theory of turbo machinery / turbomaskinernas teori chapter 4 · turbomaskinernas teori chapter 4....

43
Theory of turbo machinery / Turbomaskinernas teori Chapter 4

Upload: buikien

Post on 18-May-2019

224 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Theory of turbo machinery / Turbomaskinernas teori

Chapter 4

Page 2: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow turbines

FIG. 4.1. Large low pressure steam turbine (Siemens)

Page 3: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow turbines

FIG. 4.2. Turbine module of a modern turbofan jet engine (RR)

Page 4: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

FIG. 4.3. Turbine stage velocity diagrams.

Note direction of 2

1

2

3

Nozzle row

Rotor row

Page 5: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

Assumptions:

• Hub to tip ratio high (close to 1)

• Negligible radial velocities

• No changes in circumferential direction (wakes and nonuniform outlet velocity distribution neglected)

Page 6: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

1 1 1 2 2 2 3 3 3x x xA c A c A c

Continuity equation for uniform steady flow:

1 2 3x x x xc c c c

Assuming constant axial velocity

1 1 2 2 3 3A A A

Page 7: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Design parameters

Flow coefficient

Stage loading coefficient

or

Δ 02

Or using Euler:

Δ

Δ 0 Δ

(4.2)

change of tangential velocity in rotor!

Page 8: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Stage reaction

Stage reaction =

31

32

hhhhR

Static enthalpy drop across rotor

Static enthalpy drop across stage

dpdhTds Second law,assuming isotropic process and ignoring density changes dpdh

31

32

ppppR

Page 9: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

01 03 2 3Δ y yW W m h h U c c 01 02h h

Please note:

No work done in nozzle row:

With

And using above equations:

Work done on rotor by unit mass of fluid

32

23

22

23

22

320302 22 ccUcccchhhh xx

22

222

0cch

chh x

320301 ccUhhmWW

Angle defined in opposite direction at 2

Page 10: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

Combining above equations:

Rewriting this in terms of relative velocity

U

Relative stagnation enthalpy, , does not change across rotor

with 2 3x x xw w c and 2 2 2x yw w w

2 22 3 2 3 2 0h h w w

0,relh

3232

33

22

wwccwUcwUc

022

23

22

23

22

32

xx ccwwhh

2c

2w

(4.6 approximately)

Page 11: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

FIG. 4.4. Mollier diagram for a turbine stage.

Nozzle row (1 to 2):

• Static pressure:

• Stagnation enthalpy:

• Stagnation pressure:(isentropic: )

1 2p p

01 02h h

01 02p p

Subscript ‘s’ denotes isentropic change and ‘ss’ denotes both rows isentropic

01 02p p

Page 12: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

2 3p p

FIG. 4.4. Mollier diagram for a turbine stage.

Rotor row (2 to 3):

• Static pressure:

• Stagnation enthapy:

• Stagnation pressure:02 03h h

02 03p p

However:

• Relative Stagnation enthapy, 2

02, 02 2 03,2rel relh h w h

32 pp

Page 13: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Repeating Stage

FIG. 4.5. General arrangement of a 6-stage repeating turbine.

Multi-stage turbines: Stages often similar to each other

However, channel must be widened

.constcx

.constr

31

Page 14: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Repeating Stage

0301

21

31

21

31

32 11hhhh

hhhh

hhhhR

Reaction: Relative enthalpy drop across rotor = 1- relative enthalpy drop across stator

Same velocities in and out => 030131 hhhh

2tantan0

21

22

22

21

22

020121

xccchhhh

03012 hhU Stage loading

2tantan1 1

22

22 R (4.12)

Page 15: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Repeating Stage

1212 tantantantan

Uc

Uc x

2 eq 4.13 a + eq 4.12:

(4.13 a)

2

tantan1 12 R

1tan12 R (4.14)

the reaction becomes

with

Page 16: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: number of stages

From the definition of stage loading:

The number of stages may be expressed as22

0301

UW

Uhh

2UmWnstage

– Higher mass flow– Higher stage loading– Higher blade velocity

All lead to reduced number of stages

Page 17: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Stage losses and efficiency

01 03

01 03

Actual work outputIdeal work output when operating to same back pressurett

ss

h hh h

Turbine stage total to total efficiency:

01 03 1 3

01 03 1 3tt

ss ss

h h h hh h h h

For a repeating stage, no changes in are made in velocities from inlet to outlet: . Further assuming the efficiency becomes:

1 3 1 3 and c c 3 3ssc c

Page 18: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Stage losses and efficiency

2 2 3 32 22 3

and 2 2

s sN R

h h h hc w

Defining enthalpy loss coefficients for the nozzle and rotor respectively:

12 2

01 03 3 2

01 03, 1 3

12 2 2

01 03 3 2 1

01 3, 1 3

12

12

R Ntt

ss

R Nts

ss

h h w ch h h h

h h w c ch h h h

Neglecting rotor temperature drop, the stage efficiencies may be expressed as:

(4.18 c)

(4.19 c)

Page 19: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Soderberg

22 1 22 cos tan tan 0.8T

id

Y s bY

Soderberg’s correlation:• Large set of data compiled

• Design assuming Zweifel’s criteria for optimum space – axial chord ratio

• Result: Turbine blade losses are a function of

Deflection

Blade aspect ratio

Blade thickness-chord ratio

Reynolds number

H b

maxt l

Page 20: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Soderberg

1 2

3H b

max 0.15 0.3t l

52 2 2 2Re defined at exit throat 2 cos cos 10h h hc D D D sH s H

• Deflection

• Blade aspect ratio:

• Blade thickness-chord ratio

maxt

l

b

s

is height of blade (radial direction)H

Page 21: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

1 2

For turbines:

• Deflection, , is large, but

• Deviation, , is small2 2 '

2 2 '

1 2' '

Page 22: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Soderberg

FIG. 3.25. Soderberg’s correlation of turbine blade loss coefficientwith fluid deflection (adapted from Horlock, 1960).

Page 23: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Soderberg

Corrections for

• Reynolds number

• Blade aspect ratio

Nozzles:

Rotors:

Tip clearance losses and disc friction not included

5Re 10

1 45* *10

Recor

* *1 1 0.993 0.021cor b H

* *1 1 0.975 0.075cor b H

Page 24: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theoryDesign considerations

• Rotor angular velocity (stresses, grid phasing)

• Weight (aircraft)

• Outside diameter (aircraft)

• Efficiency (almost always)

• ………

Page 25: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theoryConsider a case with given

• Blade speed

• Specific work (or stage loading)

• Axial velocity (or flow coefficent)

U

xc

The only remaining parameter to define is since

• Triangles may be constructed

• Loss coefficients determined from Soderberg

• Efficiencies computed from loss coefficients

2c

32 ccUW

23 cUWc

Page 26: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

Variation of efficiency with c 2/U (Reaction) for several values of stage loadingfactor W/U2 (adapted from Shapiro et al. 1957).

2

ΔStage loading factor: WU

flow coefficient: xcU

Aspect ratio: Hb

Page 27: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theoryStage reaction, R

• Alternative description to

• Several definitions available

• Here:

2yc U

2 3 1 3R h h h h

E.g: R = 0.5

2 3 1 3

2 3 1 2

0.5 h h h hh h h h

R = 0.5

Page 28: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

2 3 01 03R h h h h

For a repeating stage, 1 3c c

Using and Euler 2 22 3 2 3 2 0h h w w

2 23 2

2 32 y y

w wRU c c

3 2 3 2 3 2

2 3 22 y y

w w w w w wRUU c c

Page 29: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

tany xw c

Relative tangential velocity

3 23 2tan tan

2 2xw w cR

U U

Or using 2 2y yc w U

3 23 2

3 2

2 21 tan tan2 2

y

x

w U ww wRU U

cU

Page 30: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

FIG. 4.6. Velocity diagram and Mollier diagram for a zero reactionturbine stage.

3 2 3 2tan tan 0 if 2

xcRU

Zero reaction stage

Page 31: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

FIG. 4.8. Velocity diagram and Mollier diagram for a 50% reactionturbine stage.

3 2 3 21 tan tan 0.5 if 2 2

xcRU

50% reaction stage

Page 32: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

FIG. 4.7. Velocity diagram for 100% reaction turbine stage.

Page 33: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

FIG. 4.9. Influence of reaction on total-to-static efficiency with fixed values of stage loading factor.

FIG. 4.4

22

Δ12

yCWRU U

Page 34: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

FIG. 4.6. Mollier diagram for an impulse turbine stage.

Page 35: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Smith charts

FIG. 4.14. Design point total-to-total efficiency and deflection angle contours for a turbine stage of 50 percent reaction.

Alternative representation for specified reaction

Based on measurements at Rolls-Royce

2

( , ) where

Δ is the stage loading and

is the flow coefficientx

f

WUcU

Page 36: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

FIG. 4.11. Design point total-to-total efficiency and rotor flow deflection angle for a zero reaction turbine stage.

Page 37: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Centrifugal stresses

FIG. 4.15. Centrifugal forces acting on rotor blade element.

2d Ω dcF r m

d dm A r

2cd dF Ω dc r rA

With constant cross section this may be integrated

22Ω d 1

2t

h

r tipc hr

t

U rr rr

Page 38: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

FIG. 4.16. Effect of tapering on centrifugal stress at blade root (adapted from Emmert 1950).

Tapering: Reduction of cross sectional area in radial direction, in order to reduce stresses

Pure fluid dynamics would recomend the opposit

Page 39: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

FIG. 4.17. Maximum allowable stress for various alloys (1000 hr rupture life) (adapted from Freeman 1955).

Page 40: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: 2-D theory

FIG. 4.18. Properties of Inconel 713 Cast (adapted from Balje 1981).

Page 41: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Cooling

Turbine blade cooling.

Why is the efficiency of the gas turbine comparable to that of a Rankine cycle?

(given that we do have to pay a considerable amount of energy to the compressor, whereas compression of water in the Rankine cycle is cheap)

Page 42: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Cooling

The evolution of allowable gas temperature at the entry to the gas turbine and the contribution of superalloy development, film cooling technology, thermal barrier coatings and (in the future) ceramic matrix composite (CMC) air foils and perhaps novel cooling concepts

Page 43: Theory of turbo machinery / Turbomaskinernas teori Chapter 4 · Turbomaskinernas teori Chapter 4. Department of Energy Sciences / Division of Thermal Power Eng. / JK Axial-flow turbines

Department of Energy Sciences / Division of Thermal Power Eng. / JK

Axial-flow Turbines: Cooling

FIG. 4.20. Turbine thermal efficiency vs inlet gas temperature (adaptedfrom le Grivès 1986).