transport in nanowire mosfets: influence of the band-structure m. bescond imep – cnrs – inpg...

41
Transport in nanowire Transport in nanowire MOSFETs: influence of the MOSFETs: influence of the band-structure band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas, K. Nehari, M. Lannoo L2MP – CNRS, Marseille, France A. Martinez, A. Asenov University of Glasgow, United Kingdom SINANO Workshop, Montreux 22 nd of September

Upload: merryl-allen

Post on 25-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Transport in nanowire MOSFETs: Transport in nanowire MOSFETs: influence of the band-structureinfluence of the band-structure

M. BescondIMEP – CNRS – INPG (MINATEC), Grenoble, France

Collaborations: N. Cavassilas, K. Nehari, M. Lannoo

L2MP – CNRS, Marseille, France

A. Martinez, A. Asenov

University of Glasgow, United Kingdom

SINANO Workshop, Montreux 22nd of September

Page 2: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

• Motivation: improve the device performances

• Gate-all-around MOSFET: materials and orientations

• Ballistic transport within the Green’s functions

• Tight-binding description of nanowires

• Conclusion

Outline

2

Page 3: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Towards the nanoscale MOSFET’s Scaling of the transistors:

New device architectures

New materials and orientations

Improve carrier mobility

Gate-all-around MOSFET1: Increasing the number of gates offers a better control of the potential

Ge, GaAs can have a higher mobility than silicon (depends on channel orientation).

Effective masses in the confined directions determine the lowest band.

Effective mass along the transport determines the tunnelling current.

Improve potential control

1M. Bescond et al., IEDM Tech. Digest, p. 617 (2004). 3

Page 4: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

3D Emerging architectures3D Emerging architectures

3D simulations: The gate-all-around MOSFET

Page 5: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Gate-All-Around (GAA) MOSFETs

TSi=WSi=4nm

TOX=1nm

Source and drain regions: N-doping of 1020 cm-3.

Dimensions: L=9 nm, WSi=4 nm, and TSi=4 nm, TOX=1 nm.

Intrinsic channel.

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

XZ

Y

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

a) b)

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

XZ

Y

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

a) b)

WSiVG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

XZ

Y

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

a) b)

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

XZ

Y

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

a) b)

WSiVG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

XZ

Y

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

a) b)

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesOxide

W

XZ

Y

XZ

Y

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

a) b)

WSi

5

Page 6: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

3D Mode-Space Approach*

3D Problem = N1D Problems Saving of the computational cost!!!! Hypothesis: n,i is constant along the transport axis.

* J. Wang et al., J. Appl. Phys. 96, 2192 (2004).

The 3D Schrödinger = 2D (confinement) + 1D ( transport)

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesEOT

W

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesEOT

W

2D (confinement)

1D (transport)

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

i,nψ

ith eigenstate of the nth atomic plan

Y

X

Z

Y

X

Z

6

Page 7: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Different Materials and Different Materials and Crystallographic OrientationsCrystallographic Orientations

Page 8: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Different Materials and Orientations

Ellipsoid coordinate system (kL, kT1, kT2)

+

Device coordinate system (X, Y, Z)

+

Rotation Matrices

Z

X

Y

Z

X

Y

ZZZYZX

YZYYYX

XZXYXX

1

DM

Effective Mass Tensor (EMT)

t

t

l

1

00

00

00

MD

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesEOT

W

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesEOT

W

Y

X

Z

Y

X

Z

Y

X

Z

Y

X

ZVG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesEOT

W

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesEOT

W

kT2

kL

kT1

kT2

kL

kT1

k T2 k L

k T1

k T2 k L

k T1

8

Page 9: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Theoretical Aspects*

• 3D Schrödinger equation:

Potential energyZ

X

Y

Z

X

Y

H3D: 3D device Hamiltonian

Coupling

z,y,xEz,y,xz,y,xVTz,y,xH D3D3

zx

2zy

2yx

2zyx2

T2

XZ

2

YZ

2

XY2

2

ZZ2

2

YY2

2

XX

2

D3

* F. Stern et al., Phys. Rev. 163, 816 (1967).

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesEOT

W

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesEOT

W

9

Page 10: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Theoretical Aspects*

• The transport direction X is decoupled from the cross-section in the 3D Schrödinger equation:

0z,y'Ez,yVzy

z,y2

z

z,y

y

z,y

2

2

YZ2

2

ZZ2

2

YY

2

• Where E’ is given by:

trans

2

x

2

2

YZZZYY

l

2

t

2

x

2

m2

k'E

2

k'EE

• mtrans is the mass along the transport direction:

l

2

t

2

YZZZYYtransm

Coupling

•M. Bescond et al., Proc. ULIS Workshop, Grenoble, p.73, April 20th-21st 2006.•M. Bescond et al. JAP, submitted, 2006. 10

Page 11: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

3D Mode-Space Approach

Resolution of the 2D Schrödinger equation in the cross-section: mYY, mZZ, mYZ. Resolution of the 1D Schrödinger equation along the transport axis: mtrans.

The 3D Schrödinger = 2D (confinement) + 1D ( transport)

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesEOT

W

VG

VDVS

L

DRAINSOURCE CHANNEL

VG

Gates

GatesEOT

W

2D (confinement)

1D (transport)

Y

X

Z

Y

X

Z

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

Si TSi

SiO2

TOX

i,nσ

ith eigenstate of the nth atomic plane

11

Page 12: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Semiconductor conduction band

(spherical): ml=mt diagonal EMT

• Three types of conduction band minima:

(ellipsoidal): mlmt non diagonal EMT

(ellipsoidal): mlmt non diagonal EMT

E E EΔ

Electro

n E

nerg

y

-valleys-valleys

kZ

kX

kY

kZ

kX

kY

12

Page 13: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Results: effective masses

• Wafer orientation: <010>

13

Page 14: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Material: Ge

mYY=0.2*m0 mZZ=0.95*m0 mtrans=0.2*m0

mYY=0.117*m0 mZZ=0.117*m0 mYZ

-

1=±1/(0.25*m0) mtrans=0.6*m0

4-valleys1st 2nd

-valleys

Z

6 nm

Non-diagonal terms in the effective mass tensor couple the transverse directions in the -valleys

Free electron mass

Z

X

Y

Z

X

Y

• Square cross-section: 44 nm, <100> oriented wire

Y

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

14

Page 15: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Material: Ge• Square cross-section: TT=55 nm, <100> oriented wire

0.0 0.2 0.4 0.6 0.810-1110-1010-910-810-710-610-5

ID (A)

VG (V)

L=9nmV

DS=0.4V

T=5 nm

Total Tunneling Thermionic

0.0 0.2 0.4 0.6 0.8

10-1110-1010-910-810-710-610-5

I D (A)

VG (V)

-valleys 4-valleys

Total current is mainly defined by the electronic transport through the -valleys (bulk)

Tunneling component negligible due to the value of mtrans in the -valleys (0.6*m0) 15

Page 16: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

• Square cross-section: 44 nm, <100> oriented wire

Material: Ge

0.0 0.2 0.4 0.6 0.8

10-1110-1010-910-810-710-610-5

T=4 nmV

DS=0.4V

I D (A)

VG (V)

-valleys 4-valleys

0 4 8 12 16-0.3-0.2-0.10.00.10.20.30.40.5

VG=0.8V

VDS

=0.4VL=9nm

elec

tron

sub

-ban

ds (eV

)

X (nm)

LAMBDA (1st)

LAMBDA (2nd)

DELTA4 (1st)

DELTA4 (2nd)

The 4 become the energetically lowest valleys due to the transverse confinement

4-valleys: mYY=0.2*m0, mZZ=0.95*m0

-valleys: mYY=0.117*m0, mZZ=0.117*m0

16

Page 17: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Material: Ge*

0.0 0.2 0.4 0.6 0.810-1110-1010-910-810-710-610-5

Total currentL=9nmV

DS=0.4V

I D (A)

VG (V)

T=4 nm T=5 nm

4-valleys: mtrans=0.2*m0 versus -valleys: mtrans=0.6*m0

The total current increases by decreasing the cross-section!

* M. Bescond et al., IEDM Tech. Digest, p. 533 (2005). 17

Page 18: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

3D Emerging architectures3D Emerging architectures

Influence of the Band structure: Silicon

Page 19: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Why?• Scaling the transistor size

devices = nanostructures

Electrical properties depend on: Band-bap. Curvature of the bandstructure: effective masses.

Atomistic simulations are needed1,2.

Aim of this work: describe the bandstructure properties of Si and Ge nanowires.

1J. Wang et al. IEDM Tech. Dig., p. 537 (2005).

2K. Nehari et al. Solid-State Electron. 50, 716 (2006). 19

Page 20: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Tight-Binding methodBand structure calculation

• Concept: Develop the wave function of the system into a set of atomic orbitals.

• sp3 tight-binding model: 4 orbitals/atom: 1 s + 3 p• Interactions with the third neighbors.• Three center integrals.• Spin-orbit coupling.

1st (4)

2nd (12)

3rd (12)

Diamond structure:

Reference

20

Page 21: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Tight-Binding methodBand structure calculation

ESS(000) -7.16671 eV ESS(111) -1.39517 eV

Exx(000) 2.03572 eV Esx(111) 1.02034 eV

Exx(111) 0.42762 eV Exy(111) 1.36301 eV

Ess(220) 0.09658 eV Ess(311) -0.11125 eV

Esx(220) -0.13095 eV Esx(311) 0.13246 eV

Esx(022) -0.15080 eV Esx(113) -0.05651 eV

Exx(220) 0.07865 eV Exx(311) 0.08700 eV

Exx(022) -0.30392 eV Exx(113) -0.06365 eV

Exy(220) -0.07263 eV Exy(311) -0.07238 eV

Exy(022) -0.16933 eV Exy(113) 0.04266 eV

20 different coupling terms for Ge:*

*Y.M. Niquet et al., Appl. Phys. Lett. 77, 1182 (2000).

Coupling terms between atomic orbitals are adjusted to give the correct band structure: semi-empirical method.

* Y.M. Niquet et al. Phys. Rev. B, 62 (8):5109-5116, (2000).

21

Page 22: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

The dimensions of the Si atomic cluster under the gate electrode is [TSix(W=TSi)xLG].

1.36

nm

x

y

z

1.36

nm

x

y

z

SiliconHydrogen

Schematic view of a Si nanowire MOSFET with a surrounding gate electrode.Electron transport is assumed to be one-dimensional in the x-direction.

Simulated deviceSi Nanowire Gate-All-Around transistor

22

Page 23: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Energy dispersion relations In the bulk:

The minimum of the conduction band is the DELTA valleys defined by six degenerated anisotropic bands.

-valleys

Constant energy surfaces are six ellipsoids

23

Page 24: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Energy dispersion relations

Energy dispersion relations for the Silicon conduction band calculated with sp3 tight-binding model. The wires are infinite in the [100] x-direction.

Direct bandgap semiconductorThe minimum of 2 valleys are zone folded, and their positions are in k0=+/- 0.336Splitting between 4 subbands

T=1.36 nm T=2.72 nm T=5.15 nm

24

Page 25: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Conduction band edge and effective masses

Bandgap increases when the dimensions of cross section decreasem* increases when the dimensions of cross section decrease :

1 2 3 4 5 6 71.0

1.5

2.0

2.5

3.0

Bulk CBEdge

Using Bulk m*

From TB E(k)

Con

duct

ion

band

edg

e (e

V)

Wire width (nm)

1 2 3 4 5 6 70.2

0.4

0.6

Si Bulk

From TB E(k)

mx*

at (m

0)

W ire width (nm)

1 2 3 4 5 6 70.9

1.0

1.1

S i Bulk

From TB E (k)

mx*

fo

r 2(m

0)

W ire w id th (nm )

1

336.0,0

2

22*

k

x k

Em

25

Page 26: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

ResultsCurrent-Voltage Caracteristics

0.0 0.2 0.4 0.6

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

0

5

10

15

I D (

A)

I D (

µA

)

VG (V)

Bulk m*

TB E(k) m*

0.0 0.2 0.4 0.610-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

0

5

10

15

20

I D (

A)

VG (V)

Bulk m*

TB E(k) m*

I D (

µA

)

0.0 0.2 0.4 0.610-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

0

5

10

15

20

25

I D (

A)

VG (V)

Bulk m*

TB E(k) m*

I D (

µA

)

No influence on Ioff, due to the reduction of cross section dimension which induces a better electrostatic control Overestimation of Ion (detailled on next slide)

ID(VG) characteristics in linear/logarithmic scales for three nanowire MOSFET’s (LG=9nm, VD=0.7V) with different square sections.

1.36 nm 1.9 nm 2.98 nm

26

Page 27: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

K. Nehari et al., Solid-State Electronics, 50, 716 (2006).

K. Nehari et al., APL, submitted, 2006.

ResultsOverestimation on ON-Current

Overestimation of the Ion current delivered by a LG=9nm nanowire MOSFET as a function of the wire width when using the bulk effective-masses instead of the TB E(k)-based values.

1 2 2 3 3 4 4 5 5 60

10

20

30

40

50

60

70

I ON o

vere

stim

atio

n (%

)

Wire width (nm)

1 2 3 4 5 6 70.2

0.4

0.6

Si Bulk

From TB E(k)

mx*

at (m

0)

W ire width (nm)

1 2 3 4 5 6 7

0.9

1.0

1.1

S i Bulk

From TB E (k)

mx*

fo

r 2(m

0)

W ire w id th (nm )

When the transverse dimensions decrease, the effective masses increase and the carrier velocity decreases.

27

Page 28: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

3D Emerging architectures3D Emerging architectures

Influence of the Band structure: Germanium

Page 29: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

• Three types of conduction band minima:

-valleys-valleys

Conduction band minima

• L point: four degenerated valleys (ellipsoidal).• point: single valley (spherical).• directions: six equivalent minima (ellipsoidal).

29

Page 30: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

• Indirect band-gap.• The minimum of CB obtained in kX=/a corresponding to the 4 bulk valleys.• Second minimum of CB in kX=0, corresponding to the single bulk valley (75% of s orbitals).

T=5.65 nm

Dispersion relations*

4 bulk valleys

2 bulk valleys

Single bulk valley4 bulk valleys

Y

X

Z

Y

X

Z

4 bulk valleys

Ge <100>

*M. Bescond et al. J. Comp. Electron., accepted (2006). 30

Page 31: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

• The four bands at kX=/a are strongly shifted.• The minimum of the CB moves to kX=0.• The associated state is 50% s ( character) and 50% p ( and character) Quantum confinement induces a mix between all the bulk valleys. These effects can not be reproduced by the effective mass approximation (EMA).

T=1.13 nm

Dispersion relationsGe <100>

31

Page 32: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Effective masses: pointGe <100>

• Significant increase compared to bulk value (0.04m0):From 0.071m0 at T=5.65nm to 0.29m0 at T=1.13nm increase of 70% and 600% respectively.

Other illustration of the mixed valleys discussed earlier in very small nanowires.

(1/m*)=(4 ²/h²)( ²E/ k²)

32

Page 33: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Effective masses: kX=/a

• Small thickness: the four subbands are clearly separated and gives very different effective masses.

• Larger cross-sections (D>4nm): the effective masses of the four subbands are closer, and an unique effective mass can be calculated: around 0.7m0 (effective mass: mtrans=0.6m0 for T=5nm)

• The minimum is not obtained exactly at kX=/a:

Ge <100>

33

Page 34: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Band-gap: Ge vs Si

• For both materials: the band gap increases by decreasing the thickness T (EMA).• EG of Ge increases more rapidly than the one of Si: Si and Ge nanowires have very close band gaps. Beneficial impact for Ge nano-devices on the leakage current (reduction of band-to-band tunneling).

Ge <100>

34

Page 35: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Effective masses: Valence Band

• Strong variations with the cross-section: from -0.18m0 to -0.56m0 (70% higher than the mass for the bulk heavy hole).

35

Page 36: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Conclusion• Study of transport in MOSFET nanowire using the NEGF.• Effective Mass Approximation: different materials and orientations

(T>4-5nm).

• Thinner wire: bandstructure calculations using a sp3 tight-binding model.

• Evolution of the band-gap and effective masses.

• Direct band-gap for Si and indirect for Ge except for very small thicknesses (« mixed » state appears at kX=0).

• Bang-gap of Ge nanowire very rapidly increases with the confinement: band-to-band tunneling should be attenuated.

• Ge is much more sensitive then Si to the quantum confinement

necessity to use an atomistic description + Full 3D*

* A. Martinez, J.R. Barker, A. Asenov, A. Svizhenko, M.P. Anantram, M. Bescond, J. Comp. Electron., accepted (2006) * A. Martinez, J.R. Barker, A. Svizenkho, M.P. Anantram, M. Bescond, A. Asenov, SISPAD, to be published (2006)

36

Page 37: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

1D case: Concept of conduction channel and quantum of conductance

Current density from Left to right:

dE-fh

e-E-fv

L

e-nev-I ∑ ∫

i

FLFLii

Total current density:

dE-f-E-fh

e-III ∫

FRFL

Quantum of conductance:

=V

Ilim=D

RL0→V +

RL+

Rq: If bosonic particles: h

eN=D

2b

b

Due to the Fermi-Dirac distribution (1 e-/state) which limits the electron injection in the active region

Resistance of the reservoirs

0.0 0.5 1.0

-0.2

-0.1

0.0

0.1

0.2

E F L

E ( e

V )

f(-EFL)0.0 0.5 1.0

-0.2

-0.1

0.0

0.1

0.2

E F L

E ( e

V )

f(-EFL)

Left electrode Right electrodeBallistic conductor

EFL

EFR

L

eVRL

Left electrode Right electrodeBallistic conductor

EFLEFL

EFR

L

eVRL

h

e)2(=

2

Description of ballisticity: the Landauer’s approach

extra

Page 38: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Resistance of the reservoirs

0.0 0.5 1.0

-0.2

-0.1

0.0

0.1

0.2

E F D

( e V )

E ( e

V )

f

0.0 0.5 1.0

-0.2

-0.1

0.0

0.1

0.2

E F S

( e V )

E ( e

V )

f

E F SE F D

V D S> 0

0.0 0.5 1.0

-0.2

-0.1

0.0

0.1

0.2

E F D

( e V )

E ( e

V )

f

0.0 0.5 1.0

-0.2

-0.1

0.0

0.1

0.2

E F S

( e V )

E ( e

V )

f

E F SE F D

V D S> 0

Resistance of the reservoirs: the Fermi-Dirac distribution limit the electron quantity injected in a subband (D0=2e2/h).

0 5 10 15 20-0.4

-0.2

0.0

0.2

0.4

0.6

Drain

Source

0.8 V

VG=0 V

Fir

st s

ub

band

of

the

(0

10)

valle

y (e

V)

Channel axis (nm)

VDS

=0.4 V

L=9 nm

ΔE

<0.

4 eV

0 5 10 15 20-0.4

-0.2

0.0

0.2

0.4

0.6

Drain

Source

0.8 V

VG=0 V

Fir

st s

ub

band

of

the

(0

10)

valle

y (e

V)

Channel axis (nm)

VDS

=0.4 V

L=9 nm

ΔE

<0.

4 eV

Source Drain

VDS>0

Off regime

1

T’0

1T0

Source Drain

VDS>0

On regime

1

T’0

1T1

R’1

R0

R’1

R1

Source Drain

VDS>0

Off regime

1

T’0

1T0

Source Drain

VDS>0

On regime

1

T’0

1T1

R’1

R0

R’1

R1

extra

Page 39: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Towards the nanoscale MOSFET’s

2003

1971 20011989

2300134 000

410M

42M

1991

1.2M

tran

sist

ors

/ch

ip

10 µm 1 µm 0.1 µm 10 nm

Mean free path in perfect semiconductors

ballistic transport

De Broglie length in semiconductors

quantum effects

Channel length of ultimate R&D MOSFETs in 2006

extra

Page 40: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

Semi-empirical methods Effective Mass Approximation (EMA):

E(k)

k0

Parabolic approximation of an

homogeneous materialParabolic

approximation of a finished system of

atoms

1

2

2*

k

E1m

*m2

kkE

22 (Infinite system at the equilibrium)

• Near a band extremum the band structure is approximated by an parabolic function:

extra

Page 41: Transport in nanowire MOSFETs: influence of the band-structure M. Bescond IMEP – CNRS – INPG (MINATEC), Grenoble, France Collaborations: N. Cavassilas,

New electrostatic potential

New electron density

1D density (Green)

Poisson

Electrostatic potential

Current

Simulation Code Potential energy profile (valley (010))

Numerical Aspects

2D Schrödinger Resolution

3D density (Green)

Self-consistent coupling

The transverse confinement involves a discretisation of the energies which are distributed in subbands

1st

2nd

3rd

y

0 5 10 15 20-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

EFD

EFS

L=9 nmV

DS=0.4 V

VG=0 VP

oten

tial e

nerg

y (e

V)

X (nm)1st

2nd

3rd

y

0 5 10 15 20-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

EFD

EFS

L=9 nmV

DS=0.4 V

VG=0 VP

oten

tial e

nerg

y (e

V)

X (nm)

(Neumann)

Extra