tracing the halo – cosmic web connection marius cautun kapteyn astronomical institute rien van de...

27
Tracing the Tracing the Halo – Cosmic Web Halo – Cosmic Web Connection Connection Marius Cautun Marius Cautun Kapteyn Astronomical Institute Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Rien van de Weygaert, Wojciech Hellwing, Hellwing, Carlos Frenk, Bernard J. T. Jones Carlos Frenk, Bernard J. T. Jones September 6 th 2012 CosmoComp 2012, Trieste

Upload: cleopatra-hamilton

Post on 17-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

Tracing the Tracing the Halo – Cosmic WebHalo – Cosmic Web

ConnectionConnection

Marius CautunMarius Cautun

Kapteyn Astronomical InstituteKapteyn Astronomical Institute

Rien van de Weygaert, Wojciech Hellwing, Rien van de Weygaert, Wojciech Hellwing,

Carlos Frenk, Bernard J. T. JonesCarlos Frenk, Bernard J. T. Jones

September 6th 2012CosmoComp 2012, Trieste

Page 2: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

Sloan Digital Sky Survey galaxies

Introduction

Page 3: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

Outline

I - The NEXUS+ algorithm

Page 4: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

Outline

II – Halos and the Cosmic Web

I - The NEXUS+ algorithm

Page 5: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

I – The NEXUS+ Algorithm

Challenges:

• Multiscale distribution

• No clear defined boundaries

• Orders of magnitude variation in the density field

Page 6: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

The NEXUS+ algorithmThe NEXUS+ algorithm

1. Apply a filter to the input field.

filter

I – The NEXUS+ Algorithm

Page 7: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

The NEXUS+ algorithmThe NEXUS+ algorithm

1. Apply a filter to the input field.

I – The NEXUS+ Algorithm

Page 8: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

1. Apply a filter to the input field.

2. Compute the Hessian of the filtered field ff.

2

1 2 3

( )( ) has eigenvalues: ij

i j

f xH x

x x

The NEXUS+ algorithmThe NEXUS+ algorithm

I – The NEXUS+ Algorithm

Page 9: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

The NEXUS+ algorithmThe NEXUS+ algorithm

1. Apply a filter to the input field.

2. Compute the Hessian of the filtered field ff.

3. Use the Hessian eigenvalues to assign an environment signature to each point.

I – The NEXUS+ Algorithm

Page 10: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

The NEXUS+ algorithmThe NEXUS+ algorithm

1. Apply a filter to the input field.

2. Compute the Hessian of the filtered field ff.

3. Use the Hessian eigenvalues to assign an environment signature to each point.

I – The NEXUS+ Algorithm

Page 11: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

The NEXUS+ algorithmThe NEXUS+ algorithm

1. Apply a filter to the input field.

2. Compute the Hessian of the filtered field ff.

3. Use the Hessian eigenvalues to assign an environment signature to each point.

4. Repeat steps 1-3 for a range of filter scales.

increasing filter size

I – The NEXUS+ Algorithm

Page 12: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

The NEXUS+ algorithmThe NEXUS+ algorithm

1. Apply a filter to the input field.

2. Compute the Hessian of the filtered field ff.

3. Use the Hessian eigenvalues to assign an environment signature to each point.

4. Repeat steps 1-3 for a range of filter scales.

5. Combine the environmental signatures of each scale to get a scale independent result.

I – The NEXUS+ Algorithm

Page 13: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

The NEXUS+ algorithmThe NEXUS+ algorithm

1. Apply a filter to the input field.

2. Compute the Hessian of the filtered field ff.

3. Use the Hessian eigenvalues to assign an environment signature to each point.

4. Repeat steps 1-3 for a range of filter scales.

5. Combine the environmental signatures of each scale to get a scale independent result.

6. Use physical criteria to identify the valid clusters, filaments and walls.

I – The NEXUS+ Algorithm

Page 14: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

NEXUS+ resultsNEXUS+ results

I – The NEXUS+ Algorithm

Page 15: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

Cosmic Web evolutionCosmic Web evolution

I – The NEXUS+ Algorithm

volume rendering.Using the data from CosmoGrid simulation (Ishiyama+ 2011).

1 320 20 2 ( )Mpc h

Page 16: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

Halos and environmentsHalos and environments

II – Halos and the Cosmic Web

Halo mass functionHalo fraction

Page 17: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

Halos and environmentsHalos and environments

II – Halos and the Cosmic Web

Angular momentum direction Major axis of halo shape

Aragon-Calvo+ (2007), Hahn+ (2007), Codis+ (2012), Trowland+ (2012)

Page 18: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

Environment characteristicsEnvironment characteristics

II – Halos and the Cosmic Web

Page 19: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

Environment characteristicsEnvironment characteristics

Filament diameter

II – Halos and the Cosmic Web

Page 20: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

Environment characteristicsEnvironment characteristics

Filament diameter

II – Halos and the Cosmic Web

Filament linear density

Page 21: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

II – Halos and the Cosmic Web

Dependence on filamentary density

Halo angular momentum vs. environmentHalo angular momentum vs. environment

Page 22: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

II – Halos and the Cosmic Web

Closer to home: Milky WayCloser to home: Milky Way

Wang, Frenk, Navarro, Gao and Sawala (2012):

• 3 MW satellites with maximum velocity > 30 km/s

120

120

40% for a MW mass 10

5% for a MW mass 2·10

M

M

Page 23: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

II – Halos and the Cosmic Web

Closer to home: Milky WayCloser to home: Milky Way

Wang, Frenk, Navarro, Gao and Sawala (2012):

• 3 Milky Way (MW) satellites with maximum velocity > 30 km/s

120

120

40% for a MW mass 10

5% for a MW mass 2·10

M

M

Page 24: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

II – Halos and the Cosmic Web

Substructure and environmentSubstructure and environment

MW resides in a wall-like environment (Tully+ 2008)

For MW-like halos in the Millennium 2 simulation:

90% in filaments

10% in walls

Page 25: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

II – Halos and the Cosmic Web

Substructure and environmentSubstructure and environment

7% of halos in filaments

14% of halos in walls

Number of subhalos with maximum velocity larger than 30km/s for a MW-like halo with 200km/s.

Page 26: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

ConclusionsConclusions

• The NEXUS+ algorithm: a tool for multiscale and automatic Cosmic Web environment detection.

• Very successful in following the evolution of the cosmic environments.

• Ideal tool for measuring the influence of the Cosmic Web on dark matter halos and galaxies.

• Understanding how the Cosmic Web influences the formation and evolution of halos and galaxies.

II – Halos and the Cosmic Web

Page 27: Tracing the Halo – Cosmic Web Connection Marius Cautun Kapteyn Astronomical Institute Rien van de Weygaert, Wojciech Hellwing, Carlos Frenk, Bernard J

II – Halos and the Cosmic Web