theory update on electromagnetic probes ii ralf rapp cyclotron institute + physics department texas...

23
Theory Update on Electromagnetic Probes II Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA CATHIE/TECHQM Workshop BNL (Upton, NY), 16.12.09

Upload: randolph-goodman

Post on 13-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Theory Update on

Electromagnetic Probes II

Ralf Rapp Cyclotron Institute + Physics Department

Texas A&M University College Station, USA

CATHIE/TECHQM WorkshopBNL (Upton, NY), 16.12.09

1.) Intro: Probing Strongly Interacting Matter

• Electromagnetic Probes: penetrating: EM >> Rnuc

• Equilibrium: EM spectral function Im EM(q0,q;B,T)

Information via EM Spectral Function: • degrees of freedom (parton vs. hadron)• transport properties (EM conductivity, susceptibility)• relation to order parameters (chiral symmetry)• measure of temperature

1.) Introduction

2.) EM Emission + Vector Mesons Thermal Rate and Conductivity Chiral Symmetry Breaking and a1 Meson in Medium

3.) Dilepton Spectra in A-A Thermal Emission at SPS The RHIC Problem

4.) Conclusions

Outline

2.1 Thermal Electromagnetic Emission

Tiqx )](j),x(j[)x(exdi)q(Π 0emem0

4em

EM Current-Current Correlation Function:

e+

e-

γ

)T(fMqd

dR Bee23

2em

4

)T(fqd

dRq B

2em

30

Im Πem(M,q)

Im Πem(q0=q)

Thermal Dilepton and Photon Production Rates:

Imem ~ [ImD+ ImD/10 + ImD/5]Low Mass: -mesondominated

2.2 Electric Conductivity

)q,q(Imqq

e 020lim

32

0em00

2

em

• pion gas (chiral pert. theory)

em / T ~ 0.01 for T ~ 150-200 MeV

[Fernandez-Fraile+Gomez-Nicola ’07]

• quenched lattice QCD

em / T ~ 0.35 for T = (1.5-3) Tc

[Gupta ’04]

• soft-photon limit em30340230

)(T)q(

qdxd

dNq

• Weinberg Sum Rule(s)

2.3 Chiral Symmetry Breaking + Hadron Spectrum

Axial-/Vector Correlators

)Im(Ims

dsf IA

IV

112

pQCD cont.

“Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85]

Constituent Quark Mass

• chiral breaking: |q2| ≤ 1 GeV2

• Gellmann-Oakes-Renner:

m2 f2 = mq ‹0|qq|0›-

350000 fm|qqqq||qq| LRRLCondensates fill QCD vacuum:

>>

B*,a1,K1

...

N,,K…

2.4 -Meson in Medium: Hadronic Interactions

D(M,q;B ,T) = [M 2 - m2 - - B - M ] -1-Propagator:

[Chanfray et al, Herrmann et al, RR et al, Koch et al, Klingl et al, Mosel et al, Eletsky et al, Ruppert et al, Sasaki et al …]

= B,M=Selfenergies:

Constraints: decays: B,M→ N, scattering: N → N, A, …

B /0

0 0.1 0.7 2.6

[RR,Wambach et al ’99]

Meson “Melting” Switch off Baryons

2.4.2Meson in Cold Nuclear Matter: JLab

+ A → e+e X e+

e

Nuclear Photo-Production:

[CLAS/JLab ‘08]

[Riek et al ’08]Theoretical Approach:

Mee[GeV]

Fe - Ti

N

elementary production amplitude

in-medium spectral function+

M [GeV]

E=1.5-3 GeV

2.6 Axialvector in Medium: Dynamical a1(1260)

+ + . . . =

Vacuum:

a1

resonance

InMedium: + + . . .

• in-medium + propagators• broadening of - scattering amplitude

[Cabrera,Jido,Roca+RR ’09]

3.) Dilepton Spectra in A-A

Thermal Dilepton Emission Rate:e+

e-

)T,q(fMqdxd

dN Bee023

2em

44

Im Πem(M,q;B,T)

Thermal Sources: Relevance:

- Quark-Gluon Plasma: high mass + temp. qq → e+e , … M > 1.5 GeV, T >Tc

- Hot + Dense Hadron Gas: M ≤ 1 GeV → e+e , … T ≤ Tc

-

q

q

_

e+

e

e+

e

Im Πem ~ Im D

3.1 Dilepton Rates: Hadronic vs. QGP

dRee /dM2 ~ ∫d3q f B(q0;T) Im em

• Hard-Thermal-Loop [Braaten et al ’90]

enhanced over Born rate

• Hadronic and QGP rates “degenerate” around ~Tc

• Quark-Hadron Duality at all M ?! ( degenerate axialvector SF!)

[qq→ee] [HTL]

-

3.2 Dilepton “Excess” Spectra at SPS

• “average” (T~150MeV) ~ 350-400 MeV

(T~Tc) ≈ 600 MeV → m

• fireball lifetime: FB ~ (6.5±1) fm/c[van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ‘08]

)y,M(Acc),T;q,M(qxdd

dNq

qMd)(Vd

dMdN

iFB

fo

44

therm

0

3therm

0

Thermal Emission Spectrum:

3.2.2 NA60 Data vs. In-Medium Dimuon Rates

• acceptance-corrected data directly reflect thermal rates!

M[GeV] [RR,Wambach et al ’99]

[van Hees+RR ’07]

3.2.3 NA60 Excess Spectra vs. Theory

• Thermal source does very well • Low-mass enhancement very sensitive to medium effects• Intermediate-mass: total agrees, decomposition varies

[CERN Courier Nov. 2009]

3.2.4 NA60 Dimuons: Sensitivity to QGP and Tc

• vary critical and chemical-freezeout temperature (Tfo ~ 130 MeV fix)

• spectral shape robust: “duality” of dilepton rate around “Tc”!

• intermediate mass (M>1GeV): QGP vs. hadronic depends on Tc

Intermediate Mass Region“EoS-B” “EoS-C”

3.2.5 EM Probes in Central Pb-Au/Pb at SPS

• consistency of virtual+real photons (same em)

• very low-mass di-electrons ↔ (low-energy) photons[Srivastava et al ’05, Liu+RR ‘06]

Di-Electrons [CERES/NA45] Photons [WA98]

[Turbide et al ’03,van Hees+RR ‘07]

3.3 Low-Mass Dileptons at RHIC: PHENIX

• Successful approach at SPS fails at RHIC• Excess concentrated: - at low mass - in central collisions - at low pt (Teff ~ 100 MeV)

Inclusive Mass Spectrum Centrality Dependence of Excess

3.3.2 Origin of the Low-Mass Excess in PHENIX?

- small Teff slope - why not in semi-central?- generic space-time argument:

maximal emission around Tmax ≈ M / 5.5 (for Im em =const)

Low mass (M<1GeV): Tmax < 200MeV

• Soft QGP Radiation?

23em44

33

0e /T/M

FBeeee )MT(

MIm

)T(Vqxdd

dNqxdd

qM

dMddN

55em eT)(M, .T/Mee TIm

dTdMdN

- “baked Alaska” ↔ small T - rapid quench+large domains ↔ central A-A - therm + DCC → e+ e ↔ M~0.3GeV, small pt

• Disoriented Chiral Condensate (DCC)?[Bjorken et al ’93, Rajagopal+Wilczek ’93]

[Z.Huang+X.N.Wang ‘96]

3.3.3 Low-Mass Excess from DCC?

Dileptons from a DCC-DCC annihilation

[Witham+RR ‘08]

• too small• DCC-thermal to be evaluated …

3.3.4 Comparison of Thermal Emission Calculations

Chiral Reduction + Hydro Hadronic Many-Body + Fireball

• Decomposition at M=0.5(0.2)GeV: Hadronic LO-QGP NLO-QGP Dusling+Zahed 6 (6) 5.5 (2) 10 (25) RR+van Hees 20 (15) 4 (3) --

4.) Conclusions

• Electromagnetic Probes - versatile tool (spectral fcts., transport, temp., lifetime!)

• Chiral Symmetry Breaking (Restoration) - chiral partners: - a1 (degeneracy at Tc)

• Thermal Dilepton Rates - melting toward Tc : quark-hadron duality?!

hadron liquid?!

• Dilepton Spectra - quantitative agreement at SPS - failure at RHIC thus far (QGP not favored; DCC??)

2.3.2 Acceptance-Corrected NA60 Spectra

• more involved at pT>1.5GeV: Drell-Yan, primordial/freezeout , …M [GeV] M [GeV]

X.) Example for Comprehensive Analysis: NA60

thermal medium radiating from around Tc with melted ,

well-bound J/ with large collectivity

DileptonsCharmonium

FlowCharmonium

Production