)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.13/103

  • The two symmetry modes compared

    Wigner-Eckart mode Nambu-Goldstone mode

    Symmetry group G G spontaneously broken to subgroup H

    Vacuum state unique Vacuum state degenerate

    Massive Excitations Existence of a massless mode

    States fall in multiplets of G States fall in multiplets of H

    Wigner Eckart theorem for G Wigner Eckart theorem for H

    Broken part leads to low-energy theorems

    Symmetry linearly realized Full Symmetry, G, nonlinearly realized

    unbroken part, H, linearly realized

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.14/103

  • Some clarifications

    φ(x): orientation of vacuum in every space-time point

    Examples: spin waves, phonons

    Nonlinear: acting by a broken symmetry operatorchanges the vacuum, φ(x) → φ(x) + αThe precise form of φ is not important but it mustdescribe the space of vacua (field transformationspossible)

    In gauge theories: the local symmetry allows the vacuato be different in every point, hence the GoldstoneBoson must not be observable as a massless degree offreedom.

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.15/103

  • The power counting

    Very important:

    Low energy theorems: Goldstone bosons do notinteract at zero momentum

    Heuristic proof:

    Which vacuum does not matter, choices related bysymmetry

    φ(x) → φ(x) + α should not matterEach term in L must contain at least one ∂µφ

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.16/103

  • Chiral Perturbation Theory

    Degrees of freedom: Goldstone Bosons from ChiralSymmetry Spontaneous Breakdown

    Power counting: Dimensional countingExpected breakdown scale: Resonances, so Mρ or higher

    depending on the channel

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.17/103

  • Chiral Perturbation Theory

    Degrees of freedom: Goldstone Bosons from ChiralSymmetry Spontaneous Breakdown

    Power counting: Dimensional countingExpected breakdown scale: Resonances, so Mρ or higher

    depending on the channel

    Chiral Symmetry

    QCD: 3 light quarks: equal mass: interchange: SU(3)V

    But LQCD =∑

    q=u,d,s

    [iq̄LD/ qL + iq̄RD/ qR − mq (q̄RqL + q̄LqR)]

    So if mq = 0 then SU(3)L × SU(3)R.

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.17/103

  • Chiral Perturbation Theory

    Degrees of freedom: Goldstone Bosons from ChiralSymmetry Spontaneous Breakdown

    Power counting: Dimensional countingExpected breakdown scale: Resonances, so Mρ or higher

    depending on the channel

    Chiral Symmetry

    QCD: 3 light quarks: equal mass: interchange: SU(3)V

    But LQCD =∑

    q=u,d,s

    [iq̄LD/ qL + iq̄RD/ qR − mq (q̄RqL + q̄LqR)]

    So if mq = 0 then SU(3)L × SU(3)R.Can also see that via v < c, mq 6= 0 =⇒

    v = c, mq = 0 =⇒/Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.17/103

  • Chiral Perturbation Theory

    〈q̄q〉 = 〈q̄LqR + q̄RqL〉 6= 0SU(3)L × SU(3)R broken spontaneously to SU(3)V8 generators broken =⇒ 8 massless degrees of freedomand interaction vanishes at zero momentum

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.18/103

  • Chiral Perturbation Theory

    〈q̄q〉 = 〈q̄LqR + q̄RqL〉 6= 0SU(3)L × SU(3)R broken spontaneously to SU(3)V8 generators broken =⇒ 8 massless degrees of freedomand interaction vanishes at zero momentum

    Power counting in momenta: (explain)

    p2

    1/p2

    d4p p4

    (p2)2 (1/p2)2 p4 = p4

    (p2) (1/p2) p4 = p4

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.18/103

  • Chiral Perturbation Theory

    Large subject:

    Steven Weinberg, Physica A96:327,1979: 1789citations

    Juerg Gasser and Heiri Leutwyler,Nucl.Phys.B250:465,1985: 2290 citations

    Juerg Gasser and Heiri Leutwyler, AnnalsPhys.158:142,1984: 2254 citations

    Sum: 3777

    Checked on 18/2/2007 in SPIRES

    For lectures, review articles: seehttp://www.thep.lu.se/∼bijnens/chpt.html

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.19/103

  • Chiral Perturbation Theor ies

    Baryons

    Heavy Quarks

    Vector Mesons (and other resonances)

    Structure Functions and Related Quantities

    Light Pseudoscalar MesonsTwo or Three (or even more) FlavoursStrong interaction and couplings to externalcurrents/densitiesIncluding electromagnetismIncluding weak nonleptonic interactionsTreating kaon as heavy

    Many similarities with strongly interacting HiggsOdense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.20/103

  • Lagrangians

    U(φ) = exp(i√

    2Φ/F0) parametrizes Goldstone Bosons

    Φ(x) =

    0

    B

    B

    B

    B

    B

    B

    @

    π0√2

    +η8√6

    π+ K+

    π− − π0

    √2

    +η8√6

    K0

    K− K̄0 −2 η8√6

    1

    C

    C

    C

    C

    C

    C

    A

    .

    LO Lagrangian: L2 = F20

    4 {〈DµU †DµU〉 + 〈χ†U + χU †〉} ,

    DµU = ∂µU − irµU + iUlµ ,left and right external currents: r(l)µ = vµ + (−)aµ

    Scalar and pseudoscalar external densities: χ = 2B0(s + ip)quark masses via scalar density: s = M + · · ·〈A〉 = TrF (A)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.21/103

  • External currents?

    in QCD Green functions derived as functionalderivatives w.r.t. external fields

    Green functions are the objects that satisfy Wardidentities

    By introducing a local Chiral Symmetry, Ward identitiesare automatically satisfied (great improvement overcurrent algebra)

    QCD Green functions form a connection QCD⇔ChPT∫

    [dGdqdq]eiR

    d4xLQCD(q,q,G,l,r,s,p) ≈∫

    [dU ]eiR

    d4xLChP T (U,l,r,s,p)

    so also functional derivatives are equal

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.22/103

  • Lagrangians

    L4 = L1〈DµU †DµU〉2 + L2〈DµU †DνU〉〈DµU †DνU〉+L3〈DµU †DµUDνU †DνU〉 + L4〈DµU †DµU〉〈χ†U + χU †〉+L5〈DµU †DµU(χ†U + U †χ)〉 + L6〈χ†U + χU †〉2

    +L7〈χ†U − χU †〉2 + L8〈χ†Uχ†U + χU †χU †〉−iL9〈FRµνDµUDνU † + FLµνDµU †DνU〉

    +L10〈U †FRµνUFLµν〉 + H1〈FRµνFRµν + FLµνFLµν〉 + H2〈χ†χ〉

    Li: Low-energy-constants (LECs)Hi: Values depend on definition of currents/densities

    These absorb the divergences of loop diagrams: Li → LriRenormalization: order by order in the powercounting

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.23/103

  • Lagrangians

    Lagrangian Structure:2 flavour 3 flavour 3+3 PQChPT

    p2 F,B 2 F0, B0 2 F0, B0 2p4 lri , h

    ri 7+3 L

    ri , H

    ri 10+2 L̂

    ri , Ĥ

    ri 11+2

    p6 cri 52+4 Cri 90+4 K

    ri 112+3

    p2: Weinberg 1966p4: Gasser, Leutwyler 84,85p6: JB, Colangelo, Ecker 99,00

    ➠ replica method =⇒ PQ obtained from NF flavour➠ All infinities known➠ 3 flavour special case of 3+3 PQ: L̂ri ,K

    ri → Lri , Cri

    ➠ 53 → 52 arXiv:0705.0576 [hep-ph]Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.24/103

  • Chiral Logarithms

    The main predictions of ChPT:

    Relates processes with different numbers ofpseudoscalars

    Chiral logarithms

    m2π = 2Bm̂ +

    (

    2Bm̂

    F

    )2 [1

    32π2log

    (2Bm̂)

    µ2+ 2lr3(µ)

    ]

    + · · ·

    M2 = 2Bm̂B 6= B0, F 6= F0 (two versus three-flavour)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.25/103

  • LECs and µ

    lr3(µ)

    l̄i =32π2

    γilri (µ) − log

    M2πµ2

    .

    Independent of the scale µ.

    For 3 and more flavours, some of the γi = 0: Lri (µ)

    µ :

    mπ, mK : chiral logs vanish

    pick larger scale

    1 GeV then Lr5(µ) ≈ 0 large Nc arguments????compromise: µ = mρ = 0.77 GeV

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.26/103

  • Expand in what quantities?

    Expansion is in momenta and masses

    But is not unique: relations between masses(Gell-Mann–Okubo) exists

    Express orders in terms of physical masses andquantities (Fπ, FK)?

    Express orders in terms of lowest order masses?

    E.g. s + t + u = 2m2π + 2m2K in πK scattering

    See e.g. Descotes-Genon talk

    I prefer physical masses

    Thresholds correct

    Chiral logs are from physical particles propagatingOdense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.27/103

  • An example

    mπ =m0

    1 + am0f0fπ =

    f0

    1 + bm0f0

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.28/103

  • An example

    mπ =m0

    1 + am0f0fπ =

    f0

    1 + bm0f0

    mπ = m0 − am20f0

    + a2m30f20

    + · · ·

    fπ = f0

    (

    1 − bm0f0

    + b2m20f20

    + · · ·)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.28/103

  • An example

    mπ =m0

    1 + am0f0fπ =

    f0

    1 + bm0f0

    mπ = m0 − am20f0

    + a2m30f20

    + · · ·

    fπ = f0

    (

    1 − bm0f0

    + b2m20f20

    + · · ·)

    mπ = m0 − am2πfπ

    + a(b − a)m3π

    f2π+ · · ·

    mπ = m0

    (

    1 − amπfπ

    + abm2πf2π

    + · · ·)

    fπ = f0

    (

    1 − bmπfπ

    + b(2b − a)m2π

    f2π+ · · ·

    )

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.28/103

  • An example

    mπ =m0

    1 + am0f0fπ =

    f0

    1 + bm0f0

    mπ = m0 − am20f0

    + a2m30f20

    + · · ·

    fπ = f0

    (

    1 − bm0f0

    + b2m20f20

    + · · ·)

    mπ = m0 − am2πfπ

    + a(b − a)m3π

    f2π+ · · ·

    mπ = m0

    (

    1 − amπfπ

    + abm2πf2π

    + · · ·)

    fπ = f0

    (

    1 − bmπfπ

    + b(2b − a)m2π

    f2π+ · · ·

    )

    a = 1 b = 0.5 f0 = 1Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.28/103

  • An example: m0/f0

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.1 0.2 0.3 0.4 0.5

    m0

    mπLO

    NLONNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.29/103

  • An example: mπ/fπ

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.1 0.2 0.3 0.4 0.5

    m0

    mπLO

    NLOpNNLOp

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.30/103

  • Two-loop Two-flavour

    Review paper on Two-Loops: JB, hep-ph/0604043 Prog. Part.Nucl. Phys. 58 (2007) 521

    Dispersive Calculation of the nonpolynomial part in q2, s, t, u

    Gasser-Meißner: FV , FS: 1991 numerical

    Knecht-Moussallam-Stern-Fuchs: ππ: 1995 analytical

    Colangelo-Finkemeier-Urech: FV , FS: 1996 analytical

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.31/103

  • Two-Loop Two-flavour

    Bellucci-Gasser-Sainio: γγ → π0π0: 1994Bürgi: γγ → π+π−, Fπ, mπ: 1996JB-Colangelo-Ecker-Gasser-Sainio: ππ, Fπ, mπ:1996-97

    JB-Colangelo-Talavera: FV π(t), FSπ: 1998

    JB-Talavera: π → ℓνγ: 1997Gasser-Ivanov-Sainio: γγ → π0π0, γγ → π+π−:2005-2006

    mπ, Fπ, FV , FS, ππ: simple analytical forms

    Colangelo-(Dürr-)Haefeli: Finite volume Fπ,mπ2005-2006

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.32/103

  • LECs

    l̄1 to l̄4: ChPT at order p6 and the Roy equation analysis inππ and FS Colangelo, Gasser and Leutwyler, Nucl. Phys. B 603 (2001)125 [hep-ph/0103088]

    l̄5 and l̄6 : from FV and π → ℓνγ JB,(Colangelo,)Talavera

    l̄1 = −0.4 ± 0.6 ,l̄2 = 4.3 ± 0.1 ,l̄3 = 2.9 ± 2.4 ,l̄4 = 4.4 ± 0.2 ,

    l̄6 − l̄5 = 3.0 ± 0.3 ,l̄6 = 16.0 ± 0.5 ± 0.7 .

    l7 ∼ 5 · 10−3 from π0-η mixing Gasser, Leutwyler 1984Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.33/103

  • LECs

    Some combinations of order p6 LECs are known as well:curvature of the scalar and vector formfactor, two morecombinations from ππ scattering (implicit in b5 and b6)

    Note: cri for mπ, fπ, ππ: small effect

    cri (770MeV ) = 0 for plots shown

    expansion in m2π/F2π shown

    General observation:

    Obtainable from kinematical dependences: known

    Only via quark-mass dependence: poorely knownOdense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.34/103

  • m2π

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0 0.05 0.1 0.15 0.2 0.25

    mπ2

    M2 [GeV2]

    LONLO

    NNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.35/103

  • m2π (l̄3 = 0)

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0 0.05 0.1 0.15 0.2 0.25

    mπ2

    M2 [GeV2]

    LONLO

    NNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.36/103

  • 0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0 0.05 0.1 0.15 0.2 0.25

    [GeV

    ]

    M2 [GeV2]

    LONLO

    NNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.37/103

  • Two-loop Three-flavour,≤2001

    ΠV V π, ΠV V η, ΠV V K Kambor, Golowich; Kambor, Dürr; Amorós, JB, Talavera

    ΠV V ρω Maltman

    ΠAAπ, ΠAAη, Fπ, Fη, mπ, mη Kambor, Golowich; Amorós, JB, Talavera

    ΠSS Moussallam Lr4, L

    r6

    ΠV V K , ΠAAK , FK , mK Amorós, JB, Talavera

    Kℓ4, 〈qq〉 Amorós, JB, Talavera Lr1, Lr2, Lr3

    FM , mM , 〈qq〉 (mu 6= md) Amorós, JB, Talavera Lr5,7,8,mu/md

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.38/103

  • Two-loop Three-flavour,≥2001

    FV π, FV K+, FV K0 Post, Schilcher; JB, Talavera Lr9

    Kℓ3 Post, Schilcher; JB, Talavera Vus

    FSπ, FSK (includes σ-terms) JB, Dhonte Lr4, Lr6

    K,π → ℓνγ Geng, Ho, Wu Lr10ππ JB,Dhonte,Talavera

    πK JB,Dhonte,Talavera

    relation lri and Lri , C

    ri Gasser,Haefeli,Ivanov,Schmid

    Finite volume 〈qq〉 JB,Ghorbani

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.39/103

  • Two-loop Three-flavour

    Known to be in progress

    η → 3π: being written up JB,GhorbaniKℓ3 iso: preliminary results available JB,Ghorbani

    Finite Volume: sunsetintegrals being written up JB,Lähde

    relation cri and Lri , C

    ri Gasser,Haefeli,Ivanov,Schmid

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.40/103

  • Cri

    Most analysis use:Cri from (single) resonance approximation

    π

    πρ, S

    → q2π

    π|q2|

  • Cri

    LV = −1

    4〈VµνV µν〉 +

    1

    2m2V 〈VµV µ〉 −

    fV

    2√

    2〈Vµνfµν+ 〉

    − igV2√

    2〈Vµν [uµ, uν ]〉 + fχ〈Vµ[uµ, χ−]〉

    LA = −1

    4〈AµνAµν〉 +

    1

    2m2A〈AµAµ〉 −

    fA

    2√

    2〈Aµνfµν− 〉

    LS =1

    2〈∇µS∇µS − M2SS2〉 + cd〈Suµuµ〉 + cm〈Sχ+〉

    Lη′ =1

    2∂µP1∂

    µP1 −1

    2M2η′P

    21 + id̃mP1〈χ−〉 .

    fV = 0.20, fχ = −0.025, gV = 0.09, cm = 42 MeV, cd = 32 MeV, d̃m = 20 MeV,

    mV = mρ = 0.77 GeV, mA = ma1 = 1.23 GeV, mS = 0.98 GeV, mP1 = 0.958 GeV

    fV , gV , fχ, fA: experiment

    cm and cd from resonance saturation at O(p4)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.42/103

  • Cri

    Problems:

    Weakest point in the numerics

    However not all results presented depend on this

    Unknown so far: Cri in the masses/decay constants andhow these effects correlate into the rest

    No µ dependence: obviously only estimate

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.43/103

  • Cri

    Problems:

    Weakest point in the numerics

    However not all results presented depend on this

    Unknown so far: Cri in the masses/decay constants andhow these effects correlate into the rest

    No µ dependence: obviously only estimate

    What we did about it:

    Vary resonance estimate by factor of two

    Vary the scale µ at which it applies: 600-900 MeV

    Check the estimates for the measured ones

    Again: kinematic can be had, quark-mass dependencedifficult

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.43/103

  • Inputs

    Kℓ4: F (0), G(0), λ E865 BNL

    m2π0, m2η, m

    2K+, m

    2K0 em with Dashen violation

    Fπ+

    FK+/Fπ+

    ms/m̂ 24 (26) m̂ = (mu + md)/2

    Lr4, Lr6

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.44/103

  • Outputs: Ifit 10 same p4 fit B fit D

    103Lr1 0.43 ± 0.12 0.38 0.44 0.44

    103Lr2 0.73 ± 0.12 1.59 0.60 0.69

    103Lr3 −2.35 ± 0.37 −2.91 −2.31 −2.33

    103Lr4 ≡ 0 ≡ 0 ≡ 0.5 ≡ 0.2

    103Lr5 0.97 ± 0.11 1.46 0.82 0.88

    103Lr6 ≡ 0 ≡ 0 ≡ 0.1 ≡ 0

    103Lr7 −0.31 ± 0.14 −0.49 −0.26 −0.28

    103Lr8 0.60 ± 0.18 1.00 0.50 0.54

    ➠ errors are very correlated➠ µ = 770 MeV; 550 or 1000 within errors➠ varying Cri factor 2 about errors➠ Lr4, L

    r6 ≈ −0.3, . . . , 0.6 10−3 OK

    ➠ fit B: small corrections to pion “sigma” term, fit scalar radius

    ➠ fit D: fit ππ and πK thresholdsOdense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.45/103

  • Correlations

    -5-4

    -3-2

    -10

    L3r

    00.2

    0.40.6

    0.81

    L1r

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    L2r

    (older fit)103 Lr1 = 0.52 ± 0.23103 Lr2 = 0.72 ± 0.24103 Lr3 = −2.70 ± 0.99

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.46/103

  • Outputs: II

    fit 10 same p4 fit B fit D

    2B0m̂/m2π 0.736 0.991 1.129 0.958

    m2π: p4, p6 0.006,0.258 0.009,≡ 0 −0.138,0.009 −0.091,0.133

    m2K : p4, p6 0.007,0.306 0.075,≡ 0 −0.149,0.094 −0.096,0.201

    m2η: p4, p6 −0.052,0.318 0.013,≡ 0 −0.197,0.073 −0.151,0.197

    mu/md 0.45±0.05 0.52 0.52 0.50F0 [MeV] 87.7 81.1 70.4 80.4FKFπ

    : p4, p6 0.169,0.051 0.22,≡ 0 0.153,0.067 0.159,0.061

    ➠ mu = 0 always very far from the fits

    ➠ F0: pion decay constant in the chiral limit

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.47/103

  • ππ

    p4

    p6

    -0.4 -0.2 0 0.2 0.4 0.6 103 L4

    r -0.3-0.2

    -0.10

    0.10.2

    0.30.4

    0.50.6

    103 L6r

    0.195

    0.2

    0.205

    0.21

    0.215

    0.22

    0.225

    a00

    p4

    p6

    -0.4 -0.2 0 0.2 0.4 0.6 103 L4

    r -0.3-0.2

    -0.10

    0.10.2

    0.30.4

    0.50.6

    103 L6r

    -0.048

    -0.047

    -0.046

    -0.045

    -0.044

    -0.043

    -0.042

    -0.041

    -0.04

    -0.039

    a20

    a00 = 0.220 ± 0.005, a20 = −0.0444 ± 0.0010Colangelo, Gasser, Leutwyler

    a00 = 0.159 a20 = −0.0454 at order p2

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.48/103

  • ππ and πK

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    -0.4 -0.2 0 0.2 0.4 0.6

    103

    L6r

    103 L4r

    ππ constraints

    a20C1

    a03/2

    C+10

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    -0.4 -0.2 0 0.2 0.4 0.6

    103

    L6r

    103 L4r

    πK constraints

    C+10a0

    3/2

    C1a20

    preferred region: fit D: 103Lr4 ≈ 0.2, 103Lr6 ≈ 0.0

    General fitting needs more work and systematic studies

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.49/103

  • Quark mass dependences

    Updates of plots inAmorós, JB and Talavera, hep-ph/0003258, Nucl. Phys. B585 (2000) 293

    Some new onesProcedure: calculate a consistent set of mπ,mK ,mη, fπ withthe given input values (done iteratively)

    vary ms/(ms)phys, keep ms/m̂ = 24m2π, m

    2K , Fπ, FK

    vary ms/(ms)phys keep m̂ fixedm2π, Fπvary mπ, keep mK fixedf+(0): the formfactor in Kℓ3 decays

    f+(0),f+(0)/(

    m2K − m2π)2

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.50/103

  • m2π fit 10

    0

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.014

    0.016

    0.018

    0.02

    0 0.2 0.4 0.6 0.8 1

    mπ2

    [GeV

    2 ]

    ms/(ms)phys

    LONLO

    NNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.51/103

  • m2π fit D

    0

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.014

    0.016

    0.018

    0.02

    0 0.2 0.4 0.6 0.8 1

    mπ2

    [GeV

    2 ]

    ms/(ms)phys

    LONLO

    NNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.52/103

  • m2K fit 10

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0 0.2 0.4 0.6 0.8 1

    mK

    2 [G

    eV2 ]

    ms/(ms)phys

    LONLO

    NNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.53/103

  • m2K fit D

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0 0.2 0.4 0.6 0.8 1

    mK

    2 [G

    eV2 ]

    ms/(ms)phys

    LONLO

    NNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.54/103

  • Fπ fit 10

    0.086

    0.088

    0.09

    0.092

    0.094

    0.096

    0.098

    0.1

    0 0.2 0.4 0.6 0.8 1

    [GeV

    ]

    ms/(ms)phys

    LONLO

    NNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.55/103

  • FK fit 10

    0.085

    0.09

    0.095

    0.1

    0.105

    0.11

    0.115

    0 0.2 0.4 0.6 0.8 1

    FK [G

    eV]

    ms/(ms)phys

    LONLO

    NNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.56/103

  • FK/Fπ fit 10

    1

    1.05

    1.1

    1.15

    1.2

    1.25

    0 0.2 0.4 0.6 0.8 1

    FK/F

    π

    ms/(ms)phys

    NLONNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.57/103

  • m2π fit 10, fixed m̂

    0

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.014

    0.016

    0.018

    0.02

    0 0.2 0.4 0.6 0.8 1

    mπ2

    [GeV

    2 ]

    ms/(ms)phys

    LONLO

    NNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.58/103

  • Fπ fit 10, fixed m̂

    0.086

    0.088

    0.09

    0.092

    0.094

    0.096

    0.098

    0.1

    0 0.2 0.4 0.6 0.8 1

    [GeV

    ]

    ms/(ms)phys

    LO

    NLO

    NNLO

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.59/103

  • f+(0) fit 10, fixed mK

    -0.025

    -0.02

    -0.015

    -0.01

    -0.005

    0

    0.005

    0.01

    0.015

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    corr

    ectio

    n to

    f +(0

    )

    mπ2/(mK

    2)phys

    sump4

    p6 2-loopsp6 Li

    r

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.60/103

  • (f+(0))/(

    m2K − m2π)2

    fit 10, fixed mK

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0 0.2 0.4 0.6 0.8 1

    (cor

    rect

    ion

    to f +

    (0))

    /(m

    K2 −

    mπ2 )

    2 [G

    eV−4

    ]

    mπ2/(mK

    2)phys

    sump4

    p6 2-loopsp6 Li

    r

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.61/103

  • f0(t) in Kℓ3

    Main Result: JB,Talavera

    f0(t) = 1 −8

    F 4π(Cr12 + C

    r34)

    (

    m2K − m2π)2

    +8t

    F 4π(2Cr12 + C

    r34)

    (

    m2K + m2π

    )

    +t

    m2K − m2π(FK/Fπ − 1)

    − 8F 4π

    t2Cr12 + ∆(t) + ∆(0) .

    ∆(t) and ∆(0) contain NO Cri and only depend on the Lri at

    order p6

    =⇒All needed parameters can be determined experimentally

    ∆(0) = −0.0080 ± 0.0057[loops] ± 0.0028[Lri ] .Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.62/103

  • ≥ 3-flavour: PQChPT

    Essentially all manipulations from ChPT go through toPQChPT when changing trace to supertrace and addingfermionic variables

    Exceptions: baryons and Cayley-Hamilton relations

    So Luckily: can use the n flavour work in ChPT at two looporder to obtain for PQChPT: Lagrangians and infinities

    Very important note: ChPT is a limit of PQChPT=⇒ LECs from ChPT are linear combinations of LECs

    of PQChPT with the same number of sea quarks.

    E.g. Lr1 = Lr(3pq)0 /2 + L

    r(3pq)1

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.63/103

  • PQChPT

    One-loop: Bernard, Golterman, Sharpe, Shoresh, Pallante,. . .with electromagnetism: JB,Danielsson, hep-lat/0610127

    Two loops:

    m2π+ simplest mass case: JB,Danielsson,Lähde, hep-lat/0406017Fπ+: JB,Lähde, hep-lat/0501014Fπ+, m2π+ two sea quarks: JB,Lähde, hep-lat/0506004

    m2π+: JB,Danielsson,Lähde, hep-lat/0602003

    Neutral masses: JB,Danielsson, hep-lat/0606017

    Lattice data: a and L extrapolations needed

    Programs available from me (Fortran)Formulas: http://www.thep.lu.se/∼bijnens/chpt.html

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.64/103

  • Partial Quenching and ChPT

    Mesons

    =

    Quark FlowValence

    +

    Quark FlowSea

    + · · ·

    Lattice QCD: Valence is easy to deal with, Sea very difficult

    They can be treated separately: i.e. different quark massesPartially Quenched QCD and ChPT (PQChPT)

    One Loop or p4: Bernard, Golterman, Pallante, Sharpe,Shoresh,. . .

    Two Loops or p6: This talk JB, Niclas Danielsson, Timo Lähde

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.65/103

  • PQChPT at Two Loops: General

    Add ghost quarks: remove the unwanted free valence loops

    Mesons

    =

    Quark FlowValence

    +

    Quark FlowValence

    +

    Quark FlowSea

    +

    Quark FlowGhost

    Possible problem: QCD =⇒ ChPT relies heavily on unitarity

    Partially quenched: at least one dynamical sea quark=⇒ Φ0 is heavy: remove from PQChPT

    Symmetry group becomes SU(nv + ns|nv) × SU(nv + ns|nv)(approximately)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.66/103

  • PQChPT at Two Loops: General

    Essentially all manipulations from ChPT go through toPQChPT when changing trace to supertrace and addingfermionic variables

    Exceptions: baryons and Cayley-Hamilton relations

    So Luckily: can use the n flavour work in ChPT at two looporder to obtain for PQChPT: Lagrangians and infinities

    Very important note: ChPT is a limit of PQChPT=⇒ LECs from ChPT are linear combinations of LECs

    of PQChPT with the same number of sea quarks.

    E.g. Lr1 = Lr(3pq)0 /2 + L

    r(3pq)1

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.67/103

  • PQChPT at Two Loop: Papers

    valence equal mass, 3 sea equal mass:

    m2π+: JB,Danielsson,Lähde, hep-lat/0406017

    Other mass combinations:

    F 2π+: JB,Lähde, hep-lat/0501014

    F 2π+, m2π+ two sea quarks: JB,Lähde, hep-lat/0506004

    In progress: the other charged masses

    Actual Calculations:

    ➠ heavy use of FORM Vermaseren➠ Main problem: sheer size of theexpressions

    No fits to lattice data (yet): a and L extrapolations needed

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.68/103

  • Long Expressions

    =⇒

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.69/103

  • Long Expressions

    =⇒

    δ(6)22loops = π16 L

    r0

    [

    4/9 χηχ4 − 1/2 χ1χ3 + χ213 − 13/3 χ̄1χ13 − 35/18 χ̄2]

    − 2 π16 Lr1 χ213− π16 Lr2

    [

    11/3 χηχ4 + χ213 + 13/3 χ̄2

    ]

    + π16 Lr3

    [

    4/9 χηχ4 − 7/12 χ1χ3 + 11/6 χ213 − 17/6 χ̄1χ13 − 43/36 χ̄2]

    + π216[

    −15/64 χηχ4 − 59/384 χ1χ3 + 65/384 χ213 − 1/2 χ̄1χ13 − 43/128 χ̄2]

    − 48 Lr4Lr5 χ̄1χ13 − 72 Lr24 χ̄21− 8 Lr25 χ213 + Ā(χp)π16

    [

    −1/24 χp + 1/48 χ̄1 − 1/8 χ̄1 Rpqη + 1/16 χ̄1 Rcp − 1/48 Rpqη χp − 1/16 Rpqη χq+ 1/48 Rηpp χη + 1/16 R

    cp χ13

    ]

    + Ā(χp)Lr0

    [

    8/3 Rpqη χp + 2/3 Rcp χp + 2/3 R

    dp

    ]

    + Ā(χp)Lr3

    [

    2/3 Rpqη χp

    + 5/3 Rcp χp + 5/3 Rdp

    ]

    + Ā(χp)Lr4

    [

    −2 χ̄1χ̄ppηη0 − 2 χ̄1 Rpqη + 3 χ̄1 Rcp]

    + Ā(χp)Lr5

    [

    −2/3 χ̄ppηη1 − Rpqη χp+ 1/3 Rpqη χq + 1/2 R

    cp χp − 1/6 Rcp χq

    ]

    + Ā(χp)2

    [

    1/16 + 1/72 (Rpqη)2 − 1/72 RpqηRcp + 1/288 (Rcp)2

    ]

    + Ā(χp)Ā(χps)[

    −1/36 Rpqη − 5/72 Rpsη + 7/144 Rcp]

    − Ā(χp)Ā(χqs)[

    1/36 Rpqη + 1/24 Rpsη + 1/48 R

    cp

    ]

    + Ā(χp)Ā(χη)[

    −1/72 RpqηRvη13 + 1/144 RcpRvη13]

    + 1/8 Ā(χp)Ā(χ13) + 1/12 Ā(χp)Ā(χ46)Rηpp

    + Ā(χp)B̄(χp, χp; 0)[

    1/4 χp − 1/18 RpqηRcp χp − 1/72 RpqηRdp + 1/18 (Rcp)2 χp + 1/144 RcpRdp]

    + Ā(χp)B̄(χp, χη; 0)[

    1/18 RηppRcp χp − 1/18 Rη13Rcp χp

    ]

    + Ā(χp)B̄(χq, χq; 0)[

    −1/72 RpqηRdq + 1/144 RcpRdq]

    − 1/12 Ā(χp)B̄(χps, χps; 0)Rpsη χps − 1/18 Ā(χp)B̄(χ1, χ3; 0)RqpηRcp χp+ 1/18 Ā(χp)C̄(χp, χp, χp; 0)R

    cpR

    dp χp + Ā(χp; ε)π16

    [

    1/8 χ̄1Rpqη − 1/16χ̄1 Rcp − 1/16 Rcp χp − 1/16 Rdp

    ]

    + Ā(χps)π16 [1/16 χps − 3/16 χqs − 3/16 χ̄1] − 2 Ā(χps)Lr0 χps − 5 Ā(χps)Lr3 χps − 3 Ā(χps)Lr4 χ̄1+ Ā(χps)L

    r5 χ13 + Ā(χps)Ā(χη)

    [

    7/144 Rηpp − 5/72 Rηps − 1/48 Rηqq + 5/72 Rηqs − 1/36 Rη13]

    + Ā(χps)B̄(χp, χp; 0)[

    1/24 Rpsη χp − 5/24 Rpsη χps]

    + Ā(χps)B̄(χp, χη; 0)[

    −1/18 RηpsRzqpη χp− 1/9 RηpsRzqpη χps

    ]

    − 1/48 Ā(χps)B̄(χq, χq; 0)Rdq + 1/18 Ā(χps)B̄(χ1, χ3; 0)Rqsη χs+ 1/9 Ā(χps)B̄(χ1, χ3; 0, k)R

    qsη + 3/16 Ā(χps; ε)π16 [χs + χ̄1] − 1/8 Ā(χp4)2 − 1/8 Ā(χp4)Ā(χp6)

    + 1/8 Ā(χp4)Ā(χq6) − 1/32 Ā(χp6)2 + Ā(χη)π16[

    1/16 χ̄1 Rvη13 − 1/48 Rvη13 χη + 1/16 Rvη13 χ13

    ]

    + Ā(χη)Lr0

    [

    4Rη13 χη + 2/3 Rvη13 χη

    ]

    − 8 Ā(χη)Lr1 χη − 2 Ā(χη)Lr2 χη + Ā(χη)Lr3[

    4Rη13 χη + 5/3 Rvη13χη

    ]

    + Ā(χη)Lr4

    [

    4 χη + χ̄1 Rvη13

    ]

    − Ā(χη)Lr5[

    1/6 Rηpp χq + Rη13 χ13 + 1/6 R

    vη13 χη

    ]

    + 1/288 Ā(χη)2 (Rvη13)

    2

    + 1/12 Ā(χη)Ā(χ46)Rvη13 + Ā(χη)B̄(χp, χp; 0)

    [

    −1/36 χ̄ppηηη1 − 1/18 RpqηRηpp χp + 1/18 RηppRcp χp+ 1/144 RdpR

    vη13

    ]

    + Ā(χη)B̄(χp, χη; 0)[

    −1/18 χ̄ηpηpη1 + 1/18 χ̄ηpηqη1 + 1/18 (Rηpp)2Rzqpη χp]

    − 1/12 Ā(χη)B̄(χps, χps; 0)Rηps χps − Ā(χη)B̄(χη, χη; 0)[

    1/216 Rvη13 χ4 + 1/27 Rvη13 χ6

    ]

    − 1/18 Ā(χη)B̄(χ1, χ3; 0)R1ηηR3ηη χη + 1/18 Ā(χη)C̄(χp, χp, χp; 0)RηppRdp χp + Ā(χη; ε)π16 [1/8 χη− 1/16 χ̄1 Rvη13 − 1/8 Rη13 χη − 1/16 Rvη13 χη

    ]

    + Ā(χ1)Ā(χ3)[

    −1/72 RpqηRcq + 1/36 R13ηR31η + 1/144 Rc1Rc3]

    − 4 Ā(χ13)Lr1 χ13 − 10 Ā(χ13)Lr2 χ13 + 1/8 Ā(χ13)2 − 1/2 Ā(χ13)B̄(χ1, χ3; 0, k)+ 1/4 Ā(χ13; ε)π16 χ13 + 1/4 Ā(χ14)Ā(χ34) + 1/16 Ā(χ16)Ā(χ36) − 24 Ā(χ4)Lr1 χ4 − 6 Ā(χ4)Lr2 χ4+ 12 Ā(χ4)L

    r4 χ4 + 1/12 Ā(χ4)B̄(χp, χp; 0) (R

    p4η)

    2 χ4 + 1/6 Ā(χ4)B̄(χp, χη; 0)[

    Rp4ηRηp4 χ4 − Rp4ηRηq4 χ4

    ]

    − 1/24 Ā(χ4)B̄(χη, χη; 0)Rvη13 χ4 − 1/6 Ā(χ4)B̄(χ1, χ3; 0)R14ηR34η χ4 + 3/8 Ā(χ4; ε)π16 χ4− 32 Ā(χ46)Lr1 χ46 − 8 Ā(χ46)Lr2 χ46 + 16 Ā(χ46)Lr4 χ46 + Ā(χ46)B̄(χp, χp; 0)

    [

    1/9 χ46 + 1/12 Rηpp χp

    + 1/36 Rηpp χ4 + 1/9 Rηp4 χ6

    ]

    + Ā(χ46)B̄(χp, χη; 0)[

    −1/18 Rηpp χ4 − 1/9 Rηp4 χ6 + 1/9 Rηq4 χ6 + 1/18 Rη13 χ4]

    − 1/6 Ā(χ46)B̄(χp, χη; 0, k)[

    Rηpp − Rη13]

    + 1/9 Ā(χ46)B̄(χη, χη; 0)Rvη13 χ46 − Ā(χ46)B̄(χ1, χ3; 0) [2/9 χ46

    + 1/9 Rηp4 χ6 + 1/18 Rη13 χ4] − 1/6 Ā(χ46)B̄(χ1, χ3; 0, k)Rη13 + 1/2 Ā(χ46; ε)π16 χ46

    + B̄(χp, χp; 0)π16[

    1/16 χ̄1 Rdp + 1/96 R

    dp χp + 1/32 R

    dp χq

    ]

    + 2/3 B̄(χp, χp; 0)Lr0 R

    dp χp

    + 5/3 B̄(χp, χp; 0)Lr3 R

    dp χp + B̄(χp, χp; 0)L

    r4

    [

    −2 χ̄1χ̄ppηη0χp − 4 χ̄1Rpqη χp + 4 χ̄1Rcp χp + 3 χ̄1Rdp]

    + B̄(χp, χp; 0)Lr5

    [

    −2/3χ̄ppηη1χp − 4/3 Rpqη χ2p + 4/3 Rcp χ2p + 1/2 Rdp χp − 1/6 Rdp χq]

    + B̄(χp, χp; 0)Lr6

    [

    4 χ̄1χ̄ppηη1 + 8 χ̄1R

    pqη χp − 8 χ̄1Rcp χp

    ]

    + 4 B̄(χp, χp; 0)Lr7 (R

    dp)

    2

    + B̄(χp, χp; 0)Lr8

    [

    4/3 χ̄ppηη2 + 8/3 Rpqη χ

    2p − 8/3 Rcp χ2p

    ]

    + B̄(χp, χp; 0)2

    [

    −1/18 RpqηRdp χp + 1/18 RcpRdp χp+ 1/288 (Rdp)

    2]

    + 1/18 B̄(χp, χp; 0)B̄(χp, χη; 0)[

    RηppRdp χp − Rη13Rdp χp

    ]

    plus several more pages

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.69/103

  • Why so long expressions

    Many different quark and meson masses (χij)

    Charged propagators: −iGcij(k) =ǫj

    k2−χij+iε (i 6= j)

    Neutral propagators: Gnij(k) = Gcij(k) δij − 1nsea G

    qij(k)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.70/103

  • Why so long expressions

    Many different quark and meson masses (χij)

    Charged propagators: −iGcij(k) =ǫj

    k2−χij+iε (i 6= j)

    Neutral propagators: Gnij(k) = Gcij(k) δij − 1nsea G

    qij(k)

    −iGqii(k) =Rdi

    (k2−χi+iε)2 +Rci

    k2−χi+iε +Rπηii

    k2−χπ+iε +R

    ηπii

    k2−χη+iε

    Rijkl = Rzi456jkl, R

    di = R

    zi456πη,

    Rci = Ri4πη + R

    i5πη + R

    i6πη − Riπηη − Riππη

    Rzab = χa − χb, Rzabc =χa−χbχa−χc , R

    zabcd =

    (χa−χb)(χa−χc)χa−χd

    Rzabcdefg =(χa−χb)(χa−χc)(χa−χd)(χa−χe)(χa−χf )(χa−χg)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.70/103

  • Why so long expressions

    Many different quark and meson masses (χij)

    Charged propagators: −iGcij(k) =ǫj

    k2−χij+iε (i 6= j)

    Neutral propagators: Gnij(k) = Gcij(k) δij − 1nsea G

    qij(k)

    −iGqii(k) =Rdi

    (k2−χi+iε)2 +Rci

    k2−χi+iε +Rπηii

    k2−χπ+iε +R

    ηπii

    k2−χη+iε

    Rijkl = Rzi456jkl, R

    di = R

    zi456πη,

    Rci = Ri4πη + R

    i5πη + R

    i6πη − Riπηη − Riππη

    Rzab = χa − χb, Rzabc =χa−χbχa−χc , R

    zabcd =

    (χa−χb)(χa−χc)χa−χd

    Rzabcdefg =(χa−χb)(χa−χc)(χa−χd)(χa−χe)(χa−χf )(χa−χg)

    Relations =⇒ order of magnitude smallerOdense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.70/103

  • PQChPT at Two Loop

    Problem: Plotting with many input parameters

    Plot masses as a function of lowest order mass squared

    I.e. of quark mass: χi = 2B0mi = m2(0)M

    Remember: χi ≈ 0.3 GeV 2 ≈ (550 MeV )2 ∼ border ChPT

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.71/103

  • PQChPT at Two Loop

    Problem: Plotting with many input parameters

    Plot masses as a function of lowest order mass squared

    I.e. of quark mass: χi = 2B0mi = m2(0)M

    Remember: χi ≈ 0.3 GeV 2 ≈ (550 MeV )2 ∼ border ChPT

    1+1 case: Valence: χ1 = χ2 = χ3Sea: χ4 = χ5 = χ6

    Plot along curves: χ4 = tan θ χ1 or χ4 constantOdense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.71/103

  • PQChPT: 1+1 case, 3 sea quarksS

    ea

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.1 0.2 0.3 0.4 0.5

    χ 4 [G

    eV2 ]

    χ1 [GeV2]

    15o

    30o

    45o

    60o

    75o

    A

    Valence

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.72/103

  • PQChPT: 1+1 case, 3 sea quarksS

    ea

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.1 0.2 0.3 0.4 0.5

    χ 4 [G

    eV2 ]

    χ1 [GeV2]

    15o

    30o

    45o

    60o

    75o

    A

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0 0.1 0.2 0.3 0.4 0.5

    δ(4)

    /F02

    χ1 [GeV2]

    15o

    30o

    45o

    60o

    75o

    A

    Valence p4 mass

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.72/103

  • PQChPT: 1+1 case, 3 sea quarksS

    ea

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.1 0.2 0.3 0.4 0.5

    χ 4 [G

    eV2 ]

    χ1 [GeV2]

    15o

    30o

    45o

    60o

    75o

    A

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0 0.1 0.2 0.3 0.4 0.5

    δ(4)

    /F02

    χ1 [GeV2]

    15o

    30o

    45o

    60o

    75o

    A

    Valence p4 mass

    Notice the Quenched Chiral Logs:m2πχ1

    = 1+α

    F 2χ4 log χ1+· · ·

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.72/103

  • PQChPT: 1+1 case, 3 sea quarks

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 0.1 0.2 0.3 0.4 0.5

    δ(4)

    /F02 +

    δ(6)

    /F04

    χ1 [GeV2]

    15o

    30o

    45o

    60o

    75o

    A

    p4 + p6 relative correction mass

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.73/103

  • PQChPT: 1+1 case, 3 sea quarks

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 0.1 0.2 0.3 0.4 0.5

    δ(4)

    /F02 +

    δ(6)

    /F04

    χ1 [GeV2]

    15o

    30o

    45o

    60o

    75o

    A

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.1 0.2 0.3 0.4 0.5δ(

    4)/F

    02 +δ(

    6)/F

    04

    χ1 [GeV2]

    15o

    30o

    45o

    60o

    75o A

    p4 + p6 relative correction mass decay constant

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.73/103

  • PQChPT: 1+1 case, 2 sea quarks

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    χ1 [GeV2]

    χ 3 [G

    eV2 ]

    ∆M

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    Relative Correction: Mass

    χ1: valence mass, χ3: sea massOdense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.74/103

  • PQChPT: 1+1 case, 2 sea quarks

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    χ1 [GeV2]

    χ 3 [G

    eV2 ]

    ∆M

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    Relative Correction: Mass

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    χ1 [GeV2]

    χ 3 [G

    eV2 ]

    ∆F

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    Decay Constant

    χ1: valence mass, χ3: sea massOdense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.74/103

  • PQChPT: 2 sea quarks

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0 0.05 0.1 0.15 0.2

    ∆ M

    χ1 [GeV2]

    z = 1.4z = 1.2z = 1.0z = 0.8

    z = 0.6z = 0.4

    nf = 2dval = 1dsea = 2

    θ = 70o

    χ3 = χ1 tan(θ)

    χ4 = z χ3

    Relative Correction: Mass1+2 caseValence: χ1 6= χ2Sea: χ3 = χ4

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.75/103

  • PQChPT: 2 sea quarks

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0 0.05 0.1 0.15 0.2

    ∆ M

    χ1 [GeV2]

    z = 1.4z = 1.2z = 1.0z = 0.8

    z = 0.6z = 0.4

    nf = 2dval = 1dsea = 2

    θ = 70o

    χ3 = χ1 tan(θ)

    χ4 = z χ3

    Relative Correction: Mass1+2 caseValence: χ1 6= χ2Sea: χ3 = χ4

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0 0.05 0.1 0.15 0.2

    ∆ Mχ1 [GeV

    2]

    x = 0.8x = 1.0x = 1.2x = 1.4

    x = 1.6x = 1.8

    nf = 2dval = 2dsea = 1

    θ = 70o

    χ3 = χ1 tan(θ)

    χ2 = x χ1

    Mass2+1 caseValence: χ1 = χ2Sea: χ3 6= χ4

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.75/103

  • PQChPT: Fitting Strategy

    For masses and Decay constants

    At order p4: Lr4, Lr5, L

    r6, L

    r8

    At order p6: all allowed quadratic quark masscombinations show up

    Problem: Need Lr0, Lr1, L

    r2, L

    r3 from ππ, πK scattering but

    only to order p4

    Nonanalytic structure at p6 given (only one included innumerics shown)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.76/103

  • Conclusions PQChPT Part

    All relevant mass combinations for masses and decayconstants for charged pseudoscalar mesons nowknown to two loops

    Decay constants and masses for two sea quarksconverge nicely

    Masses for three sea quarks convergence slower

    Looking forward to getting lattice data to fit

    Expressions available fromhttp://www.thep.lu.se/∼bijnens/chpt.htmlFor the numerical programs contact the authors

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.77/103

  • Wishing list

    General:

    Quark-mass dependences everywhere

    Not only fits but also continuum infinite volume resultsat a given quark-mass (so we can also fit ourselves forstudying other inputs)

    More use of the existing two-loop calculations

    Analytical NNLO only: not really fewer parameters

    Only more in LECs: p4 scattering LECs also inmasses/decay constants

    I.e. lr1, lr2 (nF = 2), L

    r1, L

    r2, L

    r3 (nF = 3),

    L̂ri , i = 0, 1, 2, 3 (PQChPT)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.78/103

  • Wishing list: Two-flavour

    (with input from Gasser et al.)

    l̄3 and errors

    l̄4: from Fπ(mq) and scalar radius: can lattice check thisrelation

    a20 accurately predicted in terms of scalar radius: canlattice check this

    Isospin breaking in ππ scattering (important for CPviolation in K → ππ)l̄5 − l̄6 Needed for π → ℓνγ, can be had from ΠAA

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.79/103

  • Wishing list: ≥ 3-flavour

    Ideas on how to make all those calculations usable foryou

    Three and more flavour: typically slow numerically

    large Nc suppressed couplings: i.e. ms dependence ofmπ, Fπ

    Lr4, Lr6

    sigma terms and scalar radii

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.80/103

  • Conclusions and final comments

    Lots of analytical work done in ChPT

    Use the correct ChPT2-flavour for varying m̂ and possible for Nf = 2 andNf = 2 + 1 at fixed ms (but have different LECs)

    otherwise 3-flavourthe various partially quenched versions

    Remember at which order in ChPT you compare things

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.81/103

  • Conclusions and final comments

    Lots of analytical work done in ChPT

    Use the correct ChPT2-flavour for varying m̂ and possible for Nf = 2 andNf = 2 + 1 at fixed ms (but have different LECs)

    otherwise 3-flavourthe various partially quenched versions

    Remember at which order in ChPT you compare things

    Seen a lot of lattice work, looking forward to seeingmore

    LECs in many talks: Boyle, Matsufuru, Urbach,Kuramashi and many parallel session talks

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.81/103

  • η → 3π

    Reviews: JB, Gasser, Phys.Scripta T99(2002)34 [hep-ph/0202242]JB, Acta Phys. Slov. 56(2005)305 [hep-ph/0511076]

    ηpη

    π+pπ+

    π−pπ−

    π0 pπ0

    s = (pπ+ + pπ−)2 = (pη − pπ0)2

    t = (pπ− + pπ0)2 = (pη − pπ+)2

    u = (pπ+ + pπ0)2 = (pη − pπ−)2

    s + t + u = m2η + 2m2π+ + m

    2π0 ≡ 3s0 .

    〈π0π+π−out|η〉 = i (2π)4 δ4 (pη − pπ+ − pπ− − pπ0) A(s, t, u) .

    〈π0π0π0out|η〉 = i (2π)4 δ4 (pη − p1 − p2 − p3) A(s1, s2, s3)

    A(s1, s2, s3) = A(s1, s2, s3) + A(s2, s3, s1) + A(s3, s1, s2) ,Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.82/103

  • η → 3π: Lowest order (LO)

    Pions are in I = 1 state =⇒ A ∼ (mu − md) or αemαem effect is small (but large via mπ+ − mπ0)η → π+π−π0γ needs to be included directly

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.83/103

  • η → 3π: Lowest order (LO)

    Pions are in I = 1 state =⇒ A ∼ (mu − md) or αem

    ChPT:Cronin 67: A(s, t, u) =B0(mu − md)

    3√

    3F 2π

    {

    1 +3(s − s0)m2η − m2π

    }

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.83/103

  • η → 3π: Lowest order (LO)

    Pions are in I = 1 state =⇒ A ∼ (mu − md) or αem

    ChPT:Cronin 67: A(s, t, u) =B0(mu − md)

    3√

    3F 2π

    {

    1 +3(s − s0)m2η − m2π

    }

    with Q2 ≡ m2s−m̂2

    m2d−m2uor R ≡ ms−m̂md−mu m̂ =

    12(mu + md)

    A(s, t, u) =1

    Q2m2Km2π

    (m2π − m2K)M(s, t, u)3√

    3F 2π,

    A(s, t, u) =

    √3

    4RM(s, t, u)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.83/103

  • η → 3π: Lowest order (LO)

    Pions are in I = 1 state =⇒ A ∼ (mu − md) or αem

    ChPT:Cronin 67: A(s, t, u) =B0(mu − md)

    3√

    3F 2π

    {

    1 +3(s − s0)m2η − m2π

    }

    with Q2 ≡ m2s−m̂2

    m2d−m2uor R ≡ ms−m̂md−mu m̂ =

    12(mu + md)

    A(s, t, u) =1

    Q2m2Km2π

    (m2π − m2K)M(s, t, u)3√

    3F 2π,

    A(s, t, u) =

    √3

    4RM(s, t, u)

    LO: M(s, t, u) = 3s − 4m2π

    m2η − m2πM(s, t, u) =

    1

    F 2π

    (

    4

    3m2π − s

    )

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.83/103

  • η → 3π beyondp4: p2 and p4

    Γ (η → 3π) ∝ |A|2 ∝ Q−4 allows a PRECISE measurement

    Q ≈ 24 gives lowest order Γ(η → π+π−π0) ≈ 66 eV .

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.84/103

  • η → 3π beyondp4: p2 and p4

    Γ (η → 3π) ∝ |A|2 ∝ Q−4 allows a PRECISE measurement

    Q ≈ 24 gives lowest order Γ(η → π+π−π0) ≈ 66 eV .

    Other Source from m2K+ − m2K0 ∼ Q−2 =⇒ Q = 20.0 ± 1.5Lowest order prediction Γ(η → π+π−π0) ≈ 140 eV .

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.84/103

  • η → 3π beyondp4: p2 and p4

    Γ (η → 3π) ∝ |A|2 ∝ Q−4 allows a PRECISE measurement

    Q ≈ 24 gives lowest order Γ(η → π+π−π0) ≈ 66 eV .

    Other Source from m2K+ − m2K0 ∼ Q−2 =⇒ Q = 20.0 ± 1.5Lowest order prediction Γ(η → π+π−π0) ≈ 140 eV .

    At order p4 Gasser-Leutwyler 1985:

    dLIPS|A2 + A4|2∫

    dLIPS|A2|2= 2.4 ,

    (LIPS=Lorentz invariant phase-space)

    Major source: large S-wave final state rescattering

    Experiment: 295 ± 17 eV (PDG 2006)Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.84/103

  • η → 3π beyondp4: DispersiveTry to resum the S-wave rescattering:

    Anisovich-Leutwyler (AL), Kambor,Wiesendanger,Wyler (KWW)

    Different method but similar approximationsHere: simplified version of AL

    Up to p8: No absorptive parts from ℓ ≥ 2=⇒ M(s, t, u) =

    M0(s)+(s−u)M1(t)+(s−t)M1(t)+M2(t)+M2(u)−2

    3M2(s)

    MI : “roughly” contributions with isospin 0,1,2

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.85/103

  • η → 3π beyondp4: Dispersive

    3 body dispersive: difficult: keep only 2 body cuts

    start from πη → ππ (m2η < 3m2π) standard dispersive analysisanalytically continue to physical m2η.

    MI(s) =1

    π

    ∫ ∞

    4m2π

    ds′ImMI(s

    ′)

    s′ − s − iεImMI(s

    ′) −→ discMI(s) =1

    2i(MI(s + iε) − MI(s − iε))

    M0(s) = a0 + b0s + c0s2 +

    s3

    π

    Z

    ds′

    s′3discM0(s′)

    s′ − s − iε ,

    M1(s) = a1 + b1s +s2

    π

    Z

    ds′

    s′2discM1(s′)

    s′ − s − iε ,

    M2(s) = a2 + b2s + c2s2 +

    s3

    π

    Z

    ds′

    s′3discM2(s′)

    s′ − s − iε .

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.86/103

  • η → 3π beyondp4

    • Technical complications in solving• Only 4 relevant constants:M(s, t, u) = a + bs + cs2 − d(s2 + tu)

    M0(s) +4

    3M2(s) sM1(s) + M2(s) + s

    24L3 − 1/(64π2)F 2π (m

    2η − m2π)

    converge better

    c = c0 +4

    3c2 =

    1

    π

    Z

    ds′

    s′3

    discM0(s′) +

    4

    3discM2(s

    ′)

    ff

    ,

    d = −4L3 − 1/(64π2)

    F 2π(m2η − m2π)

    +1

    π

    Z

    ds′

    s′3

    ˘

    s′discM1(s′) + discM2(s

    ′)¯

    Fix a, b by matching to tree level or p4 amplitudeOdense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.87/103

  • η → 3π beyondp4

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    1 2 3 4 5 6 7 8

    Re

    M (

    KW

    W)

    s/mπ2

    tree

    p4

    dispersive

    Along s = u KWW

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    1 2 3 4 5 6 7 8

    Re

    M (

    AL)

    s/mπ2

    Adler zeroAdler zero

    tree

    p4

    dispersive

    Along s = u AL

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.88/103

  • η → 3π beyondp4

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    1 2 3 4 5 6 7 8

    Re

    M

    s/mπ2

    p2

    dispersive (match p2)

    dispersive (match (|M|)

    dispersive (match Re M)

    Along s = u BG

    Very simplified analysisJB, Gasser 2002looks more like AL

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.89/103

  • Two Loop Calculation: why

    In Kℓ4 dispersive gave about half of p6 in amplitude

    Same order in ChPT as masses for consistency checkon mu/mdCheck size of 3 pion dispersive part

    At order p4 unitarity about half of correction

    Technology exists:Two-loops: Amorós,JB,Dhonte,Talavera,. . .Dealing with the mixing π0-η:Amorós,JB,Dhonte,Talavera 01

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.90/103

  • Two Loop Calculation: why

    In Kℓ4 dispersive gave about half of p6 in amplitude

    Same order in ChPT as masses for consistency checkon mu/mdCheck size of 3 pion dispersive part

    At order p4 unitarity about half of correction

    Technology exists:Two-loops: Amorós,JB,Dhonte,Talavera,. . .Dealing with the mixing π0-η:Amorós,JB,Dhonte,Talavera 01

    Done: JB, Ghorbani, arXiv:0709.0230 [hep-ph]Dealing with the mixing π0-η: extended to η → 3π

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.90/103

  • Diagrams

    (a) (b) (c) (d)

    (a) (b)(c)

    (d)

    (e) (f) (g) (h)

    (i) (j) (k) (l)

    Include mixing, renormalize, pull out factor√

    34R , . . .

    Two independent calculations (comparison majoramount of work)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.91/103

  • Dalitzplot

    0.08

    0.1

    0.12

    0.14

    0.16

    0.08 0.1 0.12 0.14 0.16

    t [G

    eV

    2]

    s [GeV2]

    mpiavmpidiff

    u=ts=u

    t-thresholdu thesholds threshold

    x=y=0

    x variation:vertical

    y variation:parallel to t = u

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.92/103

  • η → 3π: M(s, t = u)

    -10

    0

    10

    20

    30

    40

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

    −M(s

    ,t,u

    =t)

    s [GeV2]

    Li fit 10 and Ci

    Re p2

    Re p2+p

    4

    Re p2+p

    4+p

    6

    Im p4

    Im p4+p

    6

    Along t = u

    -2

    0

    2

    4

    6

    8

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

    −M(s

    ,t,u

    =t)

    s [GeV2]

    Li fit 10 and Ci

    Re p6 pure loops

    Re p6 Li

    r

    Re p6 Ci

    r

    sum p6

    Along t = u parts

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.93/103

  • η → 3π: M(s, t = u)

    -10

    0

    10

    20

    30

    40

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

    M(s

    ,t,u

    =t)

    s [GeV2]

    Li = Ci = 0

    Re p2

    Re p2+p

    4

    Re p2+p

    4+p

    6

    Im p4

    Im p6

    Along t = uLri = C

    ri = 0

    -10

    0

    10

    20

    30

    40

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

    −M(s

    ,t,u

    =t)

    s [GeV2]

    Li fit 10 and Ci

    Re p2+p

    4

    µ= 0.6 GeVµ= 0.9 GeV

    Re p2+p

    4+p

    6

    µ= 0.6 GeVµ= 0.9 GeV

    Along t = u: µ dependenceI.e. where Cri (µ) estimated

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.94/103

  • η → 3π: M(s = u, t)

    -10

    0

    10

    20

    30

    40

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

    −M(s

    ,t,u

    =s)

    s [GeV2]

    Re p2

    Re p2+p

    4

    Re p2+p

    4+p

    6

    Im p4

    Im p4+p

    6

    Along s = u

    Shape agrees with AL

    Correction larger:20-30% in amplitude

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.95/103

  • Dalitz plot

    x =√

    3T+ − T−

    Qη=

    √3

    2mηQη(u − t)

    y =3T0Qη

    − 1 = 3 ((mη − mπo)2 − s)

    2mηQη− 1 iso= 3

    2mηQη(s0 − s)

    Qη = mη − 2mπ+ − mπ0

    T i is the kinetic energy of pion πi

    z =2

    3

    i=1,3

    (

    3Ei − mηmη − 3m0π

    )2

    Ei is the energy of pion πi

    |M |2 = A20(

    1 + ay + by2 + dx2 + fy3 + gx2y + · · ·)

    |M |2 = A20 (1 + 2αz + · · · )

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.96/103

  • Experiment: charged

    Exp. a b d

    KLOE −1.090 ± 0.005+0.008−0.019 0.124 ± 0.006 ± 0.010 0.057 ± 0.006

    +0.007−0.016

    Crystal Barrel −1.22 ± 0.07 0.22 ± 0.11 0.06 ± 0.04 (input)Layter et al. −1.08 ± 0.014 0.034 ± 0.027 0.046 ± 0.031

    Gormley et al. −1.17 ± 0.02 0.21 ± 0.03 0.06 ± 0.04

    KLOE has: f = 0.14 ± 0.01 ± 0.02.Crystal Barrel: d input, but a and b insensitive to d

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.97/103

  • Theory: charged

    A20

    a b d f

    LO 120 −1.039 0.270 0.000 0.000NLO 314 −1.371 0.452 0.053 0.027

    NLO (Lri = 0) 235 −1.263 0.407 0.050 0.015NNLO 538 −1.271 0.394 0.055 0.025

    NNLOp (y from T 0) 574 −1.229 0.366 0.052 0.023NNLOq (incl (x, y)4) 535 −1.257 0.397 0.076 0.004NNLO (µ = 0.6 GeV) 543 −1.300 0.415 0.055 0.024NNLO (µ = 0.9 GeV) 548 −1.241 0.374 0.054 0.025

    NNLO (Cri = 0) 465 −1.297 0.404 0.058 0.032NNLO (Lri = C

    ri = 0) 251 −1.241 0.424 0.050 0.007

    dispersive (KWW) — −1.33 0.26 0.10 —tree dispersive — −1.10 0.33 0.001 —

    absolute dispersive — −1.21 0.33 0.04 —error 18 0.075 0.102 0.057 0.160

    NLO toNNLO:Littlechange

    Error on|M(s, t, u)|2:

    |M (6) M(s, t, u)|

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.98/103

  • Experiment: neutral

    Exp. α

    KLOE 2007 −0.027 ± 0.004+0.004−0.006

    KLOE (prel) −0.014 ± 0.005 ± 0.004Crystal Ball −0.031 ± 0.004

    WASA/CELSIUS −0.026 ± 0.010 ± 0.010Crystal Barrel −0.052 ± 0.017 ± 0.010GAMS2000 −0.022 ± 0.023

    SND −0.010 ± 0.021 ± 0.010

    A2

    0 α

    LO 1090 0.000

    NLO 2810 0.013

    NLO (Lri = 0) 2100 0.016

    NNLO 4790 0.013

    NNLOq 4790 0.014

    NNLO (Cri = 0) 4140 0.011

    NNLO (Lri = Cri = 0) 2220 0.016

    dispersive (KWW) — −(0.007—0.014)tree dispersive — −0.0065

    absolute dispersive — −0.007Borasoy — −0.031

    error 160 0.032

    Note: NNLO ChPT gets a00 in ππ correct

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.99/103

  • α is difficult

    Expand amplitudes and isospin:

    M(s, t, u) = A(

    1 + ã(s − s0) + b̃(s − s0)2 + d̃(u − t)2 + · · ·)

    M(s, t, u) = A(

    3 +(

    b̃ + 3d̃) (

    (s − s0)2 + (t − s0)2 + (u − s0)2)

    + · ·

    Gives relations (Rη = (2mηQη)/3)

    a = −2Rη Re(ã) , b = R2η(

    |ã|2 + 2Re(b̃))

    , d = 6R2η Re(d̃) .

    α =1

    2R2η Re

    (

    b̃ + 3d̃)

    =1

    4

    (

    d + b − R2η|ã|2)

    ≤ 14

    (

    d + b − 14a2

    )

    equality if Im(ã) = 0

    Large cancellation in α, overestimate of b likely the problemOdense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.100/103

  • r and decay rates

    sin ǫ =√

    34R + O(ǫ2)

    Γ(η → π+π−π0) = sin2 ǫ · 0.572 MeV LO ,sin2 ǫ · 1.59 MeV NLO ,sin2 ǫ · 2.68 MeV NNLO ,sin2 ǫ · 2.33 MeV NNLOCri = 0 ,

    Γ(η → π0π0π0) = sin2 ǫ · 0.884 MeV LO ,sin2 ǫ · 2.31 MeV NLO ,sin2 ǫ · 3.94 MeV NNLO ,sin2 ǫ · 3.40 MeV NNLOCri = 0 .

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.101/103

  • r and decay rates

    r ≡ Γ(η → π0π0π0)

    Γ(η → π+π−π0)

    rLO = 1.54

    rNLO = 1.46

    rNNLO = 1.47

    rNNLO Cri =0 = 1.46

    PDG 2006

    r = 1.49 ± 0.06 our average .r = 1.43 ± 0.04 our fit ,Good agreement

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.102/103

  • R and Q

    LO NLO NNLO NNLO (Cri = 0)

    R (η) 19.1 31.8 42.2 38.7

    R (Dashen) 44 44 37 —

    R (Dashen-violation) 36 37 32 —

    Q (η) 15.6 20.1 23.2 22.2

    Q (Dashen) 24 24 22 —

    Q (Dashen-violation) 22 22 20 —

    LO from R =m2K0 + m

    2K+ − 2m2π0

    2(

    m2K0

    − m2K+

    ) (QCD part only)

    NLO and NNLO from masses: Amorós, JB, Talavera 2001

    Q2 =ms + m̂

    2m̂R = 12.7R (ms/m̂ = 24.4)

    Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.103/103

    OverviewWikipediaWikipediaEffective Field TheoryPower CountingWhy is the sky blue ?Why Field Theory ?Examples of EFTreferencesSchoolChiral Perturbation TheoryThe mass gap: Goldstone ModesThe two symmetry modes comparedSome clarificationsThe power countingChiral Perturbation TheoryChiral Perturbation TheoryChiral Perturbation TheoryChiral Perturbation Theor{�lue ies}LagrangiansExternal currents?LagrangiansLagrangiansChiral LogarithmsLECs and $mu $Expand in what quantities?An exampleAn example: $m_0/f_0$An example: $m_pi /f_pi $Two-loop Two-flavourTwo-Loop Two-flavourLECsLECs$m_pi ^2$$m_pi ^2$ ($�ar l_3 = 0$)$F_pi $Two-loop Three-flavour, $le $2001Two-loop Three-flavour, $ge $2001Two-loop Three-flavour$C_i^r$$C_i^r$$C_i^r$InputsOutputs: ICorrelationsOutputs: II$pi pi $$pi pi $ and $pi K$Quark mass dependences$m_pi ^2$ fit 10$m_pi ^2$ fit D$m_K^2$ fit 10$m_K^2$ fit D$F_pi $ fit 10$F_K$ fit 10$F_K/F_{pi }$ fit 10$m_pi ^2$ fit 10, fixed $hat m$$F_pi $ fit 10, fixed $hat m$$f_+(0)$fit 10, fixed $m_K$$(f_+(0))/left(m_K^2-m_pi ^2ight )^2$ fit 10, fixed $m_K$$f_0(t)$in $K_{ell 3}$$ge 3$-flavour: PQChPTPQChPTPartial Quenching and ChPTPQChPT at Two Loops: GeneralPQChPT at Two Loops: GeneralPQChPT at Two Loop: PapersLong ExpressionsWhy so long expressionsPQChPT at Two LoopPQChPT: 1+1 case, 3 sea quarksPQChPT: 1+1 case, 3 sea quarksPQChPT: 1+1 case, 2 sea quarksPQChPT: 2 sea quarksPQChPT: Fitting StrategyConclusions PQChPT PartWishing listWishing list: Two-flavourWishing list: $ge 3$-flavourConclusions and final comments$eta o 3pi $ $eta o 3pi $: Lowest order (LO)$eta o 3pi $ beyond $p^4$: $p^2$ and $p^4$$eta o 3pi $ beyond $p^4$: Dispersive$eta o 3pi $ beyond $p^4$: Dispersive$eta o 3pi $ beyond $p^4$$eta o 3pi $ beyond $p^4$$eta o 3pi $ beyond $p^4$Two Loop Calculation: whyDiagramsDalitzplot$eta o 3pi $: $M(s,t=u)$$eta o 3pi $: $M(s,t=u)$$eta o 3pi $: $M(s=u,t)$Dalitz plotExperiment: chargedTheory: chargedExperiment: neutral$alpha $ is difficult$r$ and decay rates$r$ and decay rates$R$ and $Q$